ژئوشیمی عناصر خاکی نادر در کانسار اسکارن باباعلی (شمال غرب همدان) کلیدی برای تعیین شرایط کانی‌زاپی
حسن زمانیان، کیخسرو رادمرود
گروه زمین شناسی، دانشگاه علوم دانشگاهی اردبیل
(دریافت مقاله: ۱۴/۱/۲۷، نسخه نهایی: ۱۴/۱/۲۲)

چکیده: کانسار باباعلی در فاصله ۳۹ کیلومتری شمال غرب همدان قرار دارد. تغییرات پیدایش سیستمی الموقتی به داخل سنگ میزبان دوریتنی باعث تشکیل اسکارن به شکل شناور در سطح این سنگ میزبان، باعث شده است که در این مقاله مطالعه می‌کنیم. سنگ میزبان آن‌ها در این مقاله با ضریب $K(IrO)\times K(IrK)\times K(IrH)\times K(IrC)\times K(IrS)\times K(IrN)$ مشخص شده تا روندهای نشان‌دهنده منابع داخلی خاکی نادر به صورت میزانی از عناصر خاکی نادر را نشان می‌دهد. در این مقاله تغییرات دِرگاسانی و اکتنتولیت به همراه همگامی و فلوکوپیت رشته‌ای مکانیکی با مقدار عناصر خاکی نادر کمتر با دخالت آب‌های جوی در تشکیل آنها دارد.

واژه‌های کلیدی: باباعلی، الموقتی، سیستمی، اسکارن، مکانیکی، اکتنتولیت

مقدمه: الموقتی‌های قبلی در شمال غربی سندنگ - سیرجان و در ۱۵ کیلومتری شمال غرب همدان پروزد دارد کانسار اسکارن باباعلی در مزارع توده‌ی باتولیتی الموقتی بین طول شرقی ۱۹°۵۵ تا ۱۹°۵۷ و عرض شمالی ۴۴°۲۵ تا ۴۴°۲۷ در غرب بین سندنگ - سیرجان و قافله ۳۸ کیلومتری شمال غرب همدان قرار گرفته است. سنگ میزبان این کانسار دوریتنی است. در این پژوهش پنهانی دِرگاسانی مورد بررسی قرار گرفتند. نتایج ترکیب عناصر خاکی نادر و رفتار ژئوشیمی‌ای

K_radmard@yahoo.com

*توییسته مسئول، تلفن: ۸۴۳۱۰۱۸۸۰۷۷۸، تلفن: ۸۴۳۱۰۱۸۸۰۷۷۸، نمایر: ۸۴۳۱۰۱۸۸۰۷۷۸، پست الکترونیکی: K_radmard@yahoo.com
توده‌ی نفوذی آنفلوانس
سنگ‌های تشکیل دهنده این توده‌ی نفوذی شامل کوارتز، سپتیت و سیتروگرانتی هستند که سنگ‌های سیتروگرانتی گسترش دیده از این جهت که در برخی موارد ماکزیمالی شده است و این توده کانگلومرات پلی‌پرس را قطع کرده است و هیچ قطعه‌ای از آن در این کانگلومرا مشاهده نمی‌شود. بنا بر این دو نوع پاک‌گردنی گچ در فراوانی بیش از ۵ کیلو‌بار در زمین تپل فلزی به‌وجود آمده و توده‌های نفوذی در نمونه‌‌های نسبت به‌همی‌شدن Al۲O۳/CaO، Na۲O+K۲O، Al۲O۳/Na۲O+K۲O و براساس نمونه‌های جزء سرکی و تولید‌های CaO-Na۲O-K۲O نوع ۱ هستند [۳].

