بررسی‌های زئو‌شیمیایی، کانی‌شناسی و کانی‌سازی سولفیدی در رگه‌های کووارت جنوب مشهد

نام‌زینگ گرمایی: خسرو ابراهیمی، علی‌رضا منظومی و سید مسعود همام

1- گروه زمین‌شناسی، دانشکده علوم دانشگاه فردوسی مشهد
2- گروه زمین‌شناسی دانشگاه پیام نور تهران
(دریافت مقاله: 19/11/93، نسخه نهایی: 15/9/94)

چکیده: منطقه‌ی شکل‌گیری در جنوب مشهد (شمال شرق ایران) و در منطقه‌ی ساخترین بیابان قرار دارد. منطقه دسترسی دگرگونی ناحیه‌ای شد و سنجیده‌ها دگرگون (اسلیب و فلیت) بخش بزرگی از گستره‌ی مورد بررسی را پوشانده‌اند. واحدهای اسلیب، فلیت، ماسه سنگ، و آهک دگرگون شده با سی تریس و نگلورا به سی تریاس و کربن قسنی و در نتیجه گست سبک بست شاندند.

رخمن‌داند. کانی‌سازی در منطقه به صورت رگه‌ای در راستای N65° E و N50° W یا شیب 75°SW با نرخ 4.2ppm N65° E و N50° W است. کانی‌های اولیه شامل کوارت، پیریت، کالکوپیریت، کامی، اورپیپنت و رالگار بوده و کانی‌های تانوی از کوارت، اورپیپنت، گوئریت، نکونده و کالکوپیریت تشکیل شده‌اند. نمونه‌برداری زئو‌شیمیایی به روش ابزارهای پیشرفته و تجهیزهای عالی از عناصر و مناطق و صنایع در منطقه‌های کانون تحقیق کالکوپیریت، رالگار، پیریت، کامی و آرسانه مسابه می‌شوند. به همچنین برخی از نتایج تجزیه‌های زئو‌شیمیایی انرژی شده روز نمونه‌های شناسی و تحلیل قلیمی، میزان طلا 4.2ppm، نرخ نمی‌رسد.

واژه‌های کلیدی: زئو‌شیمیایی، کانی‌سازی، زئو‌شیمیایی، گسل سنگ، پیام نور، شیپر، جنوب مشهد.

مقدمه
منطقه‌ی برخورداری زئو‌شیمیایی در فاصله‌ی 14 کیلومتری جنوب غربی مشهد و در گستره‌ی طول شرقی 34° غربی و شمالی 59° 30 دقیقه گرفته است (شکل 1). این منطقه در شمال شرق ایران و در ساختار بیابان قرار دارد. کانی‌سازی در دو رگه‌ی شمالی و جنوبی رخ داده است. در رگه‌ی شمالی با تشکیل جنوبی کانی اورپیپنت، رالگار، پیریت و کوارتی جنوبی شامل مجموعه‌ی کالکوپیریت، پیریت است. کانی کوارتی به عناوین پیام‌کانی لمان، کالکوپیریت، پیریت و کوارتی حاصل از هوازدی کاناسان در منطقه‌ی مورد بررسی آن‌ها است.

khebrahimi@ferdowsi.um.ac.ir
توجه نشان دهنده زمین شناسی، کالی سازی و درگسای گستره براساس بررسی‌های دورسنجی و پیمانه زمینی، تهیه شد. سپس پی‌جویی‌های زئوشیمیایی رسوایی آب‌های آیراهامی، کالی سگنین و خرده سگنی و تهیه نشان‌های باعث نتایج متفاوت و تعیین نقاط درای پی‌جویی با مقدار 1/0000 در گستره مورد نظر انجام شد. در این پژوهش به منظور بررسی اثرهای زئوشیمیایی و کالی سازی و ... Au, Ag, Cu, Pb, Zn, Fe و ...
زمین شناسی
براساس بررسی‌های صحرایی و آزمایشگاهی، واحدهای سنگی در منطقه‌ی بینالود را می‌توان به سه گروه اصلی

![Geological map of Shagird area (South of Mashhad)](attachment:image)

Legend
- Fault
- Mes: مس
- Mas: ماس
- PTCS: پتیس
- Study Area: مطالعه‌ای

Symbols
- Natural Recluse
- Metamorphic
- Metamorphic Schist
- Marble & gyp
- Marl & gyp
- Field channel
- Stream
- Dirt Road

