Volume 28, Issue 1 (3-2020)                   www.ijcm.ir 2020, 28(1): 3-16 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khalilzadeh H, Alipour S, Abedini A. Investigation of adakitic feature and magmatic origin of mineralized monzonitic stock in the Niza area, northwest Iran. www.ijcm.ir 2020; 28 (1) :3-16
URL: http://ijcm.ir/article-1-1415-en.html
Abstract:   (2142 Views)
Niaz area is located at the Alborz-Azarbaijan magmatic zone in the northwest of Iran. All of the rock units in this area are composed of intermediate to acidic igneous rocks of Oligocene to Miocene age. Based on geochemical data, the mineralized monzonitic rocks in this area belong to high-K calc-alkaline and shoshonitic magma series, has a metalauminous to slightly peraluminous nature and belongs to the active continental margins and post-collision tectonic settings. Enrichment in LILE and LREE elements and depletion of HFSE and HREE elements are the main characteristics of these rocks. Geochemical features such as high SiO2 and Al2O3, low MgO, low content of Y (9.9 to 18.6 ppm) and Yb (0.83 to 1.53 ppm), high values of ​​(La /­Yb)N (23.43 to 64.82), high Sr content (mean ~ 719.74 ppm), and low content of HFSE elements indicate the adakite affinity of these rocks. In general, the geochemical properties of the samples are similar with the high-silica adakites (HSA). High ratios of Sr/Y and (La/Yb)N indicate the presence of amphibole and a small amount of garnet as stable phases in the source region of magma and it seems that the parent magma of studied adakite rocks is formed from the partial melting of the thickened lower continental crust.
Full-Text [PDF 107 kb]   (651 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Defant M.J., Drummond M.S., ״Derivation of some modern arc magmas by melting of young subducted lithosphere״, Nature 347 (1990) 662-665. [DOI:10.1038/347662a0]
2. [2] Castillo P. R., ״Adakite petrogenesis״, Lithos 134 (2012) 304-316. [DOI:10.1016/j.lithos.2011.09.013]
3. [3] Martin H., Smithies R.H., Rapp R.P., Moyen J.-F., Champion D.C., ״An overview of adakite, tonalite-trondhjemite-granodiorite (TTG) and sanukitoid: relationships and some implications for crustal evolution״, Lithos 79 (2005)1-24. [DOI:10.1016/j.lithos.2004.04.048]
4. [4] Richards JP., Kerrich R., ״Adakite-like rocks: Their diverse origins and questionable role in metallogenesis״, Economic Geology 102 (2007) 537-576. [DOI:10.2113/gsecongeo.102.4.537]
5. [5] Atherton M.P., Petford N., ״Generation of sodium-rich magmas from newly underplated basaltic crust״, Nature 362 (1993) 144-146. [DOI:10.1038/362144a0]
6. [6] Karsl O., Dokuz A., Uysal I., Aydın F., Kandemir R., Wijbrans J., ״Generation of the Early Cenozoic adakitic volcanism by partial melting of mafic lower crust, Eastern Turkey: ımplications for crustal thickening to delamination״, Lithos 114 (2010) 109-120. [DOI:10.1016/j.lithos.2009.08.003]
7. [7] Topuz G., Okay A.I., Altherr R., Schwar W.H., Siebel W., Zack T., Satır M., Sen C., ״Post-collisional adakite-like magmatism in the Ağvanis massif and implications for the evolution of the Eocene magmatismin the Eastern Pontides (NE Turkey)״, Lithos 125 (2011) 131-150. [DOI:10.1016/j.lithos.2011.02.003]
8. [8] Wang Q., Xu J.-F., Jian P., Bao Z.W., Zhao Z.H., Li C.F., Xiong X.L., Ma J.L., ״Petrogenesis of adakitic porphyries in an extension al tectonic setting, Dexing, South China: implications for the genesis of porphyry copper mineralization״, Journal of Petrology 47 (2006) 119-144. [DOI:10.1093/petrology/egi070]
9. [9] Hou M.L., Jiang Y.H., Jiang S.Y., Ling H.F., Zhao K.D., ״Contrasting origins of late Mesozoic adakitic granitoids from the northwestern Jiaodong Peninsula, east China: Implications for crustal thickening to delamination״, Geological Magazine, v. 144 (2007) 619-631. [DOI:10.1017/S0016756807003494]
10. [10] Jahangiri A., "Post-collisional Miocene adakitic volcanism in NW Iran: geochemical and geodynamic implications״, Journal of Asian Earth Science 30 (2007) 433-447. [DOI:10.1016/j.jseaes.2006.11.008]
11. [11] Jamali H., Mehrabi B., ״Relationships between arc maturity and Cu-Mo-Au porphyry and related epithermal mineralization at the Cenozoic Arasbaran magmatic belt״, Ore Geology Reviews 65 (2015) 481-501. [DOI:10.1016/j.oregeorev.2014.06.017]
12. [12] Omrani J., Agard P., Whitechurch H., Benoit M., Prouteau G., Jolivet L., ״Arc magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences״, Lithos 106 (2008) 380-398. [DOI:10.1016/j.lithos.2008.09.008]
13. [13] Delavari M., Amini S., Schmitt A. K., McKeegan K. D., Harrison T. M., ״U-Pb geochronology and geochemistry of Bibi-Maryam pluton, eastern Iran: implication for the late stage of the tectonic evolution of the Sistan Ocean״, Lithos 200-201 (2014) 197-211. [DOI:10.1016/j.lithos.2014.04.015]
14. [14] Asadi S., Moore F., Zarasvandi A., "Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano-plutonic belt, Kerman region, Iran: a review", Earth Science Review 138 (2014) 25-46. [DOI:10.1016/j.earscirev.2014.08.001]
15. [15] Ahmadian J., Sarjoughian F., Lentz D., Esna-Ashari A., Murata M., Ozawa H., "Eocene K-rich adakitic rocks in the Central Iran: Implications for evaluating its Cu-Au-Mo metallogenic potential", Ore Geology Review 72 (2016) 323-342. [DOI:10.1016/j.oregeorev.2015.07.017]
16. [16] Nabavi M.H., ״An Introduction to Geology in Iran״, Geological Survey of Iran, 56 (1976).