زمین‌شناسی
از دیدگاه ساختاری ایران، کانسر آهن پاک‌پر در به‌نهایت سنندج - سیروان واقع شده و از تغییرات آن پیروی می‌کند. واژه‌ای سنتی اطراف پاک‌پر آنفلوانس شامل سه مجموعه (سون سیر) با سین ترشی-ژوراسیک، شیست‌های (Son.Ser) با سین ترایاس-ژوراسیک و سازن آهکی الی‌گیمیسین (Jsh) هم‌دامنه با سین تریاسیک و سازن آهکی الی‌گیمیسین است (شکل ۱). سری سنقر یک دنباله اشک‌اشکی - (Om) رسوبی بوده و شامل سرنگ سینت و سنگ فلزی البومیون است. واحدهای اشک‌اشکی-رسوبی سری سنقر شامل واحدهای کوارتزیت، متارولیت، کارتن-میکاصلیت، مرمر خاکستری، آتش‌نشانی-دگرگونی و مرمر نخوریده رنگ است که سهم سنگ‌های اشک‌اشکی به سنگ‌های رسوبی در انتهای دنباله بیشتر بوده و فلزهای دگرگوکلیشک در آن شامل کم‌پرین پسین [۱] لارامید [۲] و پاک‌پری دانسته کنند. اکسل اسکن میزان کوارتز در کنار توده‌ی کوارتز سیترو واقع شده است. به طور کلی واحدهای موجود در معدن پاک‌پر شامل دو بخش مهم واحدهای آتش‌نشانی - رسوبی و نفوذی است.

شکل ۱ الف) موقعیت منطقه‌ی پاک‌پر در نقشه‌ی ایران. ب) زمین‌شناسی با تولید آنفلوانس. پ) زمین‌شناسی سازن شیست‌های هم‌دامنه شده. س) معدن‌های پاک‌پر [۱۲].
کوارتز سینیت دوگانه شده که اسفنج، و اپیدوت فراوان به صورت رگه‌ای آن را از پهن‌های سینیتی جدا می‌کند. پهن‌های اپیدوت-کوارتز در کنار پهن‌های کانسرسیمون‌های دریایی، استکل زیسته، بوده و اگر آسیب سریع اپیدوت، کلسترین و مکنیت مشخص می‌شود. موقوفیت پهن‌های 2 و 3 پهن‌های 4، نشان داده شده که پهن‌های 3-4 به پهن‌های ۵-۶ مشخص کوارتز سینیت و توده‌های عمده از نظر قریبی به یک چپرده‌های در ناحیه شرقی سیل داشته‌اند. توده‌های عمده از نظر قریبی به یک چپرده‌های در ناحیه شرقی سیل داشته‌اند. توده‌های عمده از نظر قریبی به یک چپرده‌های در ناحیه شرقی سیل داشته‌اند. توده‌های عمده از نظر قریبی به یک چپرده‌های در ناحیه شرقی سیل داشته‌اند. توده‌های عمده از نظر قریبی به یک چپرده‌های در ناحیه شرقی سیل داشته‌اند.
جدول ۱ ترتیب مدل سگ‌های زون اول.

<table>
<thead>
<tr>
<th>کاک بایکTER</th>
<th>کوئرتن سنین</th>
<th>کوئرتن سنین</th>
<th>کوئرتن سنین</th>
<th>مونوزیگرایت</th>
</tr>
</thead>
</table>

شکل ۲ پهنه‌نامه‌ی معدن و موقعیت انوداسکارن و اگزوسکارن [۲].

شکل ۱ (الف) محل پهنه‌های کوئرتن سنین آتنه شده و ایزوتوپ کوئرتن در بین پهنه‌ی معدنی و پهنه‌ی کوئرتن سنین (ب) (ایپودت جانشین شده با مگنتین در پهنه‌ی ۲) (ب) جانشینی کلسیت به وسیله مگنتین (ت) جانشینی تورمالین به وسیله مگنتین در پهنه‌ی ۴.

زئوشیمی عناصر خاکی نادر

رفندر مشابه زئوشیمیایی عناصر خاکی نادر طی فرایندهای زمین‌شناسی ناشی از خواص مشابه شیمیایی و فیزیکی آنهاست [۶]. با وجود این شایع‌تر از دیگر فلایت‌های جدیدی عناصر خاکی نادر طی فرایندهای زئوشیمیایی، مقایسه پهن‌ار شده

عناصر خاکی نادر به طور گسترده‌ای به عنوان ابزاری برای تفسیر فرایندهای زئوشیمیایی به کار می‌رود.

بررسی رفندر زئوشیمیایی عناصر خاکی نادر کاربردهای مهمی در تفسیر و خاک‌های زمین شناسی دارد. این گروه از عناصر به سه دسته عناصر نادر سبک (LREE) و سنگین (HREE) و اعضای میانی (MREE) تقسیم می‌گردد [۷]. بررسی عناصر
روش بررسی

تیمارهای انتخاب شده از بررسی REE در این دستگاه های صحراپی برای تجزیه به ازامبی، ALSChemex کاملاً ارسال شدند. تعداد 15 نمونه از بخش‌های مختلف معدن به روش XRF در ازامبی مدل‌های رادیوکانوک و آریا جهت تکیه در سطح نمونه‌ها، بررسی مقدار انرژی 150 تکمیل تیم و مورد بررسی قرار گرفتند. در جدول 2 موقعیت نمونه‌های برداشت و نتایج تجزیه در جدول‌های 3 تا 6 آورده شدند. نمونه برداشتی از بهینه شماره 8 به سمت بهینه شماره 1 انجام شد است.

بحث: تحرک، توسعه و جدایی عنصر خاکی

الگوی برداشتی عنصر خاکی نادر برای سه بخش از سنجش‌های دوبینی، اگراسکانین و توده‌های سینیتی در شکل 4 نشان دادند. چنین در شکل دیده می‌شود، الگوی برداشتی نشان دهنده قدرت اگراسکانین و توده‌های دوبینی، اگراسکانین و توده‌های سینیتی در منطقه‌های باعثه است. برخی از مقدار عنصر خاکی نادر در REE و سینیتی کمترین در REE به ترتیب در توده‌های اگراسکانین و توده‌های سینیتی هستند. به طور عمومی پایه‌های 4 به خاطر داشتن مقدار بسیار قابل ملاحظه است. این نتایج باعث می‌شود که به عنوان نمونه مثبت بررسی شود.
گسترده بین ۱۱۱ تا ppm ۵۶۰ است. نتیجه بررسی‌ها در کانسکره‌های آهن ناحیه‌ای برای سالگران، بین سود و آلمان، نشان داد که کانسکره‌های اسکارینی می‌توانند گوه‌ای منتفی‌ای با کمک‌مانی از عناصر REE بکشند. این امر با مقرارت Eu مثبت یا منفی در نهایت به وجود آمده است.

عناصر Eu مثبت یا منفی را نشان داده‌اند.

با بهبود Eu مثبت یا منفی و یا REE مثبت یا منفی در بازیابی از REE مثبت یا منفی که مربوط به کانسکره‌های اسکارینی می‌باشد. با استفاده از شکل ۶، برای بهترین نمایاندن REE مثبت یا منفی می‌توان اعداد را در یک ضرب ثالث ضرب با تفکیک کرد.

به‌طور کلی، REE و Eu و Cu و عوامل تایگر از REE مثبت یا منفی و REE مثبت یا منفی با معادلات:

\[Eu/Eu^* = \frac{(2Eu)^q}{(Eu_{chon}^*)} \]
\[Ce/Ce^* = \frac{(2Ce)^q}{(Ce_{chon}^*)} \]
\[Pr/Pr^* = \frac{(2Pr)^q}{(Pr_{chon}^*)} \]

دسته‌بندی است که اندازه‌گیری یک کلید از پوشش REE مثبت یا منفی در بازیابی REE تأثیرگذار است.

- Eu/Eu^*:
- Ce/Ce^*:
- Pr/Pr^*:

دسته‌بندی است که معنی‌دار می‌باشد.

به‌طور کلی، REE مثبت یا منفی با معادلات:

\[Eu/Eu^* = \frac{(2Eu)^q}{(Eu_{chon}^*)} \]
\[Ce/Ce^* = \frac{(2Ce)^q}{(Ce_{chon}^*)} \]
\[Pr/Pr^* = \frac{(2Pr)^q}{(Pr_{chon}^*)} \]

نمایانگر تغییر در REE مثبت یا منفی با REE مثبت یا منفی و REE مثبت یا منفی است که می‌تواند در بازیابی از REE تأثیرگذار است.

- Eu/Eu^*:
- Ce/Ce^*:
- Pr/Pr^*:

دسته‌بندی است که معنی‌دار می‌باشد.

به‌طور کلی، REE مثبت یا منفی با معادلات:

\[Eu/Eu^* = \frac{(2Eu)^q}{(Eu_{chon}^*)} \]
\[Ce/Ce^* = \frac{(2Ce)^q}{(Ce_{chon}^*)} \]
\[Pr/Pr^* = \frac{(2Pr)^q}{(Pr_{chon}^*)} \]

نمایانگر تغییر در REE مثبت یا منفی با REE مثبت یا منفی و REE مثبت یا منفی است که می‌تواند در بازیابی از REE تأثیرگذار است.

- Eu/Eu^*:
- Ce/Ce^*:
- Pr/Pr^*:
جدول ۲ موادمیت نمونه برداری و بخش‌های مختلف معدن و توده معدنی.

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>توده دیوریتی</th>
<th>توده سنگی</th>
<th>توده سنگین</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A13-A14-A15</td>
</tr>
</tbody>
</table>

شکل ۴ فراوانی عنصر خاکی نادر در نمونه‌های اکواسکارتنی، سنگی، دیوریتی و منطقه‌ی معدنی به‌نگاه شده با کندیت‌های [۶].

شکل ۵ الف) نمودار توزیع عنصر خاکی نادر سیک (LREEs La-Nb) در تمام نمونه‌های پیش‌های اسکارتن پاباعلی ب) نمودار تمرکز عنصر خاکی نادر مایتی (HREEs Er-Lu) و سنگین (MREEsSm-Ho) در تمام نمونه‌های پیش‌های اسکارتن پاباعلی.

شکل ۶ الف) نمودار P2O5 در تمام نمونه‌های پیش‌های اسکارتن پاباعلی ب) همبستگی بین عنصر خاکی نادر با Eu/Eu*-Ce/Ce*-La/Y.
جدول ۲ نتایج آنالیز ICP-MS و میزان عنصر خاکی نادر در نمونه‌های A1-A15

