کانی سازی، زئوژمی و سنگشناسی توده‌های نفوذی و سنگ‌های آتشفشانی شمال غرب گناباد

صدیقه زیرجانی‌زاده، محمدحسین کریمپور، خسرو ابراهیمی

گروه زمین‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد

چکیده: گستره مورد بررسی در استان خراسان رضوی و شمال غرب گناباد از نظر موقعیت زمین ساختی در شمال بلوک لوت واقع شده است. توده‌های آذرین نیمه عمیق در منطقه رخندوزن دارند که سنگ‌های آتشفشانی آذرینی و آذرانریزی را قطع کرده‌اند. این سنگ‌ها عبارتند از سنگ‌های آذرین کوچک و بدن‌های بافت پرورپتی و گستره ترکیبی کوارتز دوربیت، موندولوریت و گرانیت هستند. گردن‌گیس گستره‌ها نیز در جنوب منطقه سنگی‌شناسی شدید که بهشت از نواع آرژالیکان. ترکیب کاری‌سنگ‌ها این دوگانی از ترتیب فردایی یک‌تا دو، کانول، درکیم، موندولوریت، هم‌نیم و آلبین. بررسی‌های زئوژمی‌ای روی توده‌های سنگی نشان می‌دهد که گردن‌گیس‌ها ماهیت آهکی-قلایی با پاتاسیم بالا داشته و در گستره پرآوپوسی و مالاپوسی قرار می‌گیرند. در گذشته

مقدمة

گستره مورد بررسی در شمال غرب شهرستان گناباد، شمال جاده گناباد-بجستان و در فاصله مختصاتی بین 30° 48' تا 30° 46' و طولهای شریفی و 25° 30' تا 25° 20' عرض‌های شمالی قرار می‌گیرد (شکل 1). این منطقه در غربی‌نشینی 6800 هکتار، شمال غرب گناباد می‌باشد. نشانه‌های آتش‌نشانی دیوران سیستم‌های مصرف ویلی گستره‌های رخندوزن و رسوب‌های اخیر دانه اول و مخصوصاً رسوب‌های دانه دوم نیز به‌طور پراکنده در آن رخندوزند. توده‌های کاری‌سنگ‌های سنگ‌های آتشفشانی در بخش‌های شمالی و غربی بلوک لوت را واحدهای سنگ‌های آتشفشانی دانسته‌شده است (11). در این بخش بلوک لوت را سنگ نگاری سنگ‌های آذرین بدسته‌بندی شده و سپس رفتار زئوژمی‌ای عناصر اصلی و نادر در توده‌های آذرین نیمه عمیق و سنگ‌های آتشفشانی و تعیین خاستگاه برسی شده‌است.

زمن‌سنگ‌سازی گستره مورد بررسی

واژه‌های کلیدی: شمال غرب گناباد، آهکی-قلایی، منطقه‌روای افزایش

Karimpur@um.ac.ir
این اکلولری می‌تواند سپاه‌های انگلیسی در این ناحیه، توده‌های آذرین پوشیده‌اند. ناحیه های کم‌سیلی و اندورنتی است که فراورده قرار است. ترکیب حضور دریا، ساختار اصلی قسمتی است از نوع راست‌الغث است.[۱] سنجشگری سنجشگری نفوذی گرایشی، گرایش‌های انگلیسی ترکیب‌های دریا و رودسیست در منطقه مور، بررسی به‌طور می‌خورد. بررسی سنجشگری واحدهای سنگی در منطقه به‌سره زیر است:

![شکل 1 موقتیش منطقه در نقشه‌ای به نتیجه‌ای از سه‌سختی ایران و راه‌های دسترسی به‌هسته‌های پیچویی.](image1)

![شکل 2 فن نمایی از منطقه‌ای مور، بررسی واحدهای سنگی رخ دهنده نیمه‌های دانسته، منطقه‌ای نفوذی گرانیتی درون سازند شمشک، فراوری ساختارهای زمین (تصویری) از سه‌سختی ایران و راه‌های دسترسی به‌هسته‌های پیچویی.](image2)
شکل ۲ نقشهی زمین‌شناسی منطقه‌ی مورد بررسی.
تویف برلوی - سنجی بررسی تویف دیگر سنجش‌های نیازه ده که ترکیب آنها در جنوب منطقه بریزی- روداسیست است. با بیشتر آنها تویف برلوی است. ترکیب تویف داده در مرکز به سمت شمال ناحیه اندنوستی است. در بخش شمال شرقی منطقه، تویف سنجی- برلوی نیز دیده می‌شود. قطاعات سنجی- برلوی کریپتکنی، آرژیولیکی شده و در زمینه‌ی کمالی سیلیسی- آرژیولیکی قرار دارد. قطاعات سنجی (ب ابعاد حداقل 400 mm) درصد سنج را نشان می‌دهد.

آزمایش - تراکی اندوزی: بافت این واحد پورفیری است.

فتوئوسی بیساب ویز کلایه‌ای نماینده ترکیب این واحد پورفیری است. بافت این واحد پورفیری در سطوح شرقی و در داخل پورفیری گونه به شکل مقطعی مشاهده شده است. در این واحد به ترتیب این واحد پورفیری در سطوح شرقی و در داخل پورفیری گونه به شکل مقطعی مشاهده شده است.

استوک موزندروریت- موزندروریت پورفیری، این واحد به دو قسمت بررسی رخ خورشیدار و کاملاً پرترکیمی درآمده است. قطعات سنجی- برلوی نماینده ترکیب این واحد پورفیری است. در این واحد به ترتیب این واحد پورفیری در سطوح شرقی و در داخل پورفیری گونه به شکل مقطعی مشاهده شده است.

 Daoکیا با ترکیب پیوند پورفیری زمانی و پورفیری پورفیری دیگر. بافت درون شکل‌های موجود در واحدهای مستقلی که ترکیب شده این. در این واحد اقلیت در منطقه قطب北极یک نماینده نیست. در این واحد اقلیت در منطقه قطب北极یک نماینده نیست. در این واحد اقلیت در منطقه قطب北极یک نماینده نیست.

 Daoکیا با ترکیب پیوند پورفیری زمانی و پورفیری پورفیری دیگر. بافت درون شکل‌های موجود در واحدهای مستقلی که ترکیب شده این. در این واحد اقلیت در منطقه قطب北极یک نماینده نیست. در این واحد اقلیت در منطقه قطب北极یک نماینده نیست.
جدول ۱ تجزیه شیمیایی عنصراصلی و فرعی سنگ‌های آدرین، نیمه عمقی و نفوذی

<table>
<thead>
<tr>
<th>ppm</th>
<th>KN-2</th>
<th>29</th>
<th>KN-5</th>
<th>3</th>
<th>KN-9</th>
<th>64</th>
<th>KN-6</th>
<th>6</th>
<th>SH-2</th>
<th>6</th>
<th>KN-5</th>
<th>105</th>
<th>6</th>
<th>at108</th>
<th>at109</th>
<th>d11</th>
<th>KN-GO</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>29</td>
<td>39</td>
<td>26</td>
<td>39</td>
<td>32</td>
<td>39</td>
<td>26</td>
<td>39</td>
<td>26</td>
<td>39</td>
<td>32</td>
<td>39</td>
<td>26</td>
<td>39</td>
<td>26</td>
<td>39</td>
<td>26</td>
</tr>
<tr>
<td>TiO₂</td>
<td>33</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>13</td>
</tr>
<tr>
<td>TFeO</td>
<td>6</td>
<td>33</td>
</tr>
<tr>
<td>MnO</td>
<td>110</td>
</tr>
<tr>
<td>MgO</td>
<td>110</td>
</tr>
<tr>
<td>CaO</td>
<td>110</td>
</tr>
<tr>
<td>Na₂O</td>
<td>33</td>
</tr>
<tr>
<td>K₂O</td>
<td>0</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>10</td>
</tr>
<tr>
<td>LOI</td>
<td>111</td>
</tr>
</tbody>
</table>

| ppm | Ba | Be | Ca | Co | Cs | Ga | Hf | Nb | Rb | Sn | Sr | Ta | Th | U | V | W | Zr | Y | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Er | Tm | Yb | Lu | Er₄Eu* | La₄Yb₄ | La₄Sm₄ | Ce₄Yb₄ |
|-----|-----|
| 8.9 | 33.8 | 39.4 | 27.7 | 42.4 | 41.5 | 28.1 | 42.4 | 27.7 | 41.5 | 28.1 | 42.4 | 27.7 | 41.5 | 28.1 | 42.4 | 27.7 | 41.5 | 28.1 | 42.4 | 27.7 | 41.5 | 28.1 | 42.4 | 27.7 | 41.5 | 28.1 | 42.4 | 27.7 | 41.5 | 28.1 | 42.4 | 27.7 |

* Er₄Eu*
| جدول ۲ | تجزیه شیمیایی عناصری و کمیاب سنگهای آنتفنانی | | | | | | | | | | |
| Sample (%) | K | N | 4 | 9 |
| SiO₂ | KN-149 | 68.79 | KN-207 | 79.85 | KN-210 | 76.66 | km351 | 67.87 | At2 | 74.33 |
| TiO₂ | 6.0 | KN-149 | 3.77 | KN-207 | 2.77 | KN-210 | 1.17 | km351 | 0.70 | At2 | 0.77 |
| Al₂O₃ | 14.5 | KN-149 | 10.8 | KN-207 | 15.44 | KN-210 | 18.98 | km351 | 1.98 | At2 | |
| Fe₂O₃(T) | 5.1 | KN-149 | 2.01 | KN-207 | 3.53 | KN-210 | 8.18 | km351 | 11.1 | At2 | |
| MnO | 0.9 | KN-149 | 0.1 | KN-207 | 0.15 | KN-210 | 0.20 | km351 | 0.0 | At2 | |
| MgO | 2.5 | KN-149 | 1.79 | KN-207 | 3.44 | KN-210 | 3.13 | km351 | 0.30 | At2 | |
| CaO | 5.1 | KN-149 | 4.74 | KN-207 | 3.57 | KN-210 | 7.93 | km351 | 0.94 | At2 | |
| Na₂O | 3.4 | KN-149 | 2.47 | KN-207 | 1.77 | KN-210 | 4.42 | km351 | 0.47 | At2 | |
| K₂O | 1.6 | KN-149 | 1.29 | KN-207 | 1.91 | KN-210 | 1.79 | km351 | 1.58 | At2 | |
| P₂O₅ | 0.4 | KN-149 | 0.1 | KN-207 | 0.24 | KN-210 | 0.04 | km351 | 0.0 | At2 | |
| LOI | 3.5 | KN-149 | 2.57 | KN-207 | 2.88 | KN-210 | 3.38 | km351 | 0.0 | At2 | |
| total | 98.72 | KN-149 | 99.35 | KN-207 | 99.24 | KN-210 | 98.03 | km351 | 98.03 | At2 | |
| A/CNK | 8276 | KN-149 | 7067 | KN-207 | 9030 | KN-210 | 690 | km351 | 361 | At2 | 1271 |
| ppm | | | | | | | | | | |
| Ba | 1400 | 59.0 | 477 | 159 | 25.6 | |
| Be | <1 | 3 | 2 | 1 | <1 | |
| Co | 0.6 | 0.2 | 0.6 | 0.5 | 0.5 | |
| Cs | 0.1 | 0.8 | 0.8 | 0.8 | 0.8 | |
| Ga | 17.5 | 9.1 | 18.4 | 18.2 | 18.2 | |
| Hf | 6.3 | 3.3 | 3.4 | 3.4 | 3.4 | |
| Nb | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | |
| Rb | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | |
| Sn | 0 | 0 | 0 | 0 | 0 | |
| Sr | 29.2 | 27.13 | 25.42 | 25.42 | 25.42 | |
| Ta | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | |
| Th | 17.4 | 17.4 | 17.4 | 17.4 | 17.4 | |
| U | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | |
| V | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | |
| W | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | |
| Zr | 149.9 | 148.9 | 148.9 | 148.9 | 148.9 | |
| Y | 0 | 0 | 0 | 0 | 0 | |
| La | 2.29 | 2.29 | 2.29 | 2.29 | 2.29 | |
| Ce | 2.74 | 2.74 | 2.74 | 2.74 | 2.74 | |
| Pr | 2.22 | 2.22 | 2.22 | 2.22 | 2.22 | |
| Nd | 28.3 | 28.3 | 28.3 | 28.3 | 28.3 | |
| Sm | 3.21 | 3.21 | 3.21 | 3.21 | 3.21 | |
| Eu | 1.32 | 1.32 | 1.32 | 1.32 | 1.32 | |
| Gd | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | |
| Tb | 1.11 | 1.11 | 1.11 | 1.11 | 1.11 | |
| Dy | 0.84 | 0.84 | 0.84 | 0.84 | 0.84 | |
| Er | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | |
| Tm | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | |
| Yb | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | |
| Lu | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | |
| Eu/Eu* | 65/0 66/0 61/0 85/0 23/0 | 67/0 68/0 69/0 70/0 71/0 | 67/0 68/0 69/0 70/0 71/0 | 67/0 68/0 69/0 70/0 71/0 | 67/0 68/0 69/0 70/0 71/0 | |
| LaN/YbN | 75/6 3/15 58/10 4/7 49/3 | 75/6 3/15 58/10 4/7 49/3 | 75/6 3/15 58/10 4/7 49/3 | 75/6 3/15 58/10 4/7 49/3 | 75/6 3/15 58/10 4/7 49/3 | |
| LaN/SmN | 21/3 61/4 74/3 44/3 46/3 | 21/3 61/4 74/3 44/3 46/3 | 21/3 61/4 74/3 44/3 46/3 | 21/3 61/4 74/3 44/3 46/3 | 21/3 61/4 74/3 44/3 46/3 | |
زمینه‌ی توده‌های فنودی و سنگ‌های آشفشانی