17. [17] Moritz R., Mederer J., Ovtcharova M., Spikings R., Selby D., Melkonyan R., Hovakimyan S., Tayan R., Ulianov A., Ramazanov V., "Jurassic to Tertiary metallogenic evolution of the southernmost Lesser Caucasus, Tethys belt", 12th the Society for Geology Applied to Mineral Deposits (SGA) Biennial Meeting, Uppsala, Sweden (2013).
18. [18] Ashrafi N., Jahangiri A., Hasebe N., Eby G.N., ״Petrology, geochemistry and geodynamic setting of Eocene-Oligocene alkaline intrusions from the Alborz-Azerbaijan magmatic belt, NW Iran״, Journal of Chemie der Erde, Volume 78 (2018) 432-461. [DOI:10.1016/j.chemer.2018.10.004]
19. [19] Jamali H., Dilek Y., Daliran F., Yaghubpur A., Mehrabi B., ״Metallogeny and tectonic evolution of the Cenozoic Ahar- Arasbaran volcanic belt, northern Iran״, International Geology Review, 53 (2010) 608-630. [DOI:10.1080/00206810903416323]
20. [20] NICICO, ״Final report on the exploration studies in Niaz copper mineralization (West Meshkinshahr, NW Iran)״, NICICO Internal report (2013).
21. [21] NICICO., ״Geological report and map of Niaz area; Scale, 1:1000״, NICICO Internal report (2006).
22. [22] Mahdavi M.A., Amini Fazl A., ״Geologic map of Ahar: Geological Survey of Iran, scale 1:100000״, 1 sheet (1989).
23. [23] Hassanpour S., Alirezaei S., Selby D., Sergeev S., ״SHRIMP zircon U-Pb and biotite and hornblende Ar-Ar geochronology of Sungun, Haftcheshmeh, Kighal, and Niaz porphyry Cu-Mo systems: evidence for an early Miocene porphyry-style mineralization in northwest Iran״, Int J Earth Sci (Geol Rundsch) (2015) 104:45-59. [DOI:10.1007/s00531-014-1071-0]
24. [24] De la Roche H., Leterrier J., Grandclaude P., Marchal M., ״A Classification of Volcanic and Plutonic Rocks Using R1R2 -Diagrams and Major Element Analysis-Its Relationships with Current Nomenclature״, Chemical Geology, 29 (1980) 183-210. [DOI:10.1016/0009-2541(80)90020-0]
25. [25] Peccerillo A., Taylor S. R., ״Geochemistry of Eocene calc-alkaline volcanic rocks in Turkey. «Contrib. Mineral. Petr.»״, 68 (1976) 63-81. [DOI:10.1007/BF00384745]
26. [26] Shand S. J., ״Eruptive Rocks. Their Genesis, Composition, Classification, and Their Relation to Ore-Deposits with a Chapter on Meteorite״, John Wiley & Sons, New York (1943).
27. [27] Chappell B.W., White A.J.R., ״Two contrasting granite types״, Pac. Geol. 8 (1974) 173e174.