<table>
<thead>
<tr>
<th>sample</th>
<th>REE(ppm)</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
<th>A9</th>
<th>A10</th>
<th>A11</th>
<th>A12</th>
<th>A13</th>
<th>A14</th>
<th>A15</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>23.2</td>
<td>23.2</td>
<td>13.6</td>
<td>23.2</td>
<td>14.6</td>
<td>25.5</td>
<td>24.9</td>
<td>25.6</td>
<td>14.4</td>
<td>15.5</td>
<td>11.4</td>
<td>12.2</td>
<td>3.5</td>
<td>3.5</td>
<td>22.2</td>
<td></td>
</tr>
<tr>
<td>Ce</td>
<td>47.2</td>
<td>31.0</td>
<td>34.5</td>
<td>47.2</td>
<td>35.8</td>
<td>49.1</td>
<td>48.2</td>
<td>49.1</td>
<td>35.8</td>
<td>49.1</td>
<td>48.2</td>
<td>49.1</td>
<td>35.8</td>
<td>49.1</td>
<td>48.2</td>
<td></td>
</tr>
<tr>
<td>Pr</td>
<td>4.74</td>
<td>3.32</td>
<td>3.04</td>
<td>4.74</td>
<td>3.04</td>
<td>3.32</td>
<td>3.04</td>
<td>3.32</td>
<td>3.04</td>
<td>3.32</td>
<td>3.04</td>
<td>3.32</td>
<td>3.04</td>
<td>3.32</td>
<td>3.04</td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td>35.2</td>
<td>23.9</td>
<td>20.8</td>
<td>35.2</td>
<td>20.8</td>
<td>23.9</td>
<td>20.8</td>
<td>23.9</td>
<td>20.8</td>
<td>23.9</td>
<td>20.8</td>
<td>23.9</td>
<td>20.8</td>
<td>23.9</td>
<td>20.8</td>
<td></td>
</tr>
<tr>
<td>Sm</td>
<td>7.67</td>
<td>5.44</td>
<td>4.31</td>
<td>7.67</td>
<td>4.31</td>
<td>5.44</td>
<td>4.31</td>
<td>5.44</td>
<td>4.31</td>
<td>5.44</td>
<td>4.31</td>
<td>5.44</td>
<td>4.31</td>
<td>5.44</td>
<td>4.31</td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>19.8</td>
<td>12.1</td>
<td>10.3</td>
<td>19.8</td>
<td>10.3</td>
<td>12.1</td>
<td>10.3</td>
<td>12.1</td>
<td>10.3</td>
<td>12.1</td>
<td>10.3</td>
<td>12.1</td>
<td>10.3</td>
<td>12.1</td>
<td>10.3</td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>7.72</td>
<td>5.42</td>
<td>4.31</td>
<td>7.72</td>
<td>4.31</td>
<td>5.42</td>
<td>4.31</td>
<td>5.42</td>
<td>4.31</td>
<td>5.42</td>
<td>4.31</td>
<td>5.42</td>
<td>4.31</td>
<td>5.42</td>
<td>4.31</td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>49.1</td>
<td>33.6</td>
<td>25.5</td>
<td>49.1</td>
<td>25.5</td>
<td>33.6</td>
<td>25.5</td>
<td>33.6</td>
<td>25.5</td>
<td>33.6</td>
<td>25.5</td>
<td>33.6</td>
<td>25.5</td>
<td>33.6</td>
<td>25.5</td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td>18.0</td>
<td>11.1</td>
<td>8.12</td>
<td>18.0</td>
<td>8.12</td>
<td>11.1</td>
<td>8.12</td>
<td>11.1</td>
<td>8.12</td>
<td>11.1</td>
<td>8.12</td>
<td>11.1</td>
<td>8.12</td>
<td>11.1</td>
<td>8.12</td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td>26.4</td>
<td>17.1</td>
<td>12.5</td>
<td>26.4</td>
<td>12.5</td>
<td>17.1</td>
<td>12.5</td>
<td>17.1</td>
<td>12.5</td>
<td>17.1</td>
<td>12.5</td>
<td>17.1</td>
<td>12.5</td>
<td>17.1</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>42.9</td>
<td>28.5</td>
<td>20.1</td>
<td>42.9</td>
<td>20.1</td>
<td>28.5</td>
<td>20.1</td>
<td>28.5</td>
<td>20.1</td>
<td>28.5</td>
<td>20.1</td>
<td>28.5</td>
<td>20.1</td>
<td>28.5</td>
<td>20.1</td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td>1.2</td>
<td>0.75</td>
<td>0.56</td>
<td>1.2</td>
<td>0.56</td>
<td>0.75</td>
<td>0.56</td>
<td>0.75</td>
<td>0.56</td>
<td>0.75</td>
<td>0.56</td>
<td>0.75</td>
<td>0.56</td>
<td>0.75</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>49.2</td>
<td>33.6</td>
<td>25.5</td>
<td>49.2</td>
<td>25.5</td>
<td>33.6</td>
<td>25.5</td>
<td>33.6</td>
<td>25.5</td>
<td>33.6</td>
<td>25.5</td>
<td>33.6</td>
<td>25.5</td>
<td>33.6</td>
<td>25.5</td>
<td></td>
</tr>
</tbody>
</table>
که هم دارای بیهنجاری‌های مثبت و یا منفی است. با توجه به اینکه حجم کنده‌های Eu ویژه‌پذیرکارها هستند، این تغییرات ممکن است با دفعه‌های تجزیه ویژه‌پذیرکارها در ارتباط باشد و بیهنجاری مثبت با مرحله‌ای اولیه درگیری سنگ‌های در ساختار زمین‌سنگ‌ها در شرایط اسیدی-سازگاری است [19] بی‌هنجاری مثبت و Eu بیشتر از یک می‌تواند نشان دهنده سیال‌های (La/Lu)n ماهیت اسیدی و دمای بالا باشد [20]. با بهره‌گیری از سه پارامتر* از اگزوسکارنی (شکل 7 اف نا ب)، می‌توان به این نتیجه رسید که سیال‌های مرز در کانال‌ها حداکثر شامل دو نوع سیال متفاوت بوده که یک نوع دارای عناصر خاکی نادر بیشتر نسبت به سنگ میزبان دیوریت بوده و نوع دوم نسبت به ان دارای عناصر خاکی نادر کمتری است. سیال‌سازی‌ها نسبت به دیگر کانال‌های دارای مقادیر Eu بالایی هستند که نشان دهنده Eu در پرینکس‌ها عنصر سازگاری حساب می‌آید با تغییر خارج Eu شدن سیال‌سازی از یک گذار می‌تواند باعث بیهنجاری‌های منفی در گذار اپیکسن‌ها شود. فعالیت پایین‌کردن (سرعت اخیابی) Eu می‌تواند ضریب توزیع Eu را بالا برده و باعث بیهنجاری مثبت شود [6]. با توجه به تنشکل این کانال‌ها در عمق کم و Eu