عناصر اصلی

سنگ‌های نیمه‌عمیق در اکسید سلیس بین ۵۷-۹۳ درصد هستند. در نمودار نام‌گذاری توده‌های نیمه‌عمیق (۱) در گسترهی گرانیت، گراندیوریت (کوارتز-دوریت) و دوریت-قرمزی-گیرند (شکل ۵) مقداری بزرگ (۶۸-۹۱ درصد) با دیسپراس کارناونیک (Al2O3/Na2O+K2O) (۵۴-۸۴) و نیم‌بها (۶-۳۴) در این توده‌ها کمتر از Na2O/K2O در نمودار نام‌گذاری توده‌های نیمه‌عمیق (۱).

شکل ۵ نمودار نام‌گذاری توده‌های نیمه‌عمیق (۱).
نمونه‌های آنالیز‌شده برای بررسی سنگ‌های آتش‌نشانی (جدول ۴) با استفاده از نسبت Nb/Y و Zr/TiO	extsubscript{2} شده که بر اساس نمودار [۲] در گستره رایلیت، داسیت و بازالت نیمه قلب‌ای. قرار می‌گیرد (شکل ۸). از آنگاه که نسبت به دگرگان همسان، از نمودار مشابه‌کننده در SiO۲ به عنوان نماینده SiO۲ و K۲O به عنوان نماینده Th آن است، می‌توان استفاده کرد. در این نمودار، نمودار SiO۲ در گستره آلومنیوم بالا و شوشونیت قرار می‌گیرند و همچنین از جنس رایلیت، داسیت و آندزیت- بازالت هستند (شکل ۹).

عناصر فرعی و کمیاب

بر پایه مقدار عناصر با وجود Y و Nb در نمودار (شکل ۹) [۸] و موقتیت زمین‌ساختی نتیجه‌گیری که مورد بررسی و دیده گردیده‌ای به‌عنوان کانال‌های بازی‌کننده حضور داشته است. در مورد عنصر، هیچ اثری در نمودار کمیاب می‌تواند رد درده در ساختار بعنوان کانال‌های باقی‌مانده حضور داشته است. برای عنصر، هیچ اثری در نمودار کمیاب می‌تواند رد درده در ساختار بعنوان کانال‌های باقی‌مانده حضور داشته است. برای عنصر، هیچ اثری در نمودار کمیاب می‌تواند رد درده در ساختار بعنوان کانال‌های باقی‌مانده حضور داشته است. برای عنصر، هیچ اثری در نمودار کمیاب می‌تواند رد درده در ساختار بعنوان کانال‌های باقی‌مانده حضور داشته است. برای عنصر، هیچ اثری در نمودار کمیاب می‌تواند رد درده در ساختار بعنوان کانال‌های باقی‌مانده حضور داشته است. برای عنصر، هیچ اثری در نمودار کمیاب می‌تواند رد درده در ساختار بعنوان کانال‌های باقی‌مانده حضور داشته است. برای عنصر، هیچ اثری در نمودار کمیاب می‌تواند رد درده در ساختار بعنوان کانال‌های باقی‌مانده حضور داشته است. برای عنصر، هیچ اثری در نمودار کمیاب می‌تواند رد درده در ساختار بعنوان کانال‌های باقی‌مانده حضور داشته است. برای عنصر، هیچ اثری در نمودار کمیاب می‌تواند رد درده در ساختار بعنوان کانال‌های باقی‌مانده حضور داشته است. برای عنصر، H-K and SHO