![Geological diagram of Shagird area](attachment:image)
کانی سازی
کانی سازی در منطقه‌ی پی‌جویی به‌صورت رگ‌های درون واحدهای دگرگون با دانه‌های پیشین بقایای هستند و فیلیت دیده می‌شود. روند کلی رگ‌های N65E و N50W دارای شیب 75 درجه است. این رگ‌ها بیشتر در مرکز گستره‌ی پی‌جویی شده‌اند. رگ‌های قدمی و آمار محدود نیز در مرکز منطقه، در محل منطقه‌ی گوسان و در محل رگ‌های همراه با کانی سازی مشاهده می‌شوند. براساس بررسی‌های صحرایی و آزمایش‌گاهی رگ‌های کوارتز موجود در منطقه‌ی پی‌جویی شکل‌گیری را می‌توان به دو نسل تقسیم کرد. نسل اول: رگ‌هایی که هم‌رستا با شیستوزیته سیاه میزان بوده‌اند. نسل دوم: رگ‌هایی که شیستوزیته سیاه میزانی را قطع کرده‌اند.
کانی سازی در منطقه شلفدر را می‌توان به دو مجموعه زیر ردیابی کرد. گروه اول کانی‌های اولیه جنوبی و وابسته به رگ و داخل تووان قدمی است و رگ‌های در مرکز منطقه (شمال) است. گروه دوم کانی‌های انسانی‌زا به ترتیب به شرح زیر اند:

شکل ۲ نقشه دگرگونی و کانی‌سازی گستره‌ی اکتشافی شلفدر.

تحلیل بررسی‌های زئو‌شیمیایی، کانی‌شناسی و کانی‌سازی سولفیدی در...

<table>
<thead>
<tr>
<th>مایع</th>
<th>مرحله سولفیدی اصلی</th>
<th>مرحله سولفیدی اضافی</th>
</tr>
</thead>
<tbody>
<tr>
<td>سنگ گردو</td>
<td>Stage 1</td>
<td>Stage 2</td>
</tr>
<tr>
<td>سنگ گرمی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>سنگ الیور</td>
<td></td>
<td></td>
</tr>
<tr>
<td>سنگ پیتون</td>
<td></td>
<td></td>
</tr>
<tr>
<td>سنگ ماهی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>سنگ قیف</td>
<td></td>
<td></td>
</tr>
<tr>
<td>سنگ سرخ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>سنگ خاکستری</td>
<td></td>
<td></td>
</tr>
<tr>
<td>سنگ قهوه‌ای</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل ۳: دبیل شکل‌های در گستره کشف‌شده

شکل ۴: نمودار توزیع درگاه‌های جنوبی (محورهای جغرافیایی ۳۴° ۶۷' ۴۷″ و ۶° ۴۴' ۲۸″) و موقعیت نمونه‌های اخذ.

نمونه‌های KKH-VS14/18 و اکسیدهای آهین (هاماتیت) در نمونه‌های XPL و نمونه‌های KKH-VS18/18 در حالت تبدیل به گردوهای کانی‌شناختی در XPL کانی‌های تبدیل به گوئیت و سروریت (باً دیگ) در XPL تبدیل می‌شوند.

شکل ۵: نمودار توزیع درگاه‌های جنوبی (محورهای جغرافیایی ۳۴° ۶۷' ۴۷″ و ۶° ۴۴' ۲۸″) و موقعیت نمونه‌های اخذ.

نمونه‌های KKH-VS14/18 و اکسیدهای آهین (هاماتیت) در نمونه‌های XPL و نمونه‌های KKH-VS18/18 در حالت تبدیل به گردوهای کانی‌شناختی در XPL کانی‌های تبدیل به گوئیت و سروریت (باً دیگ) در XPL تبدیل می‌شوند.
بررسی های کناری بافتی
تولید قدریمی
کانه‌های بررسی شده در اکثر مقاطع صباعی عبارتند از کالکوپیت، گالن، پیریت، هماتیت، مگنتیت، کوولینت، گوتینت و ممالکت. گالن و کالکوپیت را نیز به عنوان کانه‌های سولفیدی اصلی در تولید قدریمی معرفی کرد. حضور کانی ممالکت در بخشی از نمونه‌های صباعی، حاصل فرازده‌های هزاردهمی کانه‌های دومین مس (کالکوپیت) هستند که به صورت پرکشند فضای خالی و پراکنده دیده می‌شوند. در بررسی کانی‌های زمینه‌ای از کالکوپیت با ضخامت حدود

