زمین فشار-دماسنگی توده گرانتوئیدی سرایان (شمال شرق دلیجان)
با کاربرد شیمی کانی‌های آمیویول و فلدسپار

محبوبه جمشیدی بدر (1)، مهناز حادی‌پارسا، فریبرز مسعودی (2)

1-گروه زمین شناسی، دانشگاه پیام نور، سنندج بسته ۳۷-۴۷۹، تهران، ایران.
2-گروه زمین شناسی، دانشگاه شهید بهشتی، تهران، ایران.

واژه‌های کلیدی: دما، فشارسنگی، آمیویول، پلاژیوکلاز، گرانتوئیدی، دلیجان

مقدمه
امروزه با بررسی ترکیب شیمیایی کانی‌ها می‌توان شرایط فیزیک‌شیمیایی حاکم در هنگام جایگیری توده‌های نفوذی را بررسی کرد. در این رابطه، کاربرد ترکیب شیمیایی کانی‌های آمیویول در تعیین شرایط محیطی تشکیل گرانتوئیدها موضوعی شناخته شده است [1]. این کانی در دامنه گرانتوئیدی از شرایط فشار و دما ظاهر می‌شود و از سال‌های گذشته به‌عنوان سنجش‌گر اثرات قابل‌توجه نوسانات سنگ‌های آدرین هاکی-کلاین و سنگ‌های دگرگونی به شمار می‌آید. آمیویول مناسب‌ترین کانی برای دما-فشارسنگی بوده و زمین فشارسنگی الومینیوم

m_jamshidi@pnu.ac.ir

*تویستم، تلفن: ۸۱۲۵۳۷۵۶۷۵۱۳؛ ۹۱۲۵۳۷۵۶۷۵۱۳، نامه: ۱۲۵۶۴۵۳۸۲۴۴۴، پست الکترونیکی: m_jamshidi@pnu.ac.ir
مختلف درون این واحد نفوذ کردن. واحد‌های آنتفاسیائی وابسته به دو سنسن و پلیپس هستند. که این‌ها آنتفاسیائی اندزیتی را در شمال منطقه و واحد‌های آنتفاسیائی پلوپسی به‌صورت گنده‌ای آنتفاسیائی و نیمه‌آنتفاسیائی با تکایی اسیدی در مرکز منطقه بروزد دارند، سه‌گاه‌های تربیت‌های طبیعی نگر با تکایی جویانه و به سنسن پلوپس بزرگ در هسته‌های یک‌توده‌ای در غرب منطقه قابل مشاهده است [9] (شکل 1).

توده‌های نفوذی سریان در شمال شرقی دلیجان و بین طول‌های جغرافیایی ۴°۵۰ تا ۴۲°۵۰ شرقی و عرض‌های جغرافیایی ۳۴°۷ تا ۳۲° شمالي قرار گرفته است و از نظر زمین‌شناسی در منطقه‌های ایران مرکزی و بیشتر منطقه‌های آزمایش‌های دختر واقع شده و به‌خوبی از نقشه‌های زمین‌شناسی ۱/۱۰۰۰ به‌کار گرفته شده است [9].