نمونه‌های آنالیز‌شده برای بررسی سنگ‌های آتش‌نشانی (جدول ۴) با استفاده از نسبت Nb/Y و Zr/TiO۲ شده که بر اساس نمودار [۲] در گستره رایلیت، داسیت و بازالت نیمه قلب‌ای. قرار می‌گیرد (شکل ۸). از آنگاه که نسبت به دگرگان همسان، از نمودار مشابه‌کننده در SiO۲ به عنوان نماینده SiO۲ و K۲O به عنوان نماینده Th آن است، می‌توان استفاده کرد. در این نمودار، نمودار SiO۲ در گستره آلومنیوم بالا و شوشونیت قرار می‌گیرند و همچنین از جنس رایلیت، داسیت و آندزیت- بازالت هستند (شکل ۹).

دشته نسبت به کانال‌های (REE) نمودار (شکل ۱۰) یکی از موتورهای در مورد کانال‌های باقی‌مانده حضور داشته است. برای عنصر، هیچ اثری در نمودار کمیاب می‌تواند رد درده در ساختار بعنوان کانال‌های باقی‌مانده حضور داشته است. برای عنصر، هیچ اثری در نمودار کمیاب می‌تواند رد درده در ساختار بعنوان کانال‌های باقی‌مانده حضور داشته است. برای عنصر، هیچ اثری در نمودار کمیاب می‌تواند رد درده در ساختار بعنوان کانال‌های باقی‌مانده حضور داشته است. برای عنصر، هیچ اثری در نمودار کمیاب می‌تواند رد درده در ساختار بعنوان کانال‌های باقی‌مانده حضور داشته است. برای عنصر، هیچ اثری در نمودار کمیاب می‌تواند رد درده در ساختار بعنوان کانال‌های باقی‌مانده حضور داشته است. برای عنصر، H-K and SHO

نمونه‌های آنالیز‌شده برای بررسی سنگ‌های آتش‌نشانی (جدول ۴) با استفاده از نسبت Nb/Y و Zr/TiO۲ شده که بر اساس نمودار [۲] در گستره رایلیت، داسیت و بازالت نیمه قلب‌ای. قرار می‌گیرد (شکل ۸). از آنگاه که نسبت به دگرگان همسان، از نمودار مشابه‌کننده در SiO۲ به عنوان نماینده SiO۲ و K۲O به عنوان نماینده Th آن است، می‌توان استفاده کرد. در این نمودار، نمودار SiO۲ در گستره آلومنیوم بالا و شوشونیت قرار می‌گیرند و همچنین از جنس رایلیت، داسیت و آندزیت- بازالت هستند (شکل ۹).

دشته نسبت به کانال‌های (REE) نمودار (شکل ۱۰) یکی از موتورهای در مورد کانال‌های باقی‌مانده حضور داشته است. برای عنصر، H-K and SHO

نمونه‌های آنالیز‌شده برای بررسی سنگ‌های آتش‌نشانی (جدول ۴) با استفاده از نسبت Nb/Y و Zr/TiO۲ شده که بر اساس نمودار [۲] در گستره رایلیت، داسیت و بازالت نیمه قلب‌ای. قرار می‌گیرد (شکل ۸). از آنگاه که نسبت به دگرگان همسان، از نمودار مشابه‌کننده در SiO۲ به عنوان نماینده SiO۲ و K۲O به عنوان نماینده Th آن است، می‌توان استفاده کرد. در این نمودار، نمودار SiO۲ در گستره آلومنیوم بالا و شوشونیت قرار می‌گیرند و همچنین از جنس رایلیت، داسیت و آندزیت- بازالت هستند (شکل ۹).

دشته نسبت به کانال‌های (REE) نمودار (شکل ۱۰) یکی از موتورهای در مورد کانال‌های باقی‌مانده حضور داشته است. برای عنصر، H-K and SHO

نمونه‌های آنالیز‌شده برای بررسی سنگ‌های آتش‌نشانی (جدول ۴) با استفاده از نسبت Nb/Y و Zr/TiO۲ شده که بر اساس نمودار [۲] در گستره رایلیت، داسیت و بازالت نیمه قلب‌ای. قرار می‌گیرد (شکل ۸). از آنگاه که نسبت به دگرگان همسان، از نمودار مشابه‌کننده در SiO۲ به عنوان نماینده SiO۲ و K۲O به عنوان نماینده Th آن است، می‌توان استفاده کرد. در این نمودار، نمودار SiO۲ در گستره آلومنیوم بالا و شوشونیت قرار می‌گیرند و همچنین از جنس رایلیت، D/R*
شکل 10. نقطه زمین ساختمان توپه‌های نفوذی در نمودار [8]. \(\text{WPG} = \text{گرانیت‌های درون صفحه‌ای} \).\(\text{syn-COLG} = \text{گرانیت‌های} \).

همان‌اون بر خورداری قاره‌ها، \(\text{VAG} = \text{گرانیت‌های پشتی میان‌قیاویوسی} \) و \(\text{ORG} = \text{گرانیت‌های قوس انطوفانی} \).

شکل 11. نمودار عناصر خاکی نادر به‌هم‌بندی شده نسبت به كندریت [110]. ب. نمودار عناصر كم‌کی در مدل به‌هم‌بندی نسبت به بوسته تحت‌الی [111].

علاوه بر نمودارهای عناصر كم‌کی، برای تشخیص پلوروری سنت‌های آذرین همراه با کانی‌سواری پورفیری از نمودارهای زیر استفاده شد: شد:

\[\text{La/Sm} = \text{نسبت به Eu/Eu}^* \]

\[\text{SiO}_2 = \text{نسبت به La/Yb} \]

\[\text{Sr/Y} = \text{نسبت به Yb/Sr} \]

\[\text{SiO}_2 = \text{نسبت به Yb/Sr} \]

در نمودار شکل‌های [12]. ال. و ب. رفیق بررسی شد. موارد تصویر شده نسبت به سیلیس روند کاهش نشان می‌دهند، نسبت LREE/MREE \([\text{La/Sm}] \) به‌هم‌بندی HREE/Dy/Yb نسبت به [MREE/HREE] به‌هم‌بندی HREE/Dy/Yb شده به عنوان جدایی هورن‌نلند (۴ تیتابیت) نسبت به جدایی گزارنده شده است (شکل ۱2). بیشتر نمونه‌ها غنی شدگی متوسط از ۰۹۵ از LREE (۰۹۵-۷) از LREE.
منبت در نظر گرفته می‌شود که به‌صورت فقدان جدایی پلاژیوکلاز همراد با وجود گزارنده در سنگ خاستگاه، با هم نشان‌دهنده ذوب بخشی خاستگاه اکلوژیت است. [۱۶،۱۷،۱۶۲۲] هر دوی این نسبت‌ها در سنگ‌های منطقه کمتر از ۲۰ است.

فراوانی عناصر کمیاب نمونه‌های آش شفاف روی نمودار به‌هنجار شده نسبت بی‌پوسته تحت‌الی (۱۶) بررسی شد (شکل ۱۲)، و وزنی‌های زیبر را نشان داد: ۱- غنی‌شدنگی (شکل ۱۳)، و افزایش نقش از لیمپتیت آست از منفی Ti و P در نتایج می‌دهد. به‌هنجار منفی Eu مشاهده شده، نشان دهنده جدایی پلاژیوکلاز از خاستگاه بی‌پوسته است.

شکل ۱۲ تصویر عناصر فرای و نسبت‌های نمونه‌های مورد بررسی.

شکل ۱۳ موقعیت نمونه‌های مورد بررسی در حوزه‌های معرفی آدکیت [۱۹].

در نظر گرفته می‌شود که به‌صورت فقدان جدایی پلاژیوکلاز همراد با وجود گزارنده در سنگ خاستگاه، با هم نشان‌دهنده ذوب بخشی خاستگاه اکلوژیت است. [۱۶،۱۷،۱۶۲۲] هر دوی این نسبت‌ها در سنگ‌های منطقه کمتر از ۲۰ است.

فراوانی عناصر کمیاب نمونه‌های آش شفاف روی نمودار به‌هنجار شده نسبت بی‌پوسته تحت‌الی (۱۶) بررسی شد (شکل ۱۲)، و وزنی‌های زیبر را نشان داد: ۱- غنی‌شدنگی (شکل ۱۳)، و افزایش نقش از لیمپتیت آست از منفی Ti و P در نتایج می‌دهد. به‌هنجار منفی Eu مشاهده شده، نشان دهنده جدایی پلاژیوکلاز از خاستگاه بی‌پوسته است.

شکل ۱۲ تصویر عناصر فرای و نسبت‌های نمونه‌های مورد بررسی.

شکل ۱۳ موقعیت نمونه‌های مورد بررسی در حوزه‌های معرفی آدکیت [۱۹].

در نظر گرفته می‌شود که به‌صورت فقدان جدایی پلاژیوکلاز همراد با وجود گزارنده در سنگ خاستگاه، با هم نشان‌دهنده ذوب بخشی خاستگاه اکلوژیت است. [۱۶،۱۷،۱۶۲۲] هر دوی این نسبت‌ها در سنگ‌های منطقه کمتر از ۲۰ است.

فراوانی عناصر کمیاب نمونه‌های آش شفاف روی نمودار به‌هنجار شده نسبت بی‌پوسته تحت‌الی (۱۶) بررسی شد (شکل ۱۲)، و وزنی‌های زیبر را نشان داد: ۱- غنی‌شدنگی (شکل ۱۳)، و افزایش نقش از لیمپتیت آست از منفی Ti و P در نتایج می‌دهد. به‌هنجار منفی Eu مشاهده شده، نشان دهنده جدایی پلاژیوکلاز از خاستگاه بی‌پوسته است.

شکل ۱۲ تصویر عناصر فرای و نسبت‌های نمونه‌های مورد بررسی.

شکل ۱۳ موقعیت نمونه‌های مورد بررسی در حوزه‌های معرفی آدکیت [۱۹].
بحث و برداشت
در منطقه شمال غرب گناباد، رخدادهای ماسیکایی شناسایی شده‌اند که در زیر آورده شده‌اند:

1- توده‌های نیمه‌عمیق این توده‌ها در گستره‌های آهکی-قلیایی با پتانسیم مناسب و در نظر شاخش آلومینیوم در گستره‌ی پرالومینوس و شبه رختان قرار می‌گیرند و از نوع گرانیت‌های همکتی با پرطرس هستند. در نمونه‌العملی، عناصر خاکی نادر مانند Sr, K, Rb و کاهیدگی (با میانگین 128 پی/ام) دیده می‌شود. عناصر (P, Ba, Ti نیز عدم شناسایی و افزایشی نسبت به عناصر داخلی (LREE/HREE (دارند. عناصر دیگری (HREE) منطقه در نمونه‌های Sr/Y نسبت به Y در گستره‌های کم‌مانند مغناطیسی گی‌رون و در قلب‌ها آدیاکتیکا قرار نمی‌گیرند.

(شکل 8. ت.)

کاهیدگی‌های Nb از ویژگی‌های نوئی ماسیکایی مشتق‌شده از پورتریت افیانوسی در منطقه‌های پرورش نش است و افرایانی که اختلاص هرچه بیشتر پورتریت قرار را در ماسیکا آشکار می‌سازد...
[19] Richards J.P., Kerrich R., 'Adakite - like rocks: Their diverse origins and questionable role

سینگوهای منطقه با خاستگاه پوستهای است. همچنین عدم
آودیگی پوستهای و عمق بسیار کم را نشان می‌دهند.

مراجع
[1] آقابنیان س.ع., زمین‌شناسی ایران, سازمان زمین‌شناسی و
اکتشافات معنی‌دار کشور, (1382) 58 ص.
[2] قانعی فرهنگی, نقشه زمین‌شناسی 1:1000001، گاناباد،
اکتشافات سازمان زمین‌شناسی و اکتشافات معنی‌دار کشور
(1384).

[21] Defant M.J., Drummond M.S.,’ Derivation of some modern arc magmas by melting of young