zmimg-fsah-n-dmasfng-twhd-grrntwtn-d-srwj-n-shml-shr-dlyjn

با کاربرد شیمی کانه‌های آمفیبول و فلدسپار

محبوبه جمشیدی بدر

1-ghtw-zm-hnshnsh-dhshkg-h-m-nmrs-dr-grrntwtn-d-srw-jn-b-n-shml-shr-dlyjn

2-ghtw-zm-hnshnsh-dhshkg-h-m-nmrs-dr-grrntwtn-d-srw-jn-b-n-shml-shr-dlyjn

چکیده: توده افتدی سری‌بان در شمال شرق دلیجان و در کمپند ماگما ارمویه-دخت رخنمون دارد. این توده شامل واکه‌های
اسیدی و حاوی پوده و در سطح‌های گرانیت، کبوزیتونیت، توتابیتلیت و کوارتزدوربیت تشکل شده است. کانی‌های اصلی تشکیل
دهنده توده افتدی پلاژیکلاز، آمفیبول، بوئینت، کوارتز و فلدسپار پدانسیم است. در این پژوهش بر اساس تجزیه نقطة کانی‌های
آمفیبول و فلدسپار، زمین‌فشار-دامدنی سیگن‌های توتابیتلیت و کوارتزدوربیت توده‌گرانیت‌های سری‌بان تشکیل شده است. ترکیب
آمفیبول‌های نسبی شده، در غیر آمین‌های گلوکسیک و از نوع مینی‌هوبرنلین تا کمک‌کننده‌های متین تشکیل می‌گردد. پلاژیکلازهای
منطقه‌ای در کستره منطقه‌ای آندزین تا میانگریز می‌باشد. میانگین فشار تشکیل سیگن‌های توتابیتلیت، کوارتزدوربیتی و آمفیبول‌های نسل اول
که به شکل ادخال در آمین‌های نسل دوم در نوار دارد، با استفاده از روش فشاری نوجوانی سیگن‌های در هوبرنلین به ترتیب 0.4
و 2.6 کیلوبار پروآورد شد. میانگین دمای تشکیل این سیگن‌ها با استفاده از روش زمین‌فشاری هورنلتین-پلاژیکلاز نیز به ترتیب
در حدود 0.11-0.16 درجه Log fO2 و میزان کمی در 0.01-0.05 است.

واژه‌های کلیدی: دما فشاری/آمفیبول/پلاژیکلاز/گرین‌بندی کانی‌های دلیجان

مقدمه

امروزه، با ترکیب شیمیایی کانه‌ای که می‌توان شرایط
فیزیکوشیمیایی حاکم در هنگام جایگذاری توده‌های افتدی را
بررسی کرد. در این رابطه، کاربرد ترکیب شیمیایی کانه
آمفیبول در توده‌های پلاژیکلاز تحقیق گرین‌بندی
موضوعی شناخته شده است [1]. این کانی در دامنه
گسترده‌ای از شرایط شار و دما ظاهر می‌شود و از
سازگاری و سیگن‌های آدنین به ویژه سیگن‌های آدنین،
و سیگن‌های دگرگونی به شمار می‌آید. آمفیبول، مناسب
کانی برای دما-فشار سیگن‌های سری‌بان و دلیجان

m_jamshidi@pnu.ac.ir

#"
و بلازیکلاز در نواحی گراتونبیده سرویان شمال‌شرق دلیجان، می‌مختار شناختی‌های سنگی‌زایی و تکنومافی‌ای این ناحیه است.

در این بخش، با ارائه داده‌های آزمایش‌گاهی، ریزپردازه الکترونی فشار و دمای سیلیکات‌های توده سرویان به روی‌های مختلف ماهیگری‌های منطقه است. زمین‌شناسی عمومی

توده‌های سرویان در استان مرکزی و در 15 کیلومتری شمال شرقی دلیجان و بین طول‌های جغرافیایی 3°، 30° شرق تا 34°، 29° شمال غربی و عرض‌های جغرافیایی 41°، 20°، و در منطقه‌ی ایران مرکزی، به مرز منطقه‌ی ارومیه خطر و خشکی از نقشه‌ی زمین‌شناسی 1100/1 کهف را ت تشکیل می‌دهد.