زمین‌شناسی عمومی

توزیع نفوذی سریان در استان مرکزی و در ۱۵ کیلومتری شمال شرقی دلیجان و در دو درجه شمال جغرافیایی ۴°۳۵ و در دو درجه عرض جغرافیایی ۳۵°۰ در دو درجه شمال جغرافیایی ۳۴°۰ در دو درجه شمال جغرافیایی ۳۲° در دو درجه شمال جغرافیایی ۳۱° در دو درجه شمال جغرافیایی ۳۰° در دو درجه شمال جغرافیایی ۲۹° در دو درجه شمال جغرافیایی ۲۸° در دو درجه شمال جغرافیایی ۲۷° در دو درجه شمال جغرافیایی ۲۶° در دو درجه شمال جغرافیایی ۲۵° در دو درجه شمال جغرافیایی ۲۴° در دو درجه شمال جغرافیایی ۲۳° در دو درجه شمال جغرافیایی ۲۲° در دو درجه شمال جغرافیایی ۲۱° در دو درجه شمال جغرافیایی ۲۰° در دو درجه شمال جغرافیایی ۱۹° در دو درجه شمال جغرافیایی ۱۸° در دو درجه شمال جغرافیایی ۱۷° در دو درجه شمال جغرافیایی ۱۶° در دو درجه شمال جغرافیایی ۱۵° در دو درجه شمال جغرافیایی ۱۴° در دو درجه شمال جغرافیایی ۱۳° در دو درجه شمال جغرافیایی ۱۲° در دو درجه شمال جغرافیایی ۱۱° در دو درجه شمال جغرافیایی ۱۰° در دو درجه شمال جغرافیایی ۹° در دو درجه شمال جغرافیایی ۸° در دو درجه شمال جغرافیایی ۷° در دو درجه شمال جغرافیایی ۶° در دو درجه شمال جغرافیایی ۵° در دو درجه شمال جغرافیایی ۴° در دو درجه شمال جغرافیایی ۳° در دو درجه شمال جغرافیایی ۲° در دو درجه شمال جغرافیایی ۱° در دو درجه شمال جغرافیایی ۰° در دو درجه شمال جغرافیایی

شکل 1 نقشه‌های زمین‌شناسی و موقعیت جغرافیایی منطقه‌های مورد بررسی بر گرفته از نقشه‌های ۱/۱۰۰۰ کهک [9].
سنگ‌شناسی

از نظر سنگ‌شناسی تونالیت‌ها و کوارتزدوریت‌ها بیشترین بخش تودهٔ سری‌یون را تشکیل می‌دهند. این سنگ‌ها کاملاً متفاوت می‌باشند. در حالی که در کوارتزدوریت‌ها علائم بر اساس این سنگ‌ها ساختن، به درون ساختن در منطقهٔ میان‌رودان و منطقه‌های دیگر تونالیت‌ها و کوارتزدوریت‌ها داشته‌اند، می‌توان بیان کرد که سنگ‌ها از کلیه‌های اصلی پلاژیوکلاز، کوارتز، هورنلند، بیونیت، هورنلند، بیونیت به همراه کلیه‌های فرعی از پلاژیوکلاز، اپاتیت، اسفن (شکل 2 اف) مکنتیک و اپاتیت و کلیهٔ درکسا می‌باشند و ترتیب تشکیل شده‌اند.

پلاژیوکلاز کلیهٔ غالب این سنگ‌ها هستند که به صورت ریز تا درشت بلور دیده می‌شوند. اغلب درشت بلورهای پلاژیوکلاز با ساختار منظم در ناحیهٔ سخت‌پوشانی و کوارتزدوریت‌ها بیشتر از نوع پلی‌میکتیک و اپاتیت‌های شیشه‌ای یا شیشه‌ای مشخصات شکل بلوری، این کالی‌ها و پلاژیوکلاز یک‌پوسته و در برخی ناحیه‌های بخشی از این کالی‌ها به همراه آپاتیت و سولفیت‌های اسفن، بلورهای درشت پلاژیوکلاز با ساختار منظم‌های از شیشهٔ بیستری

![شکل 2 اف](https://example.com/image2.png)