شکل 6 رخ‌مونت رگه‌های شمالي: دید به سمت جنوب، موقعیت رگه شمالي (مختصات جغرافیایی ۲۳ ۳۶ ۵۹ X: ۱۲ ۳۶ ۵۹ Y: ۲۳ ۳۶ ۵۹ و نمونه‌های مورد بررسی الف: نمونه KKH-VN1 کانه‌های تولید، و نمونه KKH-VN4 اکسیدهای آهن و کوارتز در مقاطع بلور صباعی هماتیت (اسبیکولاریت) با صورت سوزنی و نیهای.**

زوئشیمی

به منظور پی‌چوپی‌های زئوشیمیایی، 29 نمونه رسوپ رودخانه‌ای، 16 نمونه کانی سنگین، و 11 نمونه خرده سنگی برداشت.

جدول 1 نتایج تجزیه‌ی زئوشیمیایی نمونه‌های خرده سنگی به روش عبارت‌نگی آذری و عنصر طلا بر حسب ppm ICP-MS و عناصر دیگر بر ppb محاسبه شده است.

<table>
<thead>
<tr>
<th>No Sample</th>
<th>Y</th>
<th>X</th>
<th>Au (ppb)</th>
<th>Ag (ppm)</th>
<th>Cu (ppm)</th>
<th>Fe (ppm)</th>
<th>Zn (ppm)</th>
<th>Pb (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>92-M1</td>
<td></td>
<td></td>
<td>71688.1</td>
<td>39.9</td>
<td>9.8</td>
<td>41192</td>
<td>2999</td>
<td>1928</td>
</tr>
<tr>
<td>92-M2</td>
<td></td>
<td></td>
<td>71485.1</td>
<td>18</td>
<td>0.38</td>
<td>1500</td>
<td>101499</td>
<td>759</td>
</tr>
<tr>
<td>92-M3</td>
<td></td>
<td></td>
<td>71444.1</td>
<td>4444</td>
<td>0.38</td>
<td>1935</td>
<td>51165</td>
<td>1319</td>
</tr>
<tr>
<td>92-M4</td>
<td></td>
<td></td>
<td>71438.1</td>
<td>12</td>
<td>0.7</td>
<td>98</td>
<td>9439</td>
<td>88</td>
</tr>
<tr>
<td>92-M5</td>
<td></td>
<td></td>
<td>71449.1</td>
<td>3</td>
<td>0.3</td>
<td>483</td>
<td>184</td>
<td>9</td>
</tr>
<tr>
<td>92-M6</td>
<td></td>
<td></td>
<td>71585.1</td>
<td>4</td>
<td>248</td>
<td>4464</td>
<td>14241</td>
<td>2825</td>
</tr>
<tr>
<td>92-M7</td>
<td></td>
<td></td>
<td>71585.1</td>
<td>7</td>
<td>335</td>
<td>4439</td>
<td>14241</td>
<td>2825</td>
</tr>
<tr>
<td>4-M1</td>
<td></td>
<td></td>
<td>71445.1</td>
<td>19</td>
<td>0.39</td>
<td>49</td>
<td>12305</td>
<td>346</td>
</tr>
<tr>
<td>4-M2</td>
<td></td>
<td></td>
<td>71435.1</td>
<td>10</td>
<td>0.19</td>
<td>123</td>
<td>12305</td>
<td>346</td>
</tr>
<tr>
<td>142-M1</td>
<td></td>
<td></td>
<td>71433.1</td>
<td>14</td>
<td>0.17</td>
<td>25</td>
<td>24315</td>
<td>44</td>
</tr>
<tr>
<td>142-M2</td>
<td></td>
<td></td>
<td>71433.1</td>
<td>21</td>
<td>0.7</td>
<td>21</td>
<td>24315</td>
<td>44</td>
</tr>
<tr>
<td>KHH-VS</td>
<td></td>
<td></td>
<td>71433.1</td>
<td>23</td>
<td>0.12</td>
<td>34</td>
<td>24315</td>
<td>44</td>
</tr>
</tbody>
</table>
جدول ۲ ادامه نتایج آنالیز زئوپتیمیاپی رسوب رودخانه به روش عیانسنجی آدی و عنصر طلا بر حسب ICP-MS.