28. [28] McDonough W. F., S. S. Sun., "The composition of the Earth", Chem. Geol., 120 (1995) 223-253. [DOI:10.1016/0009-2541(94)00140-4]
29. [29] Green T.H., "Experimental studies of trace-element partitioning applicable to igneous petrogenesis-Sedona 16 years later", Chem.Geol. 117 (1994) 1-36. [DOI:10.1016/0009-2541(94)90119-8]
30. [30] Boynton W.V., ״Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson, P. (Ed.), Rare Earth Element Geochemistry״, Elsevier, Amsterdam (1984), pp. 63-114. [DOI:10.1016/B978-0-444-42148-7.50008-3]
31. [31] Kampunzo A. B., Tombale A. R., Zhai M., Bagai Z., Majaule T., Modisi M. P., ״Major and trace element geochemistry of plutonic rocks from Francistown, NE Botswana: evidence for a Neoarchaean continental active margin in the Zimbabwe craton״, Lithos 71(2003) 431-460. [DOI:10.1016/S0024-4937(03)00125-7]
32. [32] Richards J.P., Spell T., Rameh E., Razique A., Fletcher T., "High Sr/Y Magmas Reflect Arc Maturity, High Magmatic Water Content, and Porphyry Cu ± Mo ± Au Potential: Examples from the Tethyan Arcs of Central and Eastern Iran and Western Pakistan", Economic Geology 107(2012). [DOI:10.2113/econgeo.107.2.295]
33. [33] Martin H., ״Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas״, Geology 14 (9) (1986) 753-756. https://doi.org/10.1130/0091-7613(1986)14<753:EOSAGG>2.0.CO;2 [DOI:10.1130/0091-7613(1986)142.0.CO;2]
34. [34] Pearce J. A., Harris N. B. W., Tindle A. J., "Trace element discrimination diagrams for the tectonic interpretation of granitic rocks", J. Petrol., 25 (1984) 956-83. [DOI:10.1093/petrology/25.4.956]
35. [35] Schandl E. S., Gorton MP., "Application of high field strength elements to discriminate tectonic setting in VMS environments", Economic Geology.97 (2002) 629-642. [DOI:10.2113/gsecongeo.97.3.629]
36. [36] Jiang Y.H., Ling H.F., Jiang S.Y., Fan H.H., Shen W.Z. & Ni P., ״Petrogenesis of a Late Jurassic Peraluminous Volcanic complex and its high-Mg, potassic, quenched enclaves at Xiangshan, Southeast China״, J. Petrology 46, 6. (2005) 1121-1154. [DOI:10.1093/petrology/egi012]
37. [37] Wang Q., Wyman D. A., Xu J., Jian P., Zhao Z., Li C., Xu W., Ma J., He B., ״Early Cretaceous adakitic granites in the northern Dabie complex, Central China: implications for partial melting and delamination of thickened lower crust״, Geochimica et Cosmochimica Acta 71(2007) 2609-2636. [DOI:10.1016/j.gca.2007.03.008]
38. [38] Hou Z. Q., Gao Y. F., Qu X. M., Rui Z. Y., Mo X. X., ״Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet״, Earth and Planetary Science Letter 220 (2004) 139-155. [DOI:10.1016/S0012-821X(04)00007-X]
39. [39] Rudnick R. L., Fountain D. M., ״Nature and composition of the continental crust: a lower crustal perspective״, Rev. Geophys. 33 (2017) 267-309. [DOI:10.1029/95RG01302]
40. [40] Hofmann A.W., WhiteW. M., ״Ba, Rb, and Cs in the Earth's mantle״, Z. Naturforsch. 38 (1983) 256-266. [DOI:10.1515/zna-1983-0225]
41. [41] Wang Q., Wyman D. A., Xu J., Jian P., Zhao Z., Li C., Xu W., Ma J., He B., ״Early Cretaceous adakitic granites in the northern Dabie complex, Central China: implications for partial melting and delamination of thickened lower crust״, Geochimica et Cosmochimica Acta 71(2007) 2609-2636. [DOI:10.1016/j.gca.2007.03.008]
42. [42] Wang Q., Xu J.F., Jian P., Bao Z.W., Zhao Z.H., Li C.F., Xiong X.L., Ma J.L., ״Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization״, Journal of Petrology, v. 47 (2006) p. 119-144. [DOI:10.1093/petrology/egi070]
43. [43] Rapp R.P., Watson E.B., Miller C.F., ״Partial melting of amphibolite, eclogite and the origin of Archaean trondhjemites and tonalities״, Precambrian Research 51(1991) 1-25. [DOI:10.1016/0301-9268(91)90092-O]
44. [44] Ge X., Li X., Chen Z., Li W., ״Geochemistry and petrogenesis of Jurassic high Sr/Y low granitoids in eastern China: constrains on crustal thickness״, Chinese Science Bulletin 47 (2002) 962-980. [DOI:10.1360/02tb9216]
45. [45] Davidson J., Turner S., Handley H., Macpherson C., Dosseto A.,"Amphibole "sponge" in arc crust? ", Geology 35 (2007) 787-790.. [DOI:10.1130/G23637A.1]
46. ‌[46] Kay S.M., Mpodozis C., "Central Andes ore deposits linked to evolving shallow subduction systems and thickening crust", GSA TODAY (Geol Soc Am) 11(2001) 4-9. https://doi.org/10.1130/1052-5173(2001)011<0004:CAODLT>2.0.CO;2 [DOI:10.1130/1052-5173(2001)0112.0.CO;2]
47. [47] Atherton M. P., Petford N., ״Generation of sodium-rich magmas from newly underplated basaltic crust״, Nature, 362 (1993) 144-146. [DOI:10.1038/362144a0]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb