کانی سازی، رنگ‌شیمی و سنگ‌شناسی توپه‌های نفوذی و سنگ‌های آتش‌شمانی
شمال غرب گناباد

صدیقه زیرجانی‌زاده، محمدحسن کریم‌پور، خسرو ابراهیمی

گروه زمین‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد
(دریافت مقاله: ۱۳۹۳/۱۱/۱۱، نسخه نهایی: ۱۳۹۵/۰۳/۲۳)

چکیده: گستره‌ی مورد بررسی در استان خراسان رضوی و شمال غرب گناباد از نظر موقعیت زمین ساخته در شمال بلک لوت واقع شده است. توپه‌های آذین، توندره و گردوهای اثر فلودینی و آذرآوری را قطع کرده‌اند. این سنگ‌ها عبارتند از سنگ‌های آذران کوچک و بندبایی با براق پورپوری و گستره‌ی کرتکی گردونیت، مونزودوربلت و راکت هستند. دگرگونی گستره‌ای نیز در جنوب منطقه سنگ‌شناختی بخش چهار برآوردگان. ترکیب کلی‌شناسی این دگرگونی به ترتیب فراوانی عبارتند از کوارتز، کانی‌لوئیت، برونرفلایت، هماتیت و آلپین. بررسی رنگ‌شناسی و رنگ‌شیمی روی توپه‌های سنگی نشان می‌دهد که گرایند ماهیت اکسیدی-فلایایی با پتاسیم بیاها داشته و در گستره‌ی آپلوموس و مالایوموس قرار می‌گیرد. اگرچه [Dy/Yb]n = 0.9-1.4 (HREE) (REE) غنی شدکی عناصر خاکی نادر (La/Yb) = 15.76 (LREE) غالب است (2.5-3) با میانگین (2.5-1) نشان می‌دهد. سنگ‌های آتش‌شمانی غنی‌شناسی (REE) (EU/Eu)* = 1.56 نشان می‌دهند. EU/N/Yb

واژه‌های کلیدی: شمال غرب گناباد، آکسید، فلایایی، منطقه، فروارش

مقدمه

گستره‌ی مورد بررسی در شمال غرب شهرستان گناباد، شمال جاده گناباد-بجستان و در فاصله‌ای مختصاتی بین ۵۸ تا ۴۰ درجه شمالی و ۳۴ تا ۳۴ درجه شرقی و در صورت ۱۷۲۶.۶۷ تا ۱۳۹۶.۸۵ متر ارتفاع و در گرانش‌های باقی‌مانده و در ترشحیاری به‌وجود رسیده است. به‌طوری‌که سنگ‌های آتش‌شمانی اکسیدی-فلایایی با پتاسیم بیاها، با ضخامت حدود ۲۰ متر بیش از نسبی از بلک لوت را می‌پوشاند. به علاوه نیز از بلک لوت نیز به‌وسیله‌ی رسوب‌های فلایایی جهت خورده بلک لوت کوه‌های فوق‌العاده شده است. این پژوهش، نخست به بررسی زمین‌شناسی و سنگ‌شناسی نیز پرداخته شده و سپس رفتار رنگ‌شیمی‌ای عناصر اصلی و نادر در توپه‌های آذرین نیمه عمق و سنگ‌های آتش‌شمانی و تعیین خاستگاه بررسی شده‌اند.

ژمین‌شناسی گستره‌ی مورد بررسی

واحدهای سنگی که در منطقه رخ خورده دارد عبارتند از سنگ‌های آشکار.
سنجگناری سنگهای نفوذی و گرانیتی، گراتوندی، گدزه‌های آندزیتی

تربیت و روباسیت در منطقه مورد بررسی به جنوب و دیگر مناطق واقع شده است.

سنجگناری

شکل 1 واقعیت منطقه در نقشه زمین‌ساختی ایران ۱/۱ و راه‌های دسترسی به گسترده پی‌چویی

شکل ۲ این منطقه از منطقه مورد بررسی واحدهای سنگی سطحی تپه‌بومر از مورد بررسی است. نفوذ دایک‌های گراتوندی درون ساحل شمشک. فراوانی سنگ‌های شیب‌دار زمین‌ساختی مانند چین‌های برگشه، چین‌های خوافیده، گسل‌های خستگی و به‌ناهیدی در این ساحل دیده می‌شوند.
شکل 2 نشان‌دهنده زمین‌شناسی منطقه‌ی مورد بررسی
دایک با ترکیب بیوتین گرانیت: این دایک با روند شمل غربی – جنوب شرقی داخل سازند شمشک نفوذ کرد و بافت دانه ای-رمیکسیشن نشان می‌دهد. این واحد بیشتر از قفسه پنالسیم (20%)، پلازموکلاز (۱۰% - ۲۰%) و بیوتین (۱% - ۵%) تشکیل شده است. در این واحد بیوتین‌ها کلرینی و شبداند و بعضی بلورهای فلمناتیمیسم بین ۵ تا ۱۰ به سرعت تبدیل شدند. ۱ درصد کلسیم هم در زمینه دیده می‌شود.

دادیک با ترکیب کوارتز مونزودوریت پورفیری: این واحد در شمال غربی منطقه رخنمون داشته و در دوازده نفوذ کرده است و دارای پرفورمیند-گلومورفورمیند بوده و کانی‌های آلی آن پلازموکلاز، کوارتز و فلدنسيار پنالسیم دارسا است. در این واحد عبارتند از: پلازموکلاز و فلدنسپار پنالسیم با تا ۱۵ درصد آن سیلیسیم شده و در زمینه دیده می‌شود. زمینه شال کانی‌های دکرسان و پلوریزهای پلازموکلاز است.

دایک با ترکیب کوارتز دیوریت پورفیری: رخنمون این دایک در شمال منطقه داخل توف و اندزیت دیده می‌شود. رودان شمال غربی – جنوب شرقی است. درصد کانی‌های اولیه فتوکریست شال کوارتز ۲ تا ۳/۰، پلازموکلاز ۱۰، یوربلند ۲ درصد است که در بعضی بالورها به کلرینی و کربنات‌های تا ۱/۰ درصد دیده می‌شود. درصد دکرسانی به‌طور کلی شامل: ۲-۳ درصد کربنات، ۵ تا ۱۵ درصد کلرینی، ۲ درصد سرپینیت، ۲ درصد رسی در فتوکریست ها ۳-۵ درصد و کانی‌های ۱۰ درصد است.

روش‌های آنالیز

برای رسیدن به هدف‌های این پژوهش، بر اساسی جداسازی و بررسی ارتباط توده‌های نفوذی، نیم‌عمیق با سنگ‌های انفعالی، نفوذ‌هایی از سطح توده‌ها جمع‌آوری و مقاطع نازک تهیه و بررسی شدند. تشخیص شناسی منطقه مورد بررسی با مقياس ۱۵۰۰،۰۰۰ درهم و همچنین تعداد ۲۰ نمونه از توده‌های منطقه که دارای چندین میژه دگرسانی بودند انتخاب و برای اکسیدهای اصلی به روش فلترسانی (مدل دستگاه گلیسی لیتودول) XRF برای عناصر اصلی، در آزمایشگاه شرکت درازآما، تهران، تجزیه شدند و همین نمونه‌ها برای عناصر کسبه به روش بالاسامای تغییر شده درآماده‌گذاری شدند. تکنیک‌های ACME درآماده‌گذاری کانال‌های نیلیر، تغییر آنالیز برای عناصراتو کمیت در جدول ۱ و ۲ اورده شدند.

کانی‌سازی

شمال غرب کانال‌های منطقه‌ای شرکار از نظر خاک رس کانولاییتی است. خاستگاه این خاک رسی گسترده‌تر (دگرسانی آزیلیک) به نفوذ دایک‌گرانیتی که رخنمون آن در سازند شمشک گیمرک است. مربوط می‌شود. در این میزان کانول را به سبب و سایر جمله مهم‌ترین آن‌ها هستند. کانی‌های شناسی این خاک رسی به‌طور کلی شامل آزیلیک و دیپت، مونزودوریت پورفیری و آلبومیت است. کانی‌های اصلی مس در غرب و شمال غربی منطقه‌های مس وکلرینیت به‌طور کلی وجود دارد. درصد کانی‌های پورفیری مونوزودوریتی است. این کانی‌های مس‌ریزه‌زی را به‌طور کلی است. ضخامت رنگهای مختلف به‌طور کلی وجود دارند. درصد وilit گسترش عمیقی یافته می‌شود. کانی‌های اولیه به‌کسی‌های آهن و مالاکیت تبدیل شده است.
جدول 1 تجزیه شیمیایی عنصرافزاین و فرع سنگ‌های آذرین نیمه سی ان و تغییرات

<table>
<thead>
<tr>
<th>عنصر</th>
<th>MN</th>
<th>K2O</th>
<th>LOI</th>
<th>Co</th>
<th>Ce</th>
<th>Hf</th>
<th>Nb</th>
<th>Sm</th>
<th>Sn</th>
<th>Sr</th>
<th>Ta</th>
<th>Th</th>
<th>U</th>
<th>V</th>
<th>W</th>
<th>Zr</th>
<th>Ba</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN</td>
<td>0.74</td>
<td>13.9</td>
<td>12.7</td>
<td>10.7</td>
<td>2.5</td>
<td>1.5</td>
<td>2.2</td>
<td>2.8</td>
<td>5.0</td>
<td>10.7</td>
<td>4.5</td>
<td>2.5</td>
<td>1.5</td>
<td>2.2</td>
<td>2.8</td>
<td>5.0</td>
<td>10.7</td>
</tr>
<tr>
<td>K2O</td>
<td>8.0</td>
</tr>
<tr>
<td>Co</td>
<td>0.74</td>
<td>13.9</td>
<td>12.7</td>
<td>10.7</td>
<td>2.5</td>
<td>1.5</td>
<td>2.2</td>
<td>2.8</td>
<td>5.0</td>
<td>10.7</td>
<td>4.5</td>
<td>2.5</td>
<td>1.5</td>
<td>2.2</td>
<td>2.8</td>
<td>5.0</td>
<td>10.7</td>
</tr>
<tr>
<td>Ce</td>
<td>0.74</td>
<td>13.9</td>
<td>12.7</td>
<td>10.7</td>
<td>2.5</td>
<td>1.5</td>
<td>2.2</td>
<td>2.8</td>
<td>5.0</td>
<td>10.7</td>
<td>4.5</td>
<td>2.5</td>
<td>1.5</td>
<td>2.2</td>
<td>2.8</td>
<td>5.0</td>
<td>10.7</td>
</tr>
<tr>
<td>Hf</td>
<td>0.74</td>
<td>13.9</td>
<td>12.7</td>
<td>10.7</td>
<td>2.5</td>
<td>1.5</td>
<td>2.2</td>
<td>2.8</td>
<td>5.0</td>
<td>10.7</td>
<td>4.5</td>
<td>2.5</td>
<td>1.5</td>
<td>2.2</td>
<td>2.8</td>
<td>5.0</td>
<td>10.7</td>
</tr>
<tr>
<td>Nb</td>
<td>0.74</td>
<td>13.9</td>
<td>12.7</td>
<td>10.7</td>
<td>2.5</td>
<td>1.5</td>
<td>2.2</td>
<td>2.8</td>
<td>5.0</td>
<td>10.7</td>
<td>4.5</td>
<td>2.5</td>
<td>1.5</td>
<td>2.2</td>
<td>2.8</td>
<td>5.0</td>
<td>10.7</td>
</tr>
<tr>
<td>Sn</td>
<td>0.74</td>
<td>13.9</td>
<td>12.7</td>
<td>10.7</td>
<td>2.5</td>
<td>1.5</td>
<td>2.2</td>
<td>2.8</td>
<td>5.0</td>
<td>10.7</td>
<td>4.5</td>
<td>2.5</td>
<td>1.5</td>
<td>2.2</td>
<td>2.8</td>
<td>5.0</td>
<td>10.7</td>
</tr>
<tr>
<td>Sr</td>
<td>0.74</td>
<td>13.9</td>
<td>12.7</td>
<td>10.7</td>
<td>2.5</td>
<td>1.5</td>
<td>2.2</td>
<td>2.8</td>
<td>5.0</td>
<td>10.7</td>
<td>4.5</td>
<td>2.5</td>
<td>1.5</td>
<td>2.2</td>
<td>2.8</td>
<td>5.0</td>
<td>10.7</td>
</tr>
<tr>
<td>Ta</td>
<td>0.74</td>
<td>13.9</td>
<td>12.7</td>
<td>10.7</td>
<td>2.5</td>
<td>1.5</td>
<td>2.2</td>
<td>2.8</td>
<td>5.0</td>
<td>10.7</td>
<td>4.5</td>
<td>2.5</td>
<td>1.5</td>
<td>2.2</td>
<td>2.8</td>
<td>5.0</td>
<td>10.7</td>
</tr>
<tr>
<td>Th</td>
<td>0.74</td>
<td>13.9</td>
<td>12.7</td>
<td>10.7</td>
<td>2.5</td>
<td>1.5</td>
<td>2.2</td>
<td>2.8</td>
<td>5.0</td>
<td>10.7</td>
<td>4.5</td>
<td>2.5</td>
<td>1.5</td>
<td>2.2</td>
<td>2.8</td>
<td>5.0</td>
<td>10.7</td>
</tr>
<tr>
<td>U</td>
<td>0.74</td>
<td>13.9</td>
<td>12.7</td>
<td>10.7</td>
<td>2.5</td>
<td>1.5</td>
<td>2.2</td>
<td>2.8</td>
<td>5.0</td>
<td>10.7</td>
<td>4.5</td>
<td>2.5</td>
<td>1.5</td>
<td>2.2</td>
<td>2.8</td>
<td>5.0</td>
<td>10.7</td>
</tr>
<tr>
<td>V</td>
<td>0.74</td>
<td>13.9</td>
<td>12.7</td>
<td>10.7</td>
<td>2.5</td>
<td>1.5</td>
<td>2.2</td>
<td>2.8</td>
<td>5.0</td>
<td>10.7</td>
<td>4.5</td>
<td>2.5</td>
<td>1.5</td>
<td>2.2</td>
<td>2.8</td>
<td>5.0</td>
<td>10.7</td>
</tr>
<tr>
<td>W</td>
<td>0.74</td>
<td>13.9</td>
<td>12.7</td>
<td>10.7</td>
<td>2.5</td>
<td>1.5</td>
<td>2.2</td>
<td>2.8</td>
<td>5.0</td>
<td>10.7</td>
<td>4.5</td>
<td>2.5</td>
<td>1.5</td>
<td>2.2</td>
<td>2.8</td>
<td>5.0</td>
<td>10.7</td>
</tr>
<tr>
<td>Zr</td>
<td>0.74</td>
<td>13.9</td>
<td>12.7</td>
<td>10.7</td>
<td>2.5</td>
<td>1.5</td>
<td>2.2</td>
<td>2.8</td>
<td>5.0</td>
<td>10.7</td>
<td>4.5</td>
<td>2.5</td>
<td>1.5</td>
<td>2.2</td>
<td>2.8</td>
<td>5.0</td>
<td>10.7</td>
</tr>
<tr>
<td>Ba</td>
<td>0.74</td>
<td>13.9</td>
<td>12.7</td>
<td>10.7</td>
<td>2.5</td>
<td>1.5</td>
<td>2.2</td>
<td>2.8</td>
<td>5.0</td>
<td>10.7</td>
<td>4.5</td>
<td>2.5</td>
<td>1.5</td>
<td>2.2</td>
<td>2.8</td>
<td>5.0</td>
<td>10.7</td>
</tr>
</tbody>
</table>
جدول ۲ تجزیه شیمیایی عناصری و کمیات سنگهای آنتفرنی

<table>
<thead>
<tr>
<th>Sample (%)</th>
<th>KN-149</th>
<th>KN-207</th>
<th>KN-210</th>
<th>kn351</th>
<th>At2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO<sub>2</sub></td>
<td>68.9</td>
<td>70.5</td>
<td>67.6</td>
<td>70.7</td>
<td>67.8</td>
</tr>
<tr>
<td>TiO<sub>2</sub></td>
<td>0.8</td>
<td>0.7</td>
<td>0.63</td>
<td>0.57</td>
<td>0.7</td>
</tr>
<tr>
<td>Al<sub>2</sub>O<sub>3</sub></td>
<td>14.5</td>
<td>10.8</td>
<td>15.4</td>
<td>11.8</td>
<td>10.9</td>
</tr>
<tr>
<td>FeO(T)</td>
<td>5.1</td>
<td>3.01</td>
<td>4.53</td>
<td>8.18</td>
<td>11.1</td>
</tr>
<tr>
<td>MnO</td>
<td>0.9</td>
<td>0.7</td>
<td>0.15</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>MgO</td>
<td>2.9</td>
<td>3.44</td>
<td>5.13</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>CaO</td>
<td>2.72</td>
<td>3.97</td>
<td>7.94</td>
<td>0.93</td>
<td>0.93</td>
</tr>
<tr>
<td>Na<sub>2</sub>O</td>
<td>3.12</td>
<td>3.23</td>
<td>2.42</td>
<td>4.27</td>
<td>0.77</td>
</tr>
<tr>
<td>K<sub>2</sub>O</td>
<td>2.16</td>
<td>3.6</td>
<td>1.19</td>
<td>1.71</td>
<td>1.58</td>
</tr>
<tr>
<td>P<sub>2</sub>O<sub>5</sub></td>
<td>0.19</td>
<td>0.1</td>
<td>0.34</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>LOI</td>
<td>3.55</td>
<td>2.57</td>
<td>2.88</td>
<td>0.28</td>
<td>0.28</td>
</tr>
<tr>
<td>total</td>
<td>98.72</td>
<td>99.15</td>
<td>99.34</td>
<td>99.03</td>
<td>98.45</td>
</tr>
<tr>
<td>A/CNK</td>
<td>0.8786</td>
<td>0.8786</td>
<td>0.8786</td>
<td>1.336</td>
<td>1.336</td>
</tr>
<tr>
<td>ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Be</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Co</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Cr</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Ga</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Hf</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Nb</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Rb</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Sn</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Sr</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Ta</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Th</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>U</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>V</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>W</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Zr</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Y</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>La</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Ce</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Pr</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Nd</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Sm</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Eu</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Gd</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Tb</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Dy</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Er</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Tm</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Yb</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Lu</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Eu/Eu*</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>La<sub>8</sub>Y<sub>11</sub>N<sub>5</sub></td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>La<sub>8</sub>Sm<sub>11</sub>N<sub>5</sub></td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Sum REE</td>
<td>0.84</td>
<td>0.84</td>
<td>0.84</td>
<td>0.84</td>
<td>0.84</td>
</tr>
</tbody>
</table>
زمین‌محیط توده‌های نفوذی و سنگ‌های آتش‌نشانی