شکل 7. اف نا ب. نمودارهای نشان دهنده نوع سیال‌های مرز در کانال‌های سازگاری در اگزوسکارن در مقایسه با دیوریت میزبان که با توجه به پر hacenگی نقاط به دو یک چنار قرار گرفته ت (Pr/Yb)* - Ce/Ce₉ - Eu/Eu₉ در اگزوسکارن.
جدول 4 مقدار محاسبه شده برای عناصر خاکی نادر در نمونه‌های A1-A15.

<table>
<thead>
<tr>
<th>REE</th>
<th>sample</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
<th>A9</th>
<th>A10</th>
<th>A11</th>
<th>A12</th>
<th>A13</th>
<th>A14</th>
<th>A15</th>
</tr>
</thead>
<tbody>
<tr>
<td>LREE</td>
<td>Na(ppm)</td>
<td>158.41</td>
<td>158.41</td>
<td>87.05</td>
<td>174.35</td>
<td>112.14</td>
</tr>
<tr>
<td>MREE</td>
<td>Sm-Ho(ppm)</td>
<td>27</td>
</tr>
<tr>
<td>(La/Lu)n</td>
<td>0.58</td>
</tr>
<tr>
<td>La/Y</td>
<td>0.85</td>
</tr>
<tr>
<td>Eu/Eu*</td>
<td>0.82</td>
</tr>
<tr>
<td>Ce/Ce*</td>
<td>0.52</td>
</tr>
<tr>
<td>(La/Sm)n</td>
<td>0.36</td>
</tr>
<tr>
<td>(La/Yb)n</td>
<td>0.55</td>
</tr>
<tr>
<td>(Gd/Yb)n</td>
<td>1.29</td>
</tr>
<tr>
<td>K.I</td>
<td>0.8</td>
</tr>
</tbody>
</table>

شکل نمونه‌های A1-A15 از تابع میزان تغییرات موجود و ارتباط عناصر

شکل نمونه‌های A1-A15 از تابع میزان تغییرات موجود و ارتباط عناصر

شکل نمونه‌های A1-A15 از تابع میزان تغییرات موجود و ارتباط عناصر

شکل نمونه‌های A1-A15 از تابع میزان تغییرات موجود و ارتباط عناصر

شکل نمونه‌های A1-A15 از تابع میزان تغییرات موجود و ارتباط عناصر

شکل نمونه‌های A1-A15 از تابع میزان تغییرات موجود و ارتباط عناصر

شکل نمونه‌های A1-A15 از تابع میزان تغییرات موجود و ارتباط عناصر

شکل نمونه‌های A1-A15 از تابع میزان تغییرات موجود و ارتباط عناصر

شکل نمونه‌های A1-A15 از تابع میزان تغییرات موجود و ارتباط عناصر

شکل نمونه‌های A1-A15 از تابع میزان تغییرات موجود و ارتباط عناصر

شکل نمونه‌های A1-A15 از تابع میزان تغییرات موجود و ارتباط عناصر
آنها در ایپیدوت و مگنتیت به دلیل تغییر در مرحله اسکارن پسورونده است. بررسی‌های اندازه‌گیری شده نشان دهنده دمای تغییر کارتن در حدود 350–400 درجه سانتی‌گراد و دمای تغییر مگنتیت در حدود 400–450 درجه سانتی‌گراد است و در Cr, V, Ti, Ni, Zn, Mn, Mg و Gd, Tb, Dy, Ho, Er, Tm, Yb و Nd می‌باشد. (MREEs, Sm-Yb) نیز در HREEs (Er–Y) نمایش می‌دهد.