منطقه‌ی مورد بررسی شامل منطقه‌ی سیاه‌آباد، پروکلاستیک و آنتنسی‌نشین است که به وسیله‌ی صفحات‌های سیاه و توده‌های نفوذی و نیمه‌عمیق قطع شده‌اند. سیگنال پروکلاستیک بر سیاه‌آباد تناوبی از توده‌های سیاه، شبیه و سیگنال تناوبی با نیمه‌ای از این منطقه صرفاً در سیگنال و کارتردیوریت تشکیل داده است. در اثر نفوذ این توده در سیگنال آنتنسی‌نشین، آخرین زمان‌های تولید سیگنال دارند. در بررسی این منطقه، سیگنال توده‌های کارتردیوریتی از استراحتی است که به‌طور گسترده‌تری بخش‌های مرکزی پروکلاستیک دارد. دایک‌های یافته در بخش‌های

شکل 1: نقشه زمین‌شناسی و موقعیت جغرافیایی منطقه‌ی مورد بررسی بر گرفته از نقشه‌ی 1/100000 کهف [9].
برخورداریم که این واژه‌ها از آن‌ها و هورنردند سبب در
پلیریوکلاز دیده می‌گردند. در برخی از نقاط بلورهای
پلیریوکلاز به‌صورت هم‌ریزت در مجرا و به‌خصوص در آمبنیول قرار گرفته‌اند (شكل ۲ب). علت این تغییر در به‌طور کلی پلیریوکلاز، این است که در فرایند خشک‌سازی و دمای بالای آمبنیول، رشد که
که به‌عنوان آمبنیولی‌ها نسل‌های سهول اصلی می‌گردند. با
صعود واقعی که که به‌عنوان آمبنیولی‌ها نسل‌های اولیه می‌گردند، رشد که به‌عنوان آمبنیولی‌ها نسل
سوم باشد شیوه شنیده می‌گردند. این که به‌عنوان آمبنیولی‌ها نسل
دوم به‌عنوان آمبنیولی‌ها نسل
تاریخی یا که به‌عنوان آمبنیولی‌ها نسل
می‌گردند. این که به‌عنوان آمبنیولی‌ها نسل
دوم به‌عنوان آمبنیولی‌ها نسل
می‌گردند. این که به‌عنوان آمبنیولی‌ها نسل
دوم به‌عنوان آمبنیولی‌ها نسل
می‌گردند. این که به‌عنوان آمبنیولی‌ها نسل
دوم به‌عنوان آمبنیولی‌ها نسل
می‌گردند. این که به‌عنوان آمبنیولی‌ها نسل
دوم به‌عنوان آمبنیولی‌ها نسل
می‌گردند. این که به‌عنوان آمبنیولی‌ها نسل

کانی‌های بوتیت که به‌صورت ریز تا میان‌بسته و
صفحه‌ای شکل در کوارتزدوریت‌ها به عنوان فار اصلی‌مافیک
حضور دارند (شکل 2). این بلورها به صورت شکل‌دار تا نیمه
شکل‌دار بوده و در بخش‌هایی از راستای رخ‌ها و شکستگی‌ها
به کلیت بی‌کفلی شده‌اند (علامت اختلالی کانی‌ها در شکل 2 از
[12] است). روی بررسی
در این پژوهش مجموعاً 46 تجزیهی نقطه‌ای از کانی‌های
جدول 1 نتایج ریزپیچ زدن کانی‌های آمپوئل در سنگ‌های توده‌های گرافیت‌های سروبیان، حرف آخر نام نمونه‌ها شامل آنالیزی‌های: مرکز بلور (c)، حاشیه
بلور (t) و حد نواستر مرکز و حاشیه بلور (m) است.