<table>
<thead>
<tr>
<th>Sample No</th>
<th>X</th>
<th>Y</th>
<th>Au (ppb)</th>
<th>Ag (ppm)</th>
<th>Cu (ppm)</th>
<th>Fe (ppm)</th>
<th>Pb (ppm)</th>
<th>Zn (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
<td>0.5</td>
<td>0.001</td>
<td>0.002</td>
<td>0.004</td>
<td>0.003</td>
<td>0.001</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
<td>0.5</td>
<td>0.002</td>
<td>0.003</td>
<td>0.005</td>
<td>0.004</td>
<td>0.002</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>0.5</td>
<td>0.003</td>
<td>0.004</td>
<td>0.006</td>
<td>0.005</td>
<td>0.003</td>
<td>0.000</td>
</tr>
</tbody>
</table>

جدول 1 نتایج آنالیز زئوپتیمیاپی رسوب رودخانه به روش عیانسنجی آدی و عنصر طلا بر حسب ICP-MS.

<table>
<thead>
<tr>
<th>Sample No</th>
<th>X</th>
<th>Y</th>
<th>Au (ppb)</th>
<th>Ag (ppm)</th>
<th>Cu (ppm)</th>
<th>Fe (ppm)</th>
<th>Pb (ppm)</th>
<th>Zn (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
<td>0.5</td>
<td>0.001</td>
<td>0.002</td>
<td>0.004</td>
<td>0.003</td>
<td>0.001</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
<td>0.5</td>
<td>0.002</td>
<td>0.003</td>
<td>0.005</td>
<td>0.004</td>
<td>0.002</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>0.5</td>
<td>0.003</td>
<td>0.004</td>
<td>0.006</td>
<td>0.005</td>
<td>0.003</td>
<td>0.000</td>
</tr>
</tbody>
</table>

ppm
زئوشیمی روسرپ و کانی سنگی

هر نمونه زئوشیمی‌ای روسرپ رودخانه‌ای ۱۰۰ تا ۲۰۰ کم جهت زیر ۸۰ مشکل کرده و در کیسه‌های پلاستیکی پذیرش و کدگذاری شدند. هر نمونه کانی سنگی از چند محل که احتمال تمکن کانی سنگی در آن پیشتر بود جمع آوری شدند و در این مکان‌ها ذرات سن و ماسه پیشتر حضور داشتند. و نمونه پس از شهرنک حب ۷ لیتر از جهت زیر ۲۰ مش حاصل گردید. برای کاهش وزن نمونه، سه‌تای حمل و نقل و شستشو، هر نمونه در محل کردن سنگ‌های آبراهی‌ای به آزمایشگاه شرکت زرازما در تهران ارسال شدند تا پس از
مقدار مربوط به آب‌های جنوبی بوته است (شکل-8).

بسیاری از مشاهدات شدن گستره‌های در این بررسی که با تلفیق گستره‌های نفره (Ag) مقدار نفره از 0.22 ppm تا 17 ppm، را نشان می‌داد (شکل-8). بیشترین مقدار نفره وابسته به نمونه شماره 25 و کمترین میزان از آب‌های جنوبی گستره‌های Nم‌های شماره 146-170-188 اندازه‌گیری شد.

بسیاری از مقدار نفره سرب (Pb) 0.25 ppm است (شکل-8). بیشترین مقدار آن مربوط به نمونه شماره 146 و کمترین آن مربوط به نمونه ای از شماره 132 و 134 این مقدار است (شکل-8).

روی (Zn) مقدار روز به بود بیشترین مقدار روز از نمونه‌ی شماره 2 در آب‌های جنوبی گستره‌ای داده شده بود (شکل-8).

فرآیند اتم از (Fe) آهن در نقاط مختلف به‌همچنین بالایی را نشان می‌داد.

جدول ۴ نتایج بررسی کلیه کاهش سطحی

<table>
<thead>
<tr>
<th>کاهش سطحی (ppm)</th>
<th>Y</th>
<th>X</th>
<th>شماره نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>40۱۹۴۰</td>
<td>MF-155-H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40۰۰۹۰</td>
<td>MF-157-H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41۰۰۶۰</td>
<td>MF-150-H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41۰۰۲۰</td>
<td>MF-149-H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41۰۰۱۵</td>
<td>MF-127-H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41۰۰۱۵</td>
<td>MF-151-H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40۱۰۱۵</td>
<td>MF-138-H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41۰۰۴۰</td>
<td>MF-167-H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41۰۰۳۰</td>
<td>MF-86-H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40۰۰۲۰</td>
<td>MF-135-H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40۰۰۲۰</td>
<td>MF-19-H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40۰۰۵۱</td>
<td>MF-8-H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41۰۰۴۰</td>
<td>MF-74-H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40۰۰۸۹</td>
<td>MF-161-H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41۰۰۸۸</td>
<td>MF-15-H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41۰۰۸۰</td>
<td>MF-168-H</td>
</tr>
</tbody>
</table>
زئوشیمی خرده سنگی براساس شواهد صحرایی و نتایج بدست‌آمده از تجزیه‌
نمونه‌های رسوب رودخانه‌ای و کانی سنگی، نقاط مستعد
کانی‌سازی شناسایی شدند و پس از پیمایی صحرایی و
شناسایی دقیق مکان‌های کانی‌سازی 16 نمونه‌ی خرده سنگی
با وزن حدود 3 کیلوگرم از رگ‌ها و نقاط کانی‌سازی برداشت
شدند. نمونه‌ها برای آماده‌سازی و تجزیه به روش
عیارسنجی به شرکت زرآژنا تهیه ارسال شدند. نتایج پرسی-
های زئوشیمی‌ای خرده سنگی به سرخ زیر انتگرال می‌شود:

طلای (Au) مقدار طلا از 42 تا 4424 ppm متری‌بود. بیشترین
مقدار این عنصر در شمال منطقه و در رگ‌های شمالی در غرب
مزه‌های کانی خاوتین وجود دارد (شکل 9-ب). نفوذ
مقدار نقره از 17 تا 61 ppm متری‌بود. بیشترین
مقدار این عنصر در جنوب منطقه و در رگ‌های شمالی
بخش غرب مزه‌های کانی خاوتین مشاهده شد. بیشترین تمرکز
این عنصر در رگ‌های کانی‌سازی داخل تونل قدیمی (منطقه‌های
گوسان) وجود داشت (شکل 9-ب).

شکل 9 نقشه زئوشیمی‌ای خرده سنگی- درگران گسترده (پ)‌جویی شلدر، برای عناصر: (الف) طلا (ب) نقره، (ب) روس، (ب) نیکل، (ب) آربراسی.
کاتی گانل قادر است علاوه بر سه‌گانه اصلی خود (Pb, S, Bi) کاتی گانل قادر است علاوه بر سه‌گانه اصلی خود (Pb, S, Bi) عناصر دیگری همچنین نفوذ، انتوریامین، بیسموت، آرسنیک، روی، کادمیوم، سلنیوم و سر راه‌ی به‌صورت جنگی در خود جای دهد. شکل دیگر تمرکز نفوذ در گانل به‌صورت حضور در کاتی گانل رشد است. مقدار بیسموت و انتوریامین در گانل می‌تواند شکل تعیین شود. شکل تعیین شکل کاتی گانل باشد. تولید تولید کاتی گانل قادر است روی در ساختار بوری شکل تعیین شکل کاتی گانل باشد. تولید تولید کاتی گانل قادر است روی در ساختار بوری گانل جانشین شود. اما این جانشینی شدیداً با حضور

جدول 5 نتایج تجزیه جذب این کاتی گانل کاتی گانل بی‌جیوهی شکل در مقایسه با کانترهای مختلف (1984: 1: کاتی اسرب و روی

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi (ppm)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Sb (ppm)</td>
<td>400</td>
</tr>
<tr>
<td>Ag (ppm)</td>
<td>2900</td>
</tr>
</tbody>
</table>

VA1, VA2, VA3.1, VA9.1
برداشت
گسترده‌ی بررسی در جنوب مشهد قرار دارد. این منطقه در شمال شرق ایران و در منطقه‌ی ساختمانی ناحیه قرار گرفته است. در گستره‌ی مورد بررسی، واحدهای سنگی شامل اسپت، قلبیت، ماسه سنگ، دگرگون شده، اکن و دگرگون شده با سن تریناس و واحد گنگلورا با سن زوراسیک در راستای کسل سنگ بست شاپوری است. کلیاسازی در منطقه به صورت رگه‌هایی در راستای SW 75° و N65°E و N50°W شیب داده است.

در ناحیه کانی سنگین، کانی‌هایی از قبیل اورپیمنت، راگیار، طلا پریت، کاسیتراپ و سنگی مشاهده شدند. براساس نتایج حاصل از توحیم‌های نوری و ویدئو و مکانیکی و بیشترین بهره‌برداری در منطقه مشاهده می‌شود. در ناحیه کانی‌های شیشه‌ای، Ag, Cu, Pb, Zn, Fe، و Cu، Cu，

[10] نبوي م. ح، انتخابی دیباچه ای بر زمان شناسی ایران، انتشارات سازمان زمین شناسی کشور (1352) ص 119.