راست‌ال Eğرا، بررسی‌های اندازه‌گیری شده نشان دهنده دمای تغییر کارتن در حدود 350–400 درجه سانتی‌گراد و دمای تغییر مگنتیت در حدود 400–450 درجه سانتی‌گراد است و در Cr, V, Ti, Ni, Zn, Mn, Mg و Gd, Tb, Dy, Ho, Er, Tm, Yb و Nd می‌باشد. (MREEs, Sm-Yb) نمایش می‌دهد.

راست‌ال Eğرا، بررسی‌های اندازه‌گیری شده نشان دهنده دمای تغییر کارتن در حدود 350–400 درجه سانتی‌گراد و دمای تغییر مگنتیت در حدود 400–450 درجه سانتی‌گراد است و در Cr, V, Ti, Ni, Zn, Mn, Mg و Gd, Tb, Dy, Ho, Er, Tm, Yb و Nd می‌باشد. (MREEs, Sm-Yb) نمایش می‌دهد.
و با استفاده از مگنتیت، فلسبک در کاناسیات
ماگماتیک و اسکاریت، پیروی می‌کنند و این با نوع کاناسیات، خاستگاه اسکاریت‌ و خاستگاه ماگماتیسم فلسبک آن هم‌های
دارد.

به‌همچنین مایبی‌نیت Ce خاستگاه ماگماتیکی باشد، چهار نوع الگوی
پراکنده‌گی عناصر خاکی نادر در مگنتیت، پیشنهاد که اند[28] که مگنتیت‌های منطقه از الگوی دوم (الگوی عنی مرکزی)
در عناصر خاکی نادر سیک در ارتباط با پیدایش جدایی

جدول ۵ ارزیابی داده‌های آسیاب نیونهای A1 تا A15

<table>
<thead>
<tr>
<th>وسایل</th>
<th>SiO2</th>
<th>AI2O3</th>
<th>Fe2O3</th>
<th>MgO</th>
<th>Mno</th>
<th>CaO</th>
<th>Na2O</th>
<th>K2O</th>
<th>TiO2</th>
<th>TiO2*</th>
<th>P2O5</th>
<th>P2O5*</th>
<th>Al2O3</th>
<th>SiO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>60.2</td>
<td>14</td>
<td>18</td>
<td>1.8</td>
<td>1.8</td>
<td>4.3</td>
<td>1.6</td>
<td>1.4</td>
<td>1.3</td>
<td>12.95</td>
<td>0.3</td>
<td>0.59</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>28.3</td>
<td>59</td>
<td>48</td>
<td>2.3</td>
<td>2.9</td>
<td>3.1</td>
<td>0.7</td>
<td>0.4</td>
<td>0.35</td>
<td>7.4</td>
<td>0.28</td>
<td>0.23</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>55.8</td>
<td>13.3</td>
<td>11.9</td>
<td>3.3</td>
<td>3.1</td>
<td>3.2</td>
<td>0.7</td>
<td>0.4</td>
<td>0.49</td>
<td>13.3</td>
<td>0.23</td>
<td>0.23</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>35.7</td>
<td>12.9</td>
<td>6.8</td>
<td>5.5</td>
<td>5.0</td>
<td>4.4</td>
<td>1.3</td>
<td>1.1</td>
<td>5.0</td>
<td>1.4</td>
<td>0.1</td>
<td>0.1</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>55.7</td>
<td>12.7</td>
<td>5.3</td>
<td>7</td>
<td>6.7</td>
<td>3.2</td>
<td>0.7</td>
<td>0.4</td>
<td>0.59</td>
<td>13.3</td>
<td>0.23</td>
<td>0.23</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>35.7</td>
<td>12.7</td>
<td>5.3</td>
<td>7</td>
<td>6.7</td>
<td>3.2</td>
<td>0.7</td>
<td>0.4</td>
<td>0.59</td>
<td>13.3</td>
<td>0.23</td>
<td>0.23</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>80.2</td>
<td>12.7</td>
<td>5.3</td>
<td>7</td>
<td>6.7</td>
<td>3.2</td>
<td>0.7</td>
<td>0.4</td>
<td>0.59</td>
<td>13.3</td>
<td>0.23</td>
<td>0.23</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td>50.7</td>
<td>12.7</td>
<td>5.3</td>
<td>7</td>
<td>6.7</td>
<td>3.2</td>
<td>0.7</td>
<td>0.4</td>
<td>0.59</td>
<td>13.3</td>
<td>0.23</td>
<td>0.23</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>A9</td>
<td>50.7</td>
<td>12.7</td>
<td>5.3</td>
<td>7</td>
<td>6.7</td>
<td>3.2</td>
<td>0.7</td>
<td>0.4</td>
<td>0.59</td>
<td>13.3</td>
<td>0.23</td>
<td>0.23</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>A10</td>
<td>50.7</td>
<td>12.7</td>
<td>5.3</td>
<td>7</td>
<td>6.7</td>
<td>3.2</td>
<td>0.7</td>
<td>0.4</td>
<td>0.59</td>
<td>13.3</td>
<td>0.23</td>
<td>0.23</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>A11</td>
<td>50.7</td>
<td>12.7</td>
<td>5.3</td>
<td>7</td>
<td>6.7</td>
<td>3.2</td>
<td>0.7</td>
<td>0.4</td>
<td>0.59</td>
<td>13.3</td>
<td>0.23</td>
<td>0.23</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>A12</td>
<td>50.7</td>
<td>12.7</td>
<td>5.3</td>
<td>7</td>
<td>6.7</td>
<td>3.2</td>
<td>0.7</td>
<td>0.4</td>
<td>0.59</td>
<td>13.3</td>
<td>0.23</td>
<td>0.23</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>A13</td>
<td>50.7</td>
<td>12.7</td>
<td>5.3</td>
<td>7</td>
<td>6.7</td>
<td>3.2</td>
<td>0.7</td>
<td>0.4</td>
<td>0.59</td>
<td>13.3</td>
<td>0.23</td>
<td>0.23</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>A14</td>
<td>50.7</td>
<td>12.7</td>
<td>5.3</td>
<td>7</td>
<td>6.7</td>
<td>3.2</td>
<td>0.7</td>
<td>0.4</td>
<td>0.59</td>
<td>13.3</td>
<td>0.23</td>
<td>0.23</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>A15</td>
<td>50.7</td>
<td>12.7</td>
<td>5.3</td>
<td>7</td>
<td>6.7</td>
<td>3.2</td>
<td>0.7</td>
<td>0.4</td>
<td>0.59</td>
<td>13.3</td>
<td>0.23</td>
<td>0.23</td>
<td>4.3</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۶ نتایج آنالیز ICP-MS و میزان عناصر خاکی نادر در کانسار اسکارن باعثی