<table>
<thead>
<tr>
<th>تونالیت‌ها</th>
<th>کوارتز دوریت‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>182Ac</td>
<td>182Am</td>
</tr>
<tr>
<td>SiO2</td>
<td>49.8</td>
</tr>
<tr>
<td>TiO2</td>
<td>1.6</td>
</tr>
<tr>
<td>Al2O3</td>
<td>6.0</td>
</tr>
<tr>
<td>FeO</td>
<td>1.2</td>
</tr>
<tr>
<td>MgO</td>
<td>0.1</td>
</tr>
<tr>
<td>MnO</td>
<td>0.0</td>
</tr>
<tr>
<td>Sum</td>
<td>57.2</td>
</tr>
<tr>
<td>Si</td>
<td>1.19</td>
</tr>
<tr>
<td>Al2O3</td>
<td>0.5</td>
</tr>
<tr>
<td>MgO</td>
<td>1.4</td>
</tr>
<tr>
<td>FeO</td>
<td>0.1</td>
</tr>
<tr>
<td>CaO</td>
<td>0.0</td>
</tr>
<tr>
<td>C</td>
<td>0.0</td>
</tr>
<tr>
<td>Fe</td>
<td>1.0</td>
</tr>
<tr>
<td>Ca</td>
<td>1.0</td>
</tr>
<tr>
<td>Na</td>
<td>0.1</td>
</tr>
<tr>
<td>B</td>
<td>0.1</td>
</tr>
<tr>
<td>K</td>
<td>0.1</td>
</tr>
<tr>
<td>Sum A</td>
<td>15.2</td>
</tr>
</tbody>
</table>
شیمی کاتیوی‌ها

آمفیبولی در سطح‌های نفوذی سرویانا، آمفیبول بنیانی کلی می‌باشد، از سطح‌های اولیه است و در سطح‌های کارنتر دیورنتی‌های بیونت حضور دارد. نتایج آنالیز شیمی‌ای آمفیبول‌های موجود در سطح‌های نفوذی منطقه به همراه محاسبه فرمول ساختاری آنها به روش [16] در حدود 10 آمده‌اند. آمفیبول‌های ادخال نسل اول نسبت به آمفیبول‌های نسل دوم آلومینیوم و آلیینیوم پاتین‌تر دارند (جدول 1). نسبت آلیینیوم/آلومینیوم در برتی‌گان آلیینیوم مورد بررسی بین 0.79/16 به واسطه‌اند آمفیبول‌های منطقه به فرمول‌های آزمایش (شکل 3). آمفیبول‌های منطقه براساس طریقی [15] از نوع کلسیپ (کلسیپ‌دار) هستند. نیا به غیرشدن بسیاری از پژوهشگران (شکل 4-17) حضور آمفیبول‌های کلسیپ در سطح‌های گرانتون‌یک شناخته و استقامت این سطح‌ها با گرانی‌تیون‌یده‌های نوع 1 است. این که در رده‌بندی [14] در گروه آمفیبول‌های کلسیپ و در زیر رده‌های متیزیوکریس و آکینوتید...
شکل ۴ (الف، ب، پ) نمودارهای ردهبندی و تابع‌گذاری امفیپولها هستند [۱۴۱]. امفیپولهای تجزیه شده بیشتر زیر رده‌های میزیپورنبلد، هورنبلد و اکتینوتیل قرار می‌گیرند (علائم مشابه شکل ۳).

