بررسی خواص کانی شناسی و صنعتی ذخیره‌گاه اصفهان معدن چاه‌شور ورزنه،
جنوبشرق اصفهان

محنآز خدامی، افسانه کمالی شرودانی

گسیل ایجاد می‌شود. کانولوپت در پهن‌های دگرگانی کالس‌های فرز دگرانی نیز تشکیل می‌شود [1] و می‌تواند راهنمای مفید برای پی چرایی این کانس‌ها باشد [23]. حاصل دگرانی همیشه کانسی تشکیل دهدنی سنگ می‌تواند به کانسی رست، رسی، کورزت و همایند دگرانش شود [4]. رس‌های کانولوپتی با توجه به خواص کانی‌شناسی و فیزیوکیمیایی در ضرعت اثراتی، چنین کسانی را نگ‌ساژن، پلاستیک، استکاف، جنگل، به‌چنین، صنعت نفت و دریگذاری کاربرد دارند [4-6]. که حدود ۲۲ مصرف جهانی آن در ضعف سرامیک است [7]. از آنجا که کانی‌شناسی اصلی سنگ‌های منطقه مورد برسی، قلدیس، است از اثر دگرانی به طور نسبی اکسیده‌های سدیم و پتاسیم خارج و سیلیس و آکسیدهای تصور می‌برد که مانند و به تدریج ایلیه، مونت مورولونیت

مقدمه

در گستره‌های مورد بررسی در ۱۵۰ کیلومتری جنوبشرق اصفهان و ناخب، سنگ‌های آتش‌نشانی برون‌های صنعتی و تولیدی به‌عنوان یکی از منابع اصلی خاک‌های کانولوپتی به‌شماره بختیاری در منطقه می‌باشد. از گروه‌های اصلی کانولوپتی بیشتر کانولوپتی و در درجه بی‌دیک، ناکینت و هالوژنت است که به ذخیره‌های گیاهی، حمل، شد و یا دیابتی تقسیم‌بندی می‌شود. ذخیره گیاهی تحت تأثیر محلول‌های گیاهی اغلب از بروی سنگ‌های جاگ کانولوپتی، آلوپتی‌پار می‌باشد و پتاسیم خارج و سیلیس و آکسیدهای میکا و حتی شیشه‌های استخوانی و بیشتر در به‌های

خودami_m@yahoo.com
شکل 1 موقعیت منطقه در نقشه زمین‌شناسی ایران [۱۵] و نقشه زمین‌شناسی منطقه ساده شده از نقشه ۱۲۵۵۰۰۰۰ ناپی‌ل [۱۶]
روش بررسی

پس از بررسی تصحیح و اصلاح نهایی، نمونه‌های یافته در محله‌ای ترکیب شده، شده یا بدست آدن نمونه بحران‌زدایی می‌شود. این نمونه‌ها می‌توانند به‌عنوان نمونه‌های تولید دیگر استفاده شوند. در این مورد، نمونه‌های تولید شده به‌عنوان نمونه‌های تولید دیگر استفاده می‌شوند.

بررسی خواص کانال‌های و صنعتی ذخیره‌خانه‌های خاکری معمول

جلد 23 شماره 41394

فرشته‌ها، ساختار و خواص ذخیره‌خانه‌های خاکری

در اینجا، با توجه به مطالعات مختلفی که در این زمینه انجام شده‌اند، نمونه‌های تولید شده به‌عنوان نمونه‌های تولید دیگر استفاده می‌شوند. در این مورد، نمونه‌های تولید شده به‌عنوان نمونه‌های تولید دیگر استفاده می‌شوند.

در اینجا، با توجه به مطالعات مختلفی که در این زمینه انجام شده‌اند، نمونه‌های تولید شده به‌عنوان نمونه‌های تولید دیگر استفاده می‌شوند. در این مورد، نمونه‌های تولید شده به‌عنوان نمونه‌های تولید دیگر استفاده می‌شوند.
سپیلیسیم، آلومینیوم و منیزم با دیگر کانی‌ها، اکثر و تعداد سفیدات داخلی بلو و محتوانی اب کالی نگین منطقه که باعث تفاوت‌هایی در سرعت‌های فیزیکی رسوی می‌شود. کالی‌های رسی از نظر آبرسانی تجهیز و مقاومت گرمایی متفاوتند و در نتیجه کاربردهای آن‌ها در صنعت نیز با هم تفاوت دارد. کالی‌های رسی سازنده اصلی نهشته‌های رسوی مانند شیل و گلسست هستند، ولی اغلب از اثر هوازدگی و درگرانی و تغییرات شرایط فیزیک‌شیمیایی مواد ماده مانند فلدسپات‌ها، میکاها، شیشه‌های آشفشانی و برخی کالی‌های اهن منیزی‌دار به وجود می‌آیند.

در ان باعث رنگ‌دانه سرخ در فرآورده‌های سرامیکی در دمای بالا (900 درجه سانتی‌گراد) می‌شود که آهن به‌صورت همایش آزاد می‌شود [A]. مونومورفیک نیز به‌طور وضوح آهن در ساختار همین تأثیر را می‌گذارد اما از طرفی باعث افزایش مقاومت خام و موسمانی می‌شود [A]. کاتلونیت با فرمول Al2(Si4O10)(OH)8 فرمول سیلیکات صفحه‌ای است. ساختار صفحه‌ای وجود لایه‌های آبی‌دار در کالی‌های رسی باعث ایجاد خاصیت بالستیسیته در آن‌ها شده و در دمای بالا آب خورد را از دست می‌دهند و به مواد نسوز تبدیل می‌شوند [42]. ترکیب شیمیایی رس‌ها به‌خاطر جانشینی کستره‌ای

شکل 2: تصاویر میکروسکوپی سنگ‌های منطقه‌ای جادوی ورژن XPL (الف) پلازوکلاز گزاره شده به سرپسیت در آنتزیت، پهنای میدان دید 180 میلی متر؛ (ب) پلازوکلاز در زمین‌های شیشه‌دار گزاره شده در آنتزیت، پهنای میدان دید 147 میلی متر (ب) پلازوکلاز در شیشه‌های بلو و بلوهای زیب پلازوکلاز با بلو دو لوله‌ای در آنتزیت، پهنای میدان دید 97 میلی متر (ب) سوئید در آنتزیت، پهنای میدان دید 180 میلی متر (ب) پلازوکلاز در خرد شده کوارتز و فلدسپات‌های سنگ‌های شیشه‌دار در نطفه پهنای میدان دید 45 میلی متر، (ق) فلکر سنگ‌های فلدسپات‌های سنگی پهنای میدان دید 45 میلی متر، (د) زره‌های مهره‌دار و اکسیده‌اند، پهنای میدان دید 480 میلی متر، (کوارتز) پلازوکلاز، فلدسپات بتانیسم (Amp)، آمبیول (Amp)، ساندین (Sa)، کاففل (Kfs)، طبیعت (علاقه اختری از [16])
اکسید آلومینیوم در نمونه‌هایی که دستخوش دکسترین شدیدتری شده‌اند آفریش می‌باشد، افزایش میزان Na2O باعث کاهش چسبندگی، افزایش گرانی و تغییر شکل در فرآورده‌های سرامیکی می‌شود. از همین دیگر اکسید Na2O، K2O، CaO، MgO، SiO2، TiO2، Al2O3 و موارد دیگر بدن‌های سرامیکی استفاده می‌شود. این اکسید میزان‌ها، H2O، K2O و Na2O در فرآورده‌های سرامیکی به‌طور مداوم و متغیر در نتایج آنالیزهای XRD و نیز مشاهدات سنج تجاری، وجود درصد قابل توجهی از نسبت‌های در نمونه‌های قابل پیش‌بینی است. مقدار مانند مقدار Na2O نیز مشاهده شده است. این مقدار میزان پتاسیم از نظر فلدسپات‌پتاسیم و ایالیت از نظر کلی هنوز ادامه دارد. این مقدار میزان K2O و Na2O در فرآورده‌های سرامیکی به‌طور متغیر و متغیر در نتایج آنالیزهای XRD و نیز مشاهدات سنج تجاری، وجود درصد قابل توجهی از نسبت‌های در نمونه‌های قابل پیش‌بینی است. مقدار مانند مقدار Na2O نیز مشاهده شده است. این مقدار میزان پتاسیم از نظر فلدسپات‌پتاسیم و ایالیت از نظر کلی هنوز ادامه دارد. این مقدار میزان K2O و Na2O در فرآورده‌های سرامیکی به‌طور متغیر و متغیر در نتایج آنالیزهای XRD و نیز مشاهدات سنج تجاری، وجود درصد قابل توجهی از نسبت‌های در نمونه‌های قابل پیش‌بینی است.

نتایج آنالیزهای XRF نشان می‌دهند که مقدار میزان SiO2، Al2O3 و MgO در ذخیره‌های معدنی 11/55، 12/50 و 13/55 در نمونه‌های 1، 2 و 3 بالاست. این مقدار باید با وسایل مانند میزان‌ها در نمونه‌های 1، 2 و 3 بالاست. این مقدار باید با وسایل مانند میزان‌ها در نمونه‌های 1، 2 و 3 بالاست.

نتایج آنالیزهای XRF نشان می‌دهند که مقدار میزان SiO2، Al2O3 و MgO در ذخیره‌های معدنی 11/55، 12/50 و 13/55 در نمونه‌های 1، 2 و 3 بالاست. این مقدار باید با وسایل مانند میزان‌ها در نمونه‌های 1، 2 و 3 بالاست. این مقدار باید با وسایل مانند میزان‌ها در نمونه‌های 1، 2 و 3 بالاست.

نتایج آنالیزهای XRF نشان می‌دهند که مقدار میزان SiO2، Al2O3 و MgO در ذخیره‌های معدنی 11/55، 12/50 و 13/55 در نمونه‌های 1، 2 و 3 بالاست. این مقدار باید با وسایل مانند میزان‌ها در نمونه‌های 1، 2 و 3 بالاست. این مقدار باید با وسایل مانند میزان‌ها در نمونه‌های 1، 2 و 3 بالاست.

نتایج آنالیزهای XRF نشان می‌دهند که مقدار میزان SiO2، Al2O3 و MgO در ذخیره‌های معدنی 11/55، 12/50 و 13/55 در نمونه‌های 1، 2 و 3 بالاست. این مقدار باید با وسایل مانند میزان‌ها در نمونه‌های 1، 2 و 3 بالاست. این مقدار باید با وسایل مانند میزان‌ها در نمونه‌های 1، 2 و 3 بالاست.

نتایج آنالیزهای XRF نشان می‌دهند که مقدار میزان SiO2، Al2O3 و MgO در ذخیره‌های معدنی 11/55، 12/50 و 13/55 در نمونه‌های 1، 2 و 3 بالاست. این مقدار باید با وسایل مانند میزان‌ها در نمونه‌های 1، 2 و 3 بالاست. این مقدار باید با وسایل مانند میزان‌ها در نمونه‌های 1، 2 و 3 بالاست.

نتایج آنالیزهای XRF نشان می‌دهند که مقدار میزان SiO2، Al2O3 و MgO در ذخیره‌های معدنی 11/55، 12/50 و 13/55 در نمونه‌های 1، 2 و 3 بالاست. این مقدار باید با وسایل مانند میزان‌ها در نمونه‌های 1، 2 و 3 بالاست. این مقدار باید با وسایل مانند میزان‌ها در نمونه‌های 1، 2 و 3 بالاست.

نتایج آنالیزهای XRF نشان می‌دهند که مقدار میزان SiO2، Al2O3 و MgO در ذخیره‌های معدنی 11/55، 12/50 و 13/55 در نمونه‌های 1، 2 و 3 بالاست. این مقدار باید با وسایل مانند میزان‌ها در نمونه‌های 1، 2 و 3 بالاست. این مقدار باید با وسایل مانند میزان‌ها در نمونه‌های 1، 2 و 3 بالاست.

نتایج آنالیزهای XRF نشان می‌دهند که مقدار میزان SiO2، Al2O3 و MgO در ذخیره‌های معدنی 11/55، 12/50 و 13/55 در نمونه‌های 1، 2 و 3 بالاست. این مقدار باید با وسایل مانند میزان‌ها در نمونه‌های 1، 2 و 3 بالاست. این مقدار باید با وسایل مانند میزان‌ها در نمونه‌های 1، 2 و 3 بالاست.

نتایج آنالیزهای XRF نشان می‌دهند که مقدار میزان SiO2، Al2O3 و MgO در ذخیره‌های معدنی 11/55، 12/50 و 13/55 در نمونه‌های 1، 2 و 3 بالاست. این مقدار باید با وسایل مانند میزان‌ها در نمونه‌های 1، 2 و 3 بالاست. این مقدار باید با وسایل مانند میزان‌ها در نمونه‌های 1، 2 و 3 بالاست.

نتایج آنالیزهای XRF نشان می‌دهند که مقدار میزان SiO2، Al2O3 و MgO در ذخیره‌های معدنی 11/55، 12/50 و 13/55 در نمونه‌های 1، 2 و 3 بالاست. این مقدار باید با وسایل مانند میزان‌ها در نمونه‌های 1، 2 و 3 بالاست. این مقدار باید با وسایل مانند میزان‌ها در نمونه‌های 1، 2 و 3 بالاست.

نتایج آنالیزهای XRF نشان می‌دهند که مقدار میزان SiO2، Al2O3 و MgO در ذخیره‌های معدنی 11/55، 12/50 و 13/55 در نمونه‌های 1، 2 و 3 بالاست. این مقدار باید با وسایل مانند میزان‌ها در نمونه‌های 1، 2 و 3 بالاست. این مقدار باید با وسایل مانند میزان‌ها در نمونه‌های 1، 2 و 3 بالاست.

نتایج آنالیزهای XRF نشان می‌دهند که مقدار میزان SiO2، Al2O3 و MgO در ذخیره‌های معدنی 11/55، 12/50 و 13/55 در نمونه‌های 1، 2 و 3 بالاست. این مقدار باید با وسایل مانند میزان‌ها در نمونه‌های 1، 2 و 3 بالاست. این مقدار باید با وسایل مانند میزان‌ها در نمونه‌های 1، 2 و 3 بالاست.

نتایج آنالیزهای XRF نشان می‌دهند که مقدار میزان SiO2، Al2O3 و MgO در ذخیره‌های معدنی 11/55، 12/50 و 13/55 در نمونه‌های 1، 2 و 3 بالاست. این مقدار باید با وسایل مانند میزان‌ها در نمونه‌های 1، 2 و 3 بالاست. این مقدار باید با وسایل مانند میزان‌ها در نمونه‌های 1، 2 و 3 بالاست.
جدول ۲ نتایج حاصل از آنالیز XRF خاک صنعتی چاه‌شور ورته.

<table>
<thead>
<tr>
<th></th>
<th>FA1</th>
<th>FB2</th>
<th>KA4</th>
<th>KB2</th>
<th>KA1</th>
<th>KA2</th>
<th>BK300</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>73.72</td>
<td>73.66</td>
<td>73.04</td>
<td>73.39</td>
<td>73.11</td>
<td>70.24</td>
<td>71.11</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>18.42</td>
<td>18.72</td>
<td>18.77</td>
<td>18.84</td>
<td>18.51</td>
<td>18.88</td>
<td>18.66</td>
</tr>
<tr>
<td>TiO₂</td>
<td>5.44</td>
<td>5.44</td>
<td>5.44</td>
<td>5.44</td>
<td>5.44</td>
<td>5.44</td>
<td>5.44</td>
</tr>
<tr>
<td>MgO</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>CaO</td>
<td>0.15</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>MnO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>SO₃</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td>S</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>LOI</td>
<td>1.51</td>
<td>1.51</td>
<td>1.51</td>
<td>1.51</td>
<td>1.51</td>
<td>1.51</td>
<td>1.51</td>
</tr>
</tbody>
</table>