<table>
<thead>
<tr>
<th>Mineral</th>
<th>ppm</th>
<th>ICP-MS</th>
<th>MREE</th>
<th>HREE</th>
</tr>
</thead>
<tbody>
<tr>
<td>लाइटीट</td>
<td>लाइटीट</td>
<td>लाइटीट</td>
<td>लाइटीट</td>
<td>लाइटीट</td>
</tr>
<tr>
<td>फ्लागोपेट</td>
<td>फ्लागोपेट</td>
<td>फ्लागोपेट</td>
<td>फ्लागोपेट</td>
<td>फ्लागोपेट</td>
</tr>
</tbody>
</table>

شکل ۹ نمودارهای مربوط به کانی‌های اپیدوکت، سگنت، مگنتیت، اکتینولیت و فلکوپت

شکل ۱۰ فراوانی عناصر خاکی نادر در کانی‌ها (الف) بهبودی جه شده با کانی‌های اپیدوکت (ب) بهبودی جه شده با دیوریت میزبان.
برداشت
رود کلی تغییرات مینزی عناصر خاکی نادر کاهش در میکتین-های بوده که بدلیل وجود کانی ایپیدوت در بخش جنوبی از استک در میان گروه‌های بدلیلی از عناصر خاکی نادر را در بخش جنوب می‌کند و با به علت حمل عناصر خاکی نادر به وسیله‌های فلزات مانند کوارتز با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به علت جایگزینی Eu می‌تواند در با کرایدی با کرایدی و یا به دلیل خالص بودن میکتین‌هاست. ارتباط ندیم‌های Eu و MgO به عل...

[26] Spry PG., et al., "Discrimination of metamorphic and metasomatic processes at the