شکل ۵ (الف) نمودار Ti در امفیپولها، تمامی امفیپولها کمتر از ۰.۵ اتم Ti در فرمول ساختاری دارند، (ب) نمودار تغییرات AlIV در امفیپولها هم‌اکنون باید به تغییرات AlIV در ۵۰ نمونه‌های مورد بررسی در بکر روند تقسیم خم فازی در می‌گیرد، (پ) نمودار AlIV نسبت به AIT نسبت به AIT [۱۴۲] نشان دهنده اینستیتیوی‌های آتالتیک و روند‌های برخی خاطر خود است. (علائم مشابه شکل ۳ است)

یلاژیپولار/یلاژیپولارها فراوان ترین کانی فلزیک در سنگ‌های نفوذی هستند. مقدار عضو انتهای آنریت در An ۳۰-۵۸ و در کوارتز ویورت‌ها An ۳۱-۵۵ توانایی‌ها.
کاهش دما در مکانیسم که نیو میانیار از فازهای دیگر در بخش مرکزی بیلوریته پلاژیوکلاز روند خطی آنوتیت نسبت به نشان دهنده این است که پلاژیوکلاز فاز اصلی مکانیسم است. ویژگی‌هایی که یادآوری شده در بیلوریته پلاژیوکلاز بررسی شده است (شکل 6 ب) به نظر می‌رسد که هسته‌های غنی از آنوتیت در مراحل اولیه جذبیت و سپس بیلوریته پلاژیوکلازی با درصد آنوتیت کمتر پوشیده شده‌اند، این فرآیند نتیجه

<table>
<thead>
<tr>
<th>کوارتز دوتریت (176)</th>
<th>توانالیت (182)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>55.2</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.7</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>26.3</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.1</td>
</tr>
<tr>
<td>FeO</td>
<td>0.3</td>
</tr>
<tr>
<td>MnO</td>
<td>0.2</td>
</tr>
<tr>
<td>MgO</td>
<td>0.2</td>
</tr>
<tr>
<td>CaO</td>
<td>9.4</td>
</tr>
<tr>
<td>Na₂O</td>
<td>5.1</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.9</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
</tr>
<tr>
<td>Si</td>
<td>1.6</td>
</tr>
<tr>
<td>Ti</td>
<td>0.1</td>
</tr>
<tr>
<td>Al</td>
<td>55.1</td>
</tr>
<tr>
<td>Cr</td>
<td>0.1</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td>0.2</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>0.2</td>
</tr>
<tr>
<td>Mn</td>
<td>0.2</td>
</tr>
<tr>
<td>Mg</td>
<td>0.2</td>
</tr>
<tr>
<td>Ca</td>
<td>1.8</td>
</tr>
<tr>
<td>Na</td>
<td>2.8</td>
</tr>
<tr>
<td>K</td>
<td>0.1</td>
</tr>
<tr>
<td>Sum Cat</td>
<td>20.18</td>
</tr>
<tr>
<td>Ab %</td>
<td>48.76</td>
</tr>
<tr>
<td>An %</td>
<td>50.05</td>
</tr>
<tr>
<td>Or %</td>
<td>1.19</td>
</tr>
</tbody>
</table>

جدول 2 نتایج ریزپردازش کاتو‌های پلاژیوکلاز سنگ‌های توده‌گرانیتونیدی سروبیان.
بیان زمین فلارتسنجی
بررسی نشان می‌دهد که میزان Fe در هورنیلن از فشار تبیزن
رابطهٔ خطي دارد و در این اساس تغییرات پیوند
جابژنی سنتی‌گیاهی ایجاد می‌کند.
شکل دوگانه کابانا هورنیلن، کوارتز، فلدسپار پتاسیم،
تیتانیت، مگنتیت و تپلیت در ارتفاع سطح است.
توهد نفوذی سرهای متشکل از کانی‌های کوارتز، فلدسپار
پتاسیم، پلاتیوکلای، امفیبول، بیوئت و تیتانیت، مکتین و
البرنیت است. این ته‌های کوًی‌زدگی گی‌سپر پلاک
تناسا با کوارتز و فلدسپار پتاسیم است. در محیط‌ها
امفیبول‌هایی از ترکیب اکسیژن پلاکی
به‌عنوان دارنده دکتراسیнал بی‌دراخی
نقطه، این است.
درکاسی‌های پسینی شده باشد.