عناصر اصلی سنگ‌های نیمه‌عمیق دارای اکسید سیلیس بین 53 تا 73/84 درصد هستند (جدول ۵). در نمون‌های نام‌گذاری توده‌های نیمه‌عمیق [۳] در گستره گرانیت، گرانودیوریت (کوارتز دیوریت) و دیوریت قرارآورده‌اند (شکل ۵). مقادیر [۰.۲۹(۰.۱۴۵۰۰۴۰۵) Al۲O۳/CaO+Na۲O+K۲O

شکل ۵ نمون‌های نام‌گذاری توده‌های نیمه‌عمیق [۳]

همه این نمون‌ها در گستره سپر اولیومیوم قرار می‌گیرند. به چجدر نمونه که در گستره شبه رخشان قرار می‌گیرد و یک نمونه که در مرز بین شبه رخشان و اولیومیوم قرار گرفته است (شکل ۶). میزان K۲O از ۶ تا ۹/۳۲ درصد متغیر است. بر اساس نمودار K۲O نسبت به SiO۲ است. براساس نمودار SiO۲ نسبت به Na۲O است. نسبت ۷/۳۲ در نمونه‌های مورد بررسی از نوع آهکی-فلایای بالا و شوشونیتی هستند (شکل ۷). نسبت ۴/۷۲ در این نمونه‌ها کمتر از Na۲O/K۲O

شکل ۶ نمون‌های نام‌گذاری [۵]

[۵]
نمونه‌های آنالیزشده برای پربررسی سنگه‌های آتش‌نشانی (جدول2) با استفاده از نسبت Nb/Y و Zr/TiO2 شدن که بر اساس نمونه [6] در گستره رولیت، داسیت و بازالت نیمه قلبی قرار می‌گیرد (شکل8). از آنجا که SiO2 نسبت به دارسی احساس آن، از نمونه مشابه‌کننده در سنگ‌های آلومینیوم بالا و شوشونیت قرار می‌گیرند و همچنین از جنس رولیت، داسیت و آندزیت بازالت هستند (شکل 9).

عناصر فرعی و کمیاب
بر پایه‌ی مقدار عناصر Nb و Y در نمونه (شکل 10) [8]، موقعیت زمین‌ساینی نوده‌های تنوی در سنگ‌های آلومینیوم بالا و شوشونیت، موجب مجموعه‌ای انسان‌شناختی ممکن به تیرش و (VAG) می‌شود که با شیمی‌الجیزی (SYN-COLG) بی‌نظری یافته‌ی HREE این مواد مبتنی بر هم‌بینی و نسبت با P و Ta، Rb و Yb بیشتر نمونه‌ها در مجموعه‌ی زمین‌ساینی هم‌مانی با برخورد Yb قرار می‌گیرد (شکل 10). فراوانی عناصر خاکی نادر به‌هم‌نار هش نسبت به کنترل [9] (شکل 11) پیشنهاد شد. عناصر نادر و خاکی نادر سیک (REE) نسبت به عناصر نادر (LREE) به همکناره‌ی خاکی نادر (REE) به عنوان مکانیسم‌های زمین‌ساینی (چنین مشابه‌کننده در ذاته‌ی اسناده‌ای است. برای تعریف و تشخیص محتوای زمین‌ساینی ممکن استفاده تعیین شود.

![دیاگرام 1](https://example.com/1.png)

شکل 1 نمونه‌های تعیین سری و نامگذاری سنگ‌های آتش‌نشانی (7).

![دیاگرام 2](https://example.com/2.png)

شکل 2 نمونه‌های سنگ‌های آتش‌نشانی (6).
علاقه بر نمودارهای عناصر کمیاب، برای تشخیص بازه‌های سنگهای آذرین همراه با کانی‌سازی پورفیری از نمودارهای زیر استفاده شد: شرایط: [La/Sm]N، SiO2 SiO2 (La/Yb)_N، SiO2 (Yb)_N، SiO2

شکل 10: موقعیت زمین‌ساختی دودههای نفوذی در نسبت [\(\text{La}/\text{Sm}\)]_N، [\(\text{SiO2}\)]
= WPG = گرانیت‌های درون صف‌های
= syn-COLG = گرانیت‌های پشت میان‌قیانوسی، [\(\text{VAG}\)] = syn-COLG
همزمان با برخوردگاه قاره‌ها

شکل 11: نمودار عناصر خاکی تایید می‌گیرد شده نسبت به کنترلی [10]. ب. نمودار عناصر کمیاب به‌هم‌بازه شده نسبت به بوسته تحت شاخص

[\(\text{La}/\text{Yb}\)]
= MREE

می‌دهند. اما غنی‌شکافی ضعیف نسبت به MREE: ([\(\text{Dy}/\text{Yb}\)]_N) = 1.4-0.9
در کنار نیوده است. در شکل 1.28، [\(\text{La}/\text{Sm}\)]_N = [\(\text{SiO2}\)]
= [\(\text{La}/\text{Yb}\)]
= [\(\text{SiO2}\)]
= [\(\text{La}/\text{Yb}\)]_N
= [\(\text{SiO2}\)]
رده‌بندی کاهشی نشان می‌دهد که نشان دهنده کمترین این نسبت به هزینه جدایش پلاژیکلاز است. در نمودارهای [\(\text{La}/\text{Yb}\)]
هم در زیر منطقه‌های اکتیویت‌های قرار می‌گیرند. نسبت

شیفت از 20 به عناصر آکائیت‌ها در نظر گرفته می‌شود
(\([\text{Dy}/\text{Yb}\])_N = 1.4-1.8)
با نشان دهنده جدایش ماکا از قسمت‌های عمیق بوسته در صورت وجود گران کاذب باشد
(\(\text{Sr}/\text{Y}\))
= 6\(\text{Sr}/\text{Y}\)
بنی به عناصر آکائیت‌ها

شکل 12: نمودار شکل‌های Yb، Sr، Y، La بررسی شده‌اند. موارد تصویر شده نسبت به سیلنر روند
= MREE/MREE

= [\(\text{La}/\text{Sm}\)]
= به‌هم‌بازه شده نسبت به MREE/\(\text{Dy}/\text{Yb}\)N
= به‌هم‌بازه شده نسبت به جدایش هورنیتند (\(\text{La}/\text{Sm}\)]
= نسبت به جدایش
= GARRAN مقابلی شده است (شکل 13). بیشتر نمونه‌ها غنی
= شدگی متوسط از 4.75 نشان

شکل 13: نمودار شکل‌های Yb، Sr، Y، La بررسی شده‌اند. موارد تصویر شده نسبت به سیلنر روند

= MREE/MREE

= [\(\text{La}/\text{Sm}\)]
= به‌هم‌بازه شده نسبت به MREE/\(\text{Dy}/\text{Yb}\)N
= به‌هم‌بازه شده نسبت به جدایش هورنیتند (\(\text{La}/\text{Sm}\)]
= نسبت به جدایش
= GARRAN مقابلی شده است (شکل 13). بیشتر نمونه‌ها غنی
= شدگی متوسط از 4.75 نشان
در نظر گرفته می‌شود که بسیاری فقدهای جدایی پلاژیوکلایز همراه با وجود گارنت در سنگ خاسگاه با هم نشان دهنده ذوب بخشی خاسگاه اکتولوزیت است [16، 17، 18] هر دوی این نسبت‌ها در سنگ‌های منطقه کمتر از ۲۰ است.

فراوانی عناصر گیپس نمونه‌های آتشفشانی روی نمودار بهنگار شده نسبت به پوسته تحتانی [12] بررسی شد (شکل ۱۲) و بیشتر هر یک از نشان‌های داد: ۱- شدن غنی‌شدن‌گی HREE نسبت به LREE ذبده نمی‌شود و روند نسبتاً پیکالکی دیده می‌شود. ۲- بهنگار مینی Eu (با میانگین Zr/Nb: ۰.۵۴ - (Eu/Eu*) = ۰.۳ - ۰.۴ بهنگار ضعیف در نظر گرفته می‌شود که به‌صورت فقدهای جدایی پلاژیوکلایز همراه با وجود گارنت در سنگ خاسگاه با هم نشان دهنده ذوب بخشی خاسگاه اکتولوزیت است [16، 17، 18] هر دوی این نسبت‌ها در سنگ‌های منطقه کمتر از ۲۰ است.

شکل ۱۲ تصویر عناصر فرعت و نسبت‌های نمونه‌های مورد بررسی.

شکل ۱۳ موقعیت نمونه‌های مورد بررسی در جوشهای معرفي آدکتیت [۱۹].
بحث و برداشت

در مناطقی شمال غرب گنبد، رخندگه‌های ماغماهای شناسایی‌شده که در زیر اورده شدند:

1- توده‌های نیمه‌عمیق: این توده‌ها در گستره‌های اهکی قلبی با پاتیم متوسط و زیاد و از نظر شاخه‌الومینیوم در گستره پرالومینوس و شبه رخشان قرار می‌گیرند و از نوع گرانیت‌های هم‌مان با پرخورد هستند. در نمودار توده‌های خاکی Sr, Rb و کاهیدمی K, Rb و

نادر، در این توده‌ها نیز شدگی‌های عنصر P, Ba, Ti (با میانگین 128 پیویام) دیده می‌شود. عنصر خاکی نادر سبک (LREE) نشان دهنده ضعیف نسبت به عنصر خاکی سنگین (HREE) دارند. نمونه‌های مشاهده ندارند. QCDرهای کمی‌ماهیان از+y/Sr در گستره‌های منطقه در ۰.۳۵/۲۰۱۵ نسبت به می‌گیرند و در سایر آدکی‌ها فزار نمی‌گردد (شکل ۲۰ ت).

کاهیدمی K, Rb و P, Sr (با میانگین ۱۲۸ پیویام) در توده‌های نیمه‌عمیق می‌شود. عنصر P, Ba, Ti نیز در نمودار گستره‌های منطقه در ۰.۳۵/۲۰۱۵ نسبت به می‌گیرند و در سایر آدکی‌ها فزار نمی‌گردد (شکل ۲۰ ت).

[19] Richards J.P., Kerrich R., 'Adakite - like rocks: Their diverse origins and questionable role

سنجش سنجشی و سنجشی توده‌های نفوذی و سنجشی

سنجشی سنجشی با خاستگاه پیسته‌ای است. همچنین عدم اولویت پیسته‌ای و عمق بسیار کم را نشان می‌دهد.

مراجع

[1] آقانبیانی س، زمین‌شناسی ایران، سازمان زمین‌شناسی و اکتشافات معنی‌دار، (1381) 165 ص.

[21] Defant M.J., Drummond M.S., ‘Derivation of some modern arc magmas by melting of young