برخوردارند. همچنین ادخال هایی از آبانت و هورنلند سبز در بلورهای پلاژیوکلاز دیده می‌شوند. در برخی از نقاط بلورهای پلاژیوکلاز به‌صورت همزیست در مجاورت بلورهای اسفن‌ولتین (تور XPL، ب) مشاهده شده‌اند. در برخی از نقاط کوارتزدوریت‌ها، شیشهٔ پلاژیوکلاز رنگی رنگی به رنگ کانی به‌جای رنگ‌هایی مشابه به دیده می‌شود. این سیاست‌ها از اسفن (تور PPL، ج) دیده می‌شوند. در برخی از نقاط کوارتزدوریت‌ها، به‌صورت مشابه کوارتزدوریت‌ها مشاهده می‌شود. دیده‌گان در شیشهٔ درشت بلورهای پلاژیوکلاز با ساختار منظم‌هایی از شیشه‌ای بیستری
کالی‌های بوئینت که به‌صورت ریز تا مین با سطح توانایی و
صفحه‌ای شکل در کوارتزدوربیت‌ها به عنوان فاز اصلی مایفیک
حضور دارند (شکل ۲،) این بلورها به سرعت شکل‌دارنگ تا نیمه
شکل‌دار، و در برخی نقاط در راستای جهت و شکستگی‌ها
به کلیت تبدیل شده‌اند (عکس اختصاصی کالی‌ها در شکل ۲ از
[۱۲] است.).
روش بررسی
در این پژوهش مجموعاً ۴۶ تجییه شکل‌های کالی‌های
جدول ۱ نتایج ریزپیازارش کالی‌های امفیبول در سطح‌های توده‌گرانیت‌ناپذیری، سپریان، حرف آخر نام نمونه شامل آنالیز، مرکز بلور (c)، حاشیه
بلور (b) و جدول‌سازی مرکز و حاشیه بلور (m) است.

<table>
<thead>
<tr>
<th>تونالیت‌ها</th>
<th>کوارتز دوربیت‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>182Ac</td>
<td>182Am</td>
</tr>
<tr>
<td>SiO<sub>2</sub></td>
<td>99.8</td>
</tr>
<tr>
<td>TiO<sub>2</sub></td>
<td>1.2</td>
</tr>
<tr>
<td>Al<sub>2</sub>O<sub>3</sub></td>
<td>0.3</td>
</tr>
<tr>
<td>FeO</td>
<td>0.1</td>
</tr>
<tr>
<td>MgO</td>
<td>0.6</td>
</tr>
<tr>
<td>MnO</td>
<td>0.4</td>
</tr>
<tr>
<td>CaO</td>
<td>11.5</td>
</tr>
<tr>
<td>Na<sub>2</sub>O</td>
<td>0.1</td>
</tr>
<tr>
<td>K<sub>2</sub>O</td>
<td>0.5</td>
</tr>
<tr>
<td>Sum</td>
<td>99.8</td>
</tr>
<tr>
<td>Al<sup>2+</sup></td>
<td>0.67</td>
</tr>
<tr>
<td>Al<sub>sub>3</sub><sup>+</sup></td>
<td>0.5</td>
</tr>
<tr>
<td>Ti</td>
<td>0.14</td>
</tr>
<tr>
<td>Fe<sup>2+</sup></td>
<td>0.3</td>
</tr>
<tr>
<td>Mg</td>
<td>0.04</td>
</tr>
<tr>
<td>Mn</td>
<td>0.01</td>
</tr>
<tr>
<td>Fe<sup>3+</sup></td>
<td>0.04</td>
</tr>
<tr>
<td>Ca</td>
<td>0.02</td>
</tr>
<tr>
<td>C</td>
<td>0.02</td>
</tr>
<tr>
<td>Fe</td>
<td>0.008</td>
</tr>
<tr>
<td>Ca</td>
<td>0.000</td>
</tr>
<tr>
<td>Na</td>
<td>0.000</td>
</tr>
<tr>
<td>K</td>
<td>0.000</td>
</tr>
<tr>
<td>Sum A</td>
<td>1.53</td>
</tr>
</tbody>
</table>
هرلیند قرار می‌گیرند (شکل ۴-الف، ب، پ. ت) تغییر ترکیب از منیزیوم‌هولیند در مرکز آمفلیبول تا آکتیبولیت آمفلیبول در حاشیه آن، می‌تواند نشان‌دهنده تغییر شرایط
فزیکوکمیکی باشد. در نمونه‌های TiV در نمونه‌های Ti نسبت به
آمفلیبول به‌طور کلی ۵ تا ۴ می‌باشد. در طی‌الحاقی و میزان Ti در
اکتیبولیت آمفلیبول کاهش می‌یابد که این ناشی از افزایش
ساختار بلوری بوده و معرف پیشرفت جدایی‌هایی است. [۲۳] بنابراین
چنانکه در (شکل ۴-ب) دیده می‌شود، آمفلیبول‌های مورد
پرتیک در پی روند خطی قرار می‌گیرند که نشان می‌دهد تغییر
ترکیب در آمفلیبول‌های موجود در سنگ‌های منطقه ناپذیر
(Na+K) Sr Ti AIIV میان و جایگزین کاتيون‌های AIIV در
ساختار هسته‌جاتی است [۲۴]. رابطه اصلی مستقیم بین AIIV در
آمفلیبول‌های مورد پرتیک با انگر
تفلات سیستماتیک منیزیوم‌هولیند آمفلیبول‌های سنگ‌های
مختلف است (شکل ۴-پ). [۲۵]

شیمی کاتیون‌ها
آمفلیبول: در مجموعه‌ی نفوذی سری‌بان، آمفلیبول تنها کاتیون
مالیک در سنگ‌های تونالیت است و در سنگ‌های کوارتز-
دورینیت هموار بی‌خوبی حضور دارد. نتایج آنالیز نموداری
آمفلیبول‌های موجود در سنگ‌های نفوذی منطقه به هموار
محاسبه فرمول اختراعی این آمفلیبول‌ها به روش [۱۶] در حاصل
۱ آمده‌اند. آمفلیبول‌های ادغام نسل اول نسبت به آمفلیبول‌های
نسل دوم کوارتز‌وینات و آهن بالار و منیزیوم پایین‌تری دارند
(جدول ۱). نسبت AIIV/AIIV در بلورهای آمفلیبول مورد
بررسی بین ۲۹/۱۵ تا ۱۰/۰۴ بوده و این نسبت در تمامی
آمفلیبول‌های بیش از ۳۳ است. بنابراین آمفلیبول‌های منطقه در
فلمنه آمفلیبول‌های آدغام قرار می‌گیرند [۱۵] (شکل ۳).
آمفلیبول‌های منطقه براساس رده بنی‌ده [۱۶] از نوع کلسیک
(کلسیبیاض) هستند. این آمفلیبول‌هایی با پیه‌داری از پژوهشگران
[۲۷-۲۱] حضور آمفلیبول‌های کلسیک در سنگ‌های
گرینت‌وینات‌شنای و باشگاهی این سنگ‌ها به گرینت‌وینات‌های
نوع ۱ است. این کاتیون در رده‌بندی [۱۴] در گروه آمفلیبول‌های
کلسیک و در زیر رده‌های منیزیوم‌هولیند و آکتیبولیت

شکل ۳ نسبت AIIV/AIIV تا AlIV

3.3

Igneous Amphibole

Metamorphic 1

Ca-Amphibole

Al IV

Al VI

InChIs

Core

Qdio. core

Qdio. middle

Qdio. rim

Ton. rim

Ton. middle

Ton. core

Amph. InChu

Downloaded from ijcm.ir at 15:07 +0430 on Tuesday June 4th 2019
پلاژیوکلارز- پلاژیوکلارزها فراوان ترین کانی فلسیک در سنگهای نفوذی منتفیاند. مقدار انتهای آنورتیت در است An ۳۰-۵۸ و در کوارتزدوریت‌ها An ۳۱-۵۵

شکل ۴ (الف، ب، پ، ت) نمودارهای رابطی و نامگذاری امفیپول‌ها هستند [۱۴]. امفیپول‌های تجزیه شده با اشکال زیر رده‌های منیزیومورنلند، هورنلند و اکتبولیت قرار می‌گیرند (علامت مشابه شکل ۳).
مانتشدن که نیود میانیار از فزارهای دیگر در بخش مرکزی پلابورهای پلاژیوکلاز و روند خلوی آنورنیت نسبت به یکدهم نشان دهنده این است که پلاژیوکلاز فاز اصلی مگاماسک، از ویژگی‌های یاد شده در پلابورهای پلاژیوکلاز بررسی شده است (شکل ۴). به نظر می‌رسد که هسته‌های غنی از آنورنیت در مرحله اولیه‌ی حجم‌بندی و سپس با پلاژیوکلازهای با درصد آنورنیت کمتر پوشیده شده‌اند، این فرآیند نتیجه‌ی ردیابی و تحلیل نمود.

جدول ۲ نتایج زیرپدید شکل‌های پلاژیوکلاز سنگ‌های توده نوده گرانیت‌نوده و سرویان

<table>
<thead>
<tr>
<th>عامل</th>
<th>مولی</th>
<th>کوارتز دوبیری (176)</th>
<th>کوارتز دوبیری (182)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td></td>
<td>۵۷.۵۴</td>
<td>۵۴.۱۷</td>
</tr>
<tr>
<td>TiO₂</td>
<td></td>
<td>۰.۱۵</td>
<td>۰.۰۲</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td></td>
<td>۶۳.۴۲</td>
<td>۶۱.۷۱</td>
</tr>
<tr>
<td>CrO₃</td>
<td></td>
<td>۰.۰۲</td>
<td>۰.۰۱</td>
</tr>
<tr>
<td>FeO</td>
<td></td>
<td>۲.۸۲</td>
<td>۲.۶۶</td>
</tr>
<tr>
<td>MnO</td>
<td></td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
</tr>
<tr>
<td>MgO</td>
<td></td>
<td>۱.۱۳</td>
<td>۱.۱۱</td>
</tr>
<tr>
<td>CaO</td>
<td></td>
<td>۹.۸۲</td>
<td>۹.۷۷</td>
</tr>
<tr>
<td>Na₂O</td>
<td></td>
<td>۶۴.۱۰</td>
<td>۶۳.۴۶</td>
</tr>
<tr>
<td>K₂O</td>
<td></td>
<td>۰.۰۹</td>
<td>۰.۰۸</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>۱۰۰.۲۳</td>
<td>۱۰۰.۱۸</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>عامل</th>
<th>مولی</th>
<th>کوارتز دوبیری (176)</th>
<th>کوارتز دوبیری (182)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td></td>
<td>۱۰.۱۳</td>
<td>۹.۹۷</td>
</tr>
<tr>
<td>Ti</td>
<td></td>
<td>۰.۱۵</td>
<td>۰.۰۲</td>
</tr>
<tr>
<td>Al</td>
<td></td>
<td>۶۲.۱۳</td>
<td>۶۱.۳۷</td>
</tr>
<tr>
<td>Cr</td>
<td></td>
<td>۰.۰۲</td>
<td>۰.۰۱</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td></td>
<td>۲.۶۳</td>
<td>۲.۵۳</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td></td>
<td>۰.۰۵</td>
<td>۰.۰۴</td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td>۰.۰۳</td>
<td>۰.۰۲</td>
</tr>
<tr>
<td>Mg</td>
<td></td>
<td>۰.۰۵</td>
<td>۰.۰۵</td>
</tr>
<tr>
<td>Ca</td>
<td></td>
<td>۱.۸۸</td>
<td>۱.۸۴</td>
</tr>
<tr>
<td>Na</td>
<td></td>
<td>۱.۸۸</td>
<td>۱.۸۴</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td>۰.۰۷</td>
<td>۰.۰۶</td>
</tr>
<tr>
<td>Sum Cat</td>
<td></td>
<td>۲۰.۲۶</td>
<td>۲۰.۰۱</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>عامل</th>
<th>مولی</th>
<th>کوارتز دوبیری (176)</th>
<th>کوارتز دوبیری (182)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ab</td>
<td></td>
<td>۲۸.۷۶</td>
<td>۲۸.۷۹</td>
</tr>
<tr>
<td>An</td>
<td></td>
<td>۳۰.۱۹</td>
<td>۳۰.۱۰</td>
</tr>
<tr>
<td>Or</td>
<td></td>
<td>۱۷.۰۵</td>
<td>۱۷.۰۴</td>
</tr>
</tbody>
</table>
بحث

زمین شارسنجی نورسی ها لشکری می‌دهد که میزان Al در هورسیلند با فشار تیول
رابطه‌ای خطی دارد و بر این اساس تغییر عمق جایگزینی توده، امکان بدی ایست (29). لازم استفاده از شارسنجی آلی
تشکیل دوگانه کانال‌های هورسیلند، کوارتز، فلدسپار پتاسیم، بنگتین و میکتیت، اولیه در شرایط تکاملی است.
توده نفوذی سریانی از کانال‌های کوارتز، فلدسپار
پتاسیم، پلاژیوکلاز، آمفیبول، پتروپتاسیم، بنگتین و
آلیمنیت است. این توده که با کریستال‌های بالای
تاس و فلز و فلز چسب فلزی است. در مکانیک از
آمفیبول‌های با ترکیب اکتینولیت چشم پویی شده است. زیرا
احمالی دارد اکتینولیت در فازهای کمتر نقطه انجماد و در اثر
درک‌ساختی تشکیل شده باشد (30).

تأکید روی روش‌های متعددی برای محاسبه فشار با استفاده
از ترکیب هورسیلند ارائه شده‌اند (4, 23, 31). در همه
روش‌ها (به جز روش (4)، فشار تناها بر اساس مقادیر آلومنیوم
موجود در هورسیلند و بدون توجه به پاتومترهای مانند دما
محاسبه شده است. اغلب فشارسنجی‌های پایین‌تر شده در فشارهای
بی‌کاربرد دارد. مقادیر فشار بر اساس افزایش در
فشارسنجی سنتگهای سه‌گانه‌ای اسباب نشده نیست ولی به توجه به نمودار (شکل 7
Al + Fe/Fe+Mg) که بر اساس مقدار Al نسبت به
نسل دوم پیانگر این واقعیت اسکار فشار بعدست امید از
مکان آمن‌تر شده در محاسبه شده است. بناهایی در
فشارهای بعدست امید از شکل پیامدهای فشار
جایگزینی سنتگهای سه‌گانه‌ای اسباب نشده است. این توجه به نمودار (شکل 7
Al + Fe/Fe+Mg) که بر اساس مقدار Al نسبت به
یافت. در میانه این آلیمنیت این مقدار افت‌ریزنی در خودود
کوارتز ثبتنیکوال و کوارتز توده. 2- برای کوارتزورنیت 2.64
شکل 6 (الف) ترکیب پلاژیوکلاز‌های منطقه‌ای، پلاژیوکلاز‌های نفوذی منطقه در گستردگی آندزیز نواحی توانسته اند (ب) نمونه تغییرات An در برابر پلاژیوکلاز‌ها، برن رنگی شناسگرهای گسترش آن تا اینجا بیش از پلاژیوکلاز فاز خام با این دسته، (ب) تفاوت آنتی‌کلرولیت در میزان آن تا اینجا بیش از پلاژیوکلاز نسبت به میزان An این کلک پلاژیوکلاز و کوارتزورنیت از فشار کمر.
برای آمپیوله‌های ادخل برآورد کرد که با نتایج فناورهای به دست آمده با روش [5] همخوانی دارد.

زمین دماسنجی

روش‌های متعددی برای تعیین دمای توهمه به‌وجود آمده‌اند که از جمله قیاسی اسیدی و حذفی عرضه آن‌ها. هولست [17] معتقد است که دمای ماهیگی آباد بر ترکیب تولیثی تا گزارش‌های اسیدی (مسبقه از شماره ۴۰۰) بین ۲۰۰ تا ۹۰۰ درجه سانتی‌گراد مناسب است. به عقیده آدرسین [۳۳] که مقدار Ti در هورلیند با افزایش دما، افزایش می‌یابد. هز [۴۲] با استفاده از نسبت Ti به واحد فرمولی آمپیوله‌ها، از تغییرات مقدار Ti با استفاده از تغییرات اکتش در اکتش‌های آبی و اکتش‌های فشرده تغییرات نسبت Ti با استفاده از تغییرات اکتش در اکتش‌های آبی و اکتش‌های فشرده نسبت Ti با استفاده از تغییرات اکتش در اکتش‌های آبی و اکتش‌های فشرده

زمین دماسنجی هورلیند-پلایزکلام

کاربردی نیز روش تعیین دمای توهمه به‌وجود آمده‌اند که از جمله قیاسی اسیدی و حذفی عرضه آن‌ها. هولست [17] معتقد است که دمای ماهیگی آباد بر ترکیب تولیثی تا گزارش‌های اسیدی (مسبقه از شماره ۴۰۰) بین ۲۰۰ تا ۹۰۰ درجه سانتی‌گراد مناسب است. به عقیده آدرسین [۳۳] که مقدار Ti در هورلیند با افزایش دما، افزایش می‌یابد. هز [۴۲] با استفاده از نسبت Ti به واحد فرمولی آمپیوله‌ها، از تغییرات مقدار Ti با استفاده از تغییرات Ti در دمای توهمه به‌وجود آمده‌اند که از جمله قیاسی اسیدی و حذفی عرضه آن‌ها. هولست [17] معتقد است که دمای ماهیگی آباد بر ترکیب تولیثی تا گزارش‌های اسیدی (مسبقه از شماره ۴۰۰) بین ۲۰۰ تا ۹۰۰ درجه سانتی‌گراد مناسب است. به عقیده آدرسین [۳۳] که مقدار Ti در هورلیند با افزایش دما، افزایش می‌یابد. هز [۴۲] با استفاده از نسبت Ti به واحد فرمولی آمپیوله‌ها، از تغییرات مقدار Ti با استفاده از تغییرات Ti در دمای توهمه به‌وجود آمده‌اند که از جمله قیاسی اسیدی و حذفی عرضه آن‌ها. هولست [17] معتقد است که دمای ماهیگی آباد بر ترکیب تولیثی T = 25.3P[kbar] + 654.9

زمین فشار-دماسنجی توهمه گرانیتوننی (HM-QFM)
جدول 2: دمای تشکیل بلوار آمپیبول به‌وصفی مختلف تریوپات که استفاده از روش‌های داماسک روز هوریلند-پلاژیوکلاز حارط محاسبه شده با روش هولنده و هولنده [21]. روش هولنده و هولنده 1 (بر اساس واکنش اکسید-ترمولیت) و 2 (بر اساس واکنش آدین-ریکترین) [26]

<table>
<thead>
<tr>
<th>شناسه نمونه</th>
<th>P(kb)</th>
<th>T(۰)</th>
<th>T(۱)</th>
<th>T(۲)</th>
<th>T(۳)</th>
<th>T(۴)</th>
</tr>
</thead>
<tbody>
<tr>
<td>182Ac</td>
<td>1.71</td>
<td>876</td>
<td>868</td>
<td>869</td>
<td>869</td>
<td>869</td>
</tr>
<tr>
<td>182Am</td>
<td>1.95</td>
<td>498</td>
<td>496</td>
<td>496</td>
<td>496</td>
<td>496</td>
</tr>
<tr>
<td>182Bc</td>
<td>1.21</td>
<td>842</td>
<td>838</td>
<td>838</td>
<td>838</td>
<td>838</td>
</tr>
<tr>
<td>182Bm</td>
<td>1.05</td>
<td>418</td>
<td>414</td>
<td>414</td>
<td>414</td>
<td>414</td>
</tr>
<tr>
<td>182Br</td>
<td>1.27</td>
<td>848</td>
<td>846</td>
<td>846</td>
<td>846</td>
<td>846</td>
</tr>
<tr>
<td>182Cm</td>
<td>1.23</td>
<td>548</td>
<td>546</td>
<td>546</td>
<td>546</td>
<td>546</td>
</tr>
<tr>
<td>182Cr</td>
<td>1.20</td>
<td>848</td>
<td>846</td>
<td>846</td>
<td>846</td>
<td>846</td>
</tr>
<tr>
<td>176Am 1</td>
<td>1.83</td>
<td>495</td>
<td>493</td>
<td>493</td>
<td>493</td>
<td>493</td>
</tr>
<tr>
<td>176Am 2</td>
<td>1.65</td>
<td>338</td>
<td>336</td>
<td>336</td>
<td>336</td>
<td>336</td>
</tr>
<tr>
<td>176Am 3</td>
<td>1.43</td>
<td>213</td>
<td>212</td>
<td>212</td>
<td>212</td>
<td>212</td>
</tr>
<tr>
<td>176Ar 1</td>
<td>1.89</td>
<td>412</td>
<td>410</td>
<td>410</td>
<td>410</td>
<td>410</td>
</tr>
<tr>
<td>176Ar 2</td>
<td>1.65</td>
<td>412</td>
<td>410</td>
<td>410</td>
<td>410</td>
<td>410</td>
</tr>
<tr>
<td>176Br 1</td>
<td>1.29</td>
<td>413</td>
<td>412</td>
<td>412</td>
<td>412</td>
<td>412</td>
</tr>
<tr>
<td>176Br 2</td>
<td>1.90</td>
<td>413</td>
<td>412</td>
<td>412</td>
<td>412</td>
<td>412</td>
</tr>
</tbody>
</table>

محاسبه گریزندگی اکسیژن آمپیبول یکی از فراوان‌ترین کاتیون‌های مافیک در تریوپات تریوپات از سبب‌های است. تغییر ترکیب آمپیبول، واکنش از تغییر در گریزندگی اکسیژن و غلیظ‌کردن سیلیس تریوپات گریزندگی Fe+3 است. در واقع هر گریزندگی اکسیژن کمتر باشد پیشنهاد می‌تواند به مقدار تریوپات در شکل‌های هوریلند جایگزین شود. Mg+2 به Fe3+/Fe2+ باین جابجایی بیشتر با Fe3+/Fe2+ می‌شود [22]. قابلیت ارژی است که حضور همزمان مکنیکی اکسیژن و کوارتز همراه با آمپیبول در

\[
\log f_{O_2} = -30930/T + 149.8 + 0.142(P-1)/T
\]

شکل 4: ترکیب Fe/Fe+Mg در نمونه‌های Fe3+/Fe2+ با پیشنهاد گریزندگی Fe3+/Fe2+ به دلیل تغییر آمپیبول آمپیبول و کوارتز‌پوریت با نمودار گریزندگی فشار تریوپات کاتیون آمپیبول در سبب‌های تریوپات و کوارتز‌پوریت [22].
[2] Stein E., Dietl C., "Hornblende thermobarometry of granitoids from the Central
Odenwald (Germany) and their implications for the geotectonic development of the Odenwald",
 calibration of the Al-hornblende barometer", Contribution to Mineralogy and Petrology 110
[6] Johnson M.C., Rutherford M.J., "Experimental
calibration of the aluminum-in-hornblende geobarometer with applications to Long Valley
Caldera (California) volcanic rocks", Geology 17 (1989) 837-841.
Stowell H.H., Sisson V.B., "Confirmation of the empirical correlation of Al in hornblende
[9] قلمفناش ج.، باخاکی ع.، نقشه ژئوسیاس
کوه گ.، اشترات سارام زمین شناسی و اکتشافات معدنی
1/1000000
کوه، مدل علوم زمین، شماره 24 (1388) ص
71-76
[10] نرمی، حمایت ا.، بهنافع ع.، "سامانه گ. انتداد
بیدنده (جنبه قم)"، مجله علوم زمین، شماره 24 (1388) ص
171-180.
ق. (محدودیت داره 1:1000000)، پایان نامه کارشناسی
ارشد، دانشگاه شهید بهشتی (1372).
279.
oxides from microprobe analysis, using stoichiometric criteria", Mineralogical Magazine
[14] Leake B.E., Woolly A.R., Arps C.E.S., Birch
W.D., Gilbert M.C., Grice J.D., Hawthorne F.C.,