تأثیر روته‌های متعدد برای میزان‌های فشار با استفاده
از ترکیب هورنیلن اثرات فند (16-3). در مجموع
روش‌ها (به جز روش (14)، فشار ته‌ها بر اساس مقدار آلومینیوم
موجود در هورنیلن و بدون توجه به پاتورترکیه مانند دم
محاسبه شده است. اغلب فلارتسنجی‌های گوناگون، ایجاد شده در فلارتسنجی
پلاک‌زده، فشار به‌دست آمده در ریز، فشار تشکیل
ستگی‌های تبوزی به‌دست آمده (نمونه‌ها و کوارتز)،(18)
گاهی کمتر (و چندین) از میزان‌های تربیت فلارتسنجی
است که با فشار سیگاری‌زدگی ریز. هولوست (18) معتقد
است که در سنتی‌گیاهی تونالیت، و کوارتزبوریت با فشار کمتر
زمین فشار-دماسنجی توده‌های گرانیتیودن... 1394
جلد 23 شماره 6

بای پلاژوپلارز ارائه کرده‌اند:

\[T = 25.3 P[\text{kbar}] + 654.9 \]

(معدله 2)

بر باهبان فرمول با دمای تعلیق در تولانیتی، کوارتزدربیوت و آمفیبول‌های ادخال به ترتیب 390، 523.6 و 720 درجه کژنی گردیده به دست آمد. هوئن و بوئنی [52] دو دماسنج دیگر پیشنهاد کرده‌اند زمین دماسنج اول بر باهبان و آکش ادتیت-ترمیولیت که به ترتیب در سدگه‌های این دیوار و در کوارتزدربیوت دار کرد. زمین دماسنج دوم مربوط به دره‌کناراندازی شده که در سدگه‌های آذرین و در کوارتزدربیوت و این دمای تعلیق به اساس واکنش ادتیت-ترمیولیت در تولانیتی و کوارتزدربیوت در دماهای تعلیق این دیوارها را از عضویت بهره می‌دارد.

زمین دماسنجی هورنبلند-پلاژوپلارز

کاربردی ترین روشهای تعمیم دمای توده‌های گرانیتیودنی، روشهای دماسنجی هورنبلند-پلاژوپلارز است. گرچه هنوز تردیابی در مورد این روشهای وجود دارد، ولی تا به امروز یکی از روشهای مدل‌سازی دمای دیواره اپی‌کلیایی محسوب می‌شود [27]. در زمان و هودنی [29] روشهای این دماسنجی بر اساس واکنش ادتیت-ترمیولیت با استفاده از زوج آمفیبول-پلاژوپلارز همیشه ارائه کرده‌اند. در این روشهای پلاژوپلارز نباید دارای منطقه‌بندی باشد. برای محاسبه دما کننده سپرده‌خانه و هورنبلند فاقد حاشیه‌اش اپی‌کلیایی که در کنار هم داشته و هورنبلند فاقد حاشیه‌اش اپی‌کلیایی باشد [29] و به وجود آمده برای دمای هورنبلند-آمفیبولیت‌های این دیواره، روشهای دماسنجی بر اساس واکنش ادتیت-ترمیولیت، می‌دانند. ولی به نظر می‌رسد دماهای واکنش ادتیت-ترمیولیت می‌ماند، ولی به نوعی‌رس دماهای واکنش ادتیت-ترمیولیت ۲۳۷ درجه کژنی گردیده به دست آمد. هوئن و بوئنی [52] دو دماسنج دیگر پیشنهاد کرده‌اند زمین دماسنج اول بر باهبان و آکش ادتیت-ترمیولیت که به ترتیب در سدگه‌های این دیوار و در کوارتزدربیوت دار کرد. زمین دماسنج دوم مربوط به دره‌کناراندازی شده که در سدگه‌های آذرین و در کوارتزدربیوت و این دمای تعلیق به اساس واکنش ادتیت-ترمیولیت در تولانیتی و کوارتزدربیوت در دماهای تعلیق این دیوارها را از عضویت بهره می‌دارد.

همچنین [29] ای‌پلاک بای را در دیا-۲۰ کیلوپا و گریزندگی برای تعیین دمای تغییرات هورنبلندی همزیست HM-QFM.
جدول ۲ دمای تشکیل پلر امفیبولی های مختلف ته دو ی نفوذی سرویان با استفاده از روش‌های دسترسی‌های زوج هورنیلد-پلازیکلار. جهت محاسبه شده به روش هولوند و هولوند ۱) (۱۸۵)، روش هولوند و هولوند ۲(۱۸۵). روش هولوند و هولوند ۲ (بر اساس وکس آنت-ریکتیون) (۱۸۵).

<table>
<thead>
<tr>
<th>شعاع نوعی به</th>
<th>P(kB)</th>
<th>T(°C)</th>
<th>T(°C)</th>
<th>T(°C)</th>
<th>T(°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(تکنیک)</td>
<td>۱۸۲Ae</td>
<td>برای هولوند ۲</td>
<td>۱۸۵Ae</td>
<td>برای هولوند</td>
<td>۱۸۵Am</td>
</tr>
<tr>
<td>(تکنیک)</td>
<td>۵۰۱</td>
<td>۵۰۹</td>
<td>۵۰۹</td>
<td>۵۱۳</td>
<td>۵۱۴</td>
</tr>
<tr>
<td>(تکنیک)</td>
<td>۴۲۰</td>
<td>۴۲۰</td>
<td>۴۲۰</td>
<td>۴۲۰</td>
<td>۴۲۰</td>
</tr>
</tbody>
</table>

محاسبه گیزدندی اکسیژن

اگر یکی از فراورترین براورد ته دوی نفوذی سرویان به عنوان گروه بکر بوده و دامنه ته دوی از سازه‌ای است. تغییر تکیه‌گاه اکسیژن، می‌تواند به پیش‌بینی کربن سلامت‌سازی و سایه‌گیری آمیگنی Fe+۳/Fe0 است. در واقع، کربن گیزدندی اکسیژن کمتر باشد. می‌تواند مقدار بیشتری در شیوه‌های یون‌برداری غیرگردانی شود. اگر Mg با بکر Fe0/Fe+۳ باعث جابجایی بیشتر با بکر Fe0/Fe+۳ باشد، می‌تواند به پیش‌بینی بکری Fe0/Fe+۳ باعث جابجایی بیشتر با بکر Fe0/Fe+۳ باشد.

و سیلیسی Al می‌شود [۲۴]. طبق یاد آوری این سیال به حضور هم‌زنمن مکنیت، اسفین و کوارتز همراه با آمیگنی در

گرانیت‌های منطقه‌ای میان بالا به دنبال گیزدندی اکسیژن در ماکزیمی سازنده این سنسی‌های [۳۷] در نمونه (شکل ۷) به AlIV میزان نسبی گیزدندی اکسیژن بر اساس نسبت Fe/Fe+Mg. امیگنیه‌ها مختص شده اند (۲۱). بر اساس این نمونه میزان نسبی گیزدندی اکسیژن در زمان ته دوی تغییر تکیه‌گاه اکسیژن و فعالیت‌های سایه‌گیری آمیگنی Fe+۳/Fe0 است. در واقع، کربن گیزدندی اکسیژن کمتر باشد. ۱۵۰ می‌تواند به پیش‌بینی بکری Fe0/Fe+۳ باعث جابجایی بیشتر با بکر Fe0/Fe+۳ باشد.

Log SO2 = -۳۰۹۳۰/T + ۱۴۹۸ + ۰.۱۴۲(P-۱)/T

سایه‌گیری آمیگنی Fe0/Fe+۳/Fe0 باعث جابجایی بیشتر با بکر Fe0/Fe+۳ باشد. ۱۵۰ می‌تواند به پیش‌بینی بکری Fe0/Fe+۳ باعث جابجایی بیشتر با بکر Fe0/Fe+۳ باشد.

شکل ۷ (الف) نمونه AlIV میزان اکسیژن Fe/Fe+Mg. بر این نمونه اکسیژن Fe0/Fe+Mg با رشد باشد، (ب) میزان اکسیژن Fe0/Fe+Mg با رشد باشد.
پرداشت
توپوهای گرانیتی‌نودی سری‌بان شالی سنگ‌های اسیدی و جدایی‌بندی از سنگ‌های گرانیتی، گرانیت‌بور، نیز در توده‌های کووارت‌زدیوریت تشکیل شده است. نمایشی آمپیستون‌های مورد بررسی در سنگ‌های نیز در توده‌های کووارت‌زدیوریت است. برای اندازه‌گیری آبرسانی و سایر خواص سیستمیک و بزرگ‌گرایی گرانیت‌نودی و اکتیور‌های هورنیت، فراکت‌های قرار می‌گیرند که نشان دهنده سنگ‌های توده‌ی نوع ۱ است. ترکیب این کانی از مینی‌هورنیت‌ها در مرکز بلوژه تا آکتیویتی‌هورنیت‌ها در حاشیه‌ی بلور نمایش می‌گذارد. برابری زمین‌شناسی، این کانی از گرانیت‌نودی، با رابطه‌ی زمین‌شناسی، بلوژه‌ی آکتیویتی‌هورنیت‌ها در سنگ‌های گرانیتی و گرانیت‌زدیوریت‌ها در گستره‌ی اندزینی تا لاندرودیتی فشار ماشین نسبت به کلینوارولیت نشان می‌دهد. بلوژه‌ی راک پلی‌مالیکارک، زمین‌شناسی، بررسی کرده‌اند. دلایل اخیر بلوژه‌ی آکتیویتی‌هورنیت‌ها در بلور از می‌توان آمپیستون‌های در سنگ‌های گرانیتی و گرانیت‌زدیوریت‌ها در گستره‌ی اندزینی تا لاندرودیتی فشار ماشین نسبت به کلینوارولیت نشان می‌دهد. بلوژه‌ی راک پلی‌مالیکارک، زمین‌شناسی، بررسی کرده‌اند. دلایل اخیر بلوژه‌ی آکتیویتی‌هورنیت‌ها در بلور از می‌توان آمپیستون‌های در سنگ‌های گرانیتی و گرانیت‌زدیوریت‌ها در گستره‌ی اندزینی تا لاندرودیتی فشار ماشین نسبت به کلینوارولیت نشان می‌دهد. بلوژه‌ی راک پلی‌مالیکارک، زمین‌شناسی، بررسی کرده‌اند.

[1] Stone D., "Temperature and pressure Variations in suites of Archean felsic plutonic rocks, Berens River area, North west superior province Ontario,

[10] نری. م.، بحری، ع. نمایشی، سنگ‌شناسی (۱۳۸۸. ص ۱۸۴-۱۸۷۲)

[14] Leake B.E., Woolly A.R., Arps C.E.S., Birch W.D., Gilbert M.C., Grice J.D., Hawthorne F.C., زمین‌شناسی توده‌ی گرانیت‌نودی ...

[23] [32] هرمند، م، جهانگیری، احتمالان ج، کانی شناسی، دما-فشاری و تعبیه های مکانیکی و میکروسکوپی آدنین نوترو، محله بالورشانسی و کانی شناسی، شماره 3 (1388) ص 235-243.

[26] Pietrani A., Koepke J., Puziewicz J., "Crystallization and resorption in pluotnic