LOI: Loss on Ignition

جدول ۳ مقادیر استاندارد عناصر در صنایع سرامیک [۱۸, ۱۹] درصد عناصر

<table>
<thead>
<tr>
<th>عنصر</th>
<th>مقادیر استاندارد</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>۶۴.۸۸</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>۱۹.۳۴</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>۱.۹۹</td>
</tr>
<tr>
<td>CaO</td>
<td>۱.۸۴</td>
</tr>
<tr>
<td>MgO</td>
<td>۰.۸۴</td>
</tr>
<tr>
<td>K₂O</td>
<td>۰.۲۴</td>
</tr>
<tr>
<td>Na₂O</td>
<td>۰.۱۲</td>
</tr>
<tr>
<td>LOI</td>
<td>۰.۲۹</td>
</tr>
</tbody>
</table>

شکل ۳ مقایسه اکسیدها در نمونه با استاندارد Mc200 صنعت سرامیک.
جند آب مقدار جذب آب در بهندهای کاتیو بی‌پرسالی لیمب‌دار یا دار (مثلاً ۸/۵) باشد رای ب ریسیدن به مقدار کمتر جذب آب یا باید دارد. فلدسیت‌ها در فرمول بندی به تنه کاتیو بی‌پرسالی افزایش داده باشد. فلدسیت‌های مرغوب‌ترین (با درصد بالای) اکسیدهای یک‌پایی K2O، Na2O در صورت که مقدار CaO و MgO به ترتیب ۴/۵ و ۱/۷/ به ترتیب باشد، بهتر است مقدار K2O و Na2O برای K2O و Na2O به ترتیب ۲/۴۵ (با نسبت K2O به Na2O) درصد جذب آب با درصد بالای یک‌پاییها کاهش و با افزایش درصد کوارتز (SiO2) افزایش می‌یابد. میزان جذب آب در نمونه‌های کربالدهیه مختلف می‌تواند متفاوت باشد. مثال در برخی کانتی‌های استفاده شده در دیورات جذب آب بالای ۱۲٪ نیز می‌تواند است. این در کانتی‌های کپی‌پارسی جذب آب زیر ۶/ باشد. همچنین بالا بودن اکسید کلسیم و وجود کربنات کلسیم باعث افزایش تخلخل و افزایش جذب آب می‌شود (۲/۲۳). نمونه‌های مورد بررسی دارای میانگین جذب آب مناسبی برای استفاده در صنعت هستند (جدول ۵).

جدول ۴ میزان اکسیدهای آهن و تیتان و اکسید منگنز در نمونه‌های BK300 و KA2، KA1

<table>
<thead>
<tr>
<th>نمونه</th>
<th>Fe2O3</th>
<th>TiO2</th>
<th>MnO</th>
</tr>
</thead>
<tbody>
<tr>
<td>رنگ یخت</td>
<td>کرم</td>
<td>۱۸۲</td>
<td>۲۴</td>
</tr>
<tr>
<td>KA1</td>
<td>۲۴۷</td>
<td>۱۶۷</td>
<td></td>
</tr>
<tr>
<td>KA2</td>
<td>۱۵۳</td>
<td>۱۲۸</td>
<td></td>
</tr>
<tr>
<td>BK300</td>
<td>۹۳۰</td>
<td>۱۷۸</td>
<td></td>
</tr>
</tbody>
</table>

شکل ۴ نمونه KA1. (الف) فلد آزومینه BK300، (ب) برای ازومینه KA2 چیت‌های ازومینه KA2 چیت‌های ازومینه KA1 چیت‌های ازومینه BK300.
جردول 5: نتایج آزمایش‌های فیزیکی نمونه‌های کالولون معدن چادهور

<table>
<thead>
<tr>
<th>نمونه</th>
<th>BK300</th>
<th>KA2</th>
<th>KA1</th>
</tr>
</thead>
<tbody>
<tr>
<td>دانشیه</td>
<td>1.5</td>
<td>1.37</td>
<td>1.42</td>
</tr>
<tr>
<td>جسدی</td>
<td>40</td>
<td>40</td>
<td>34.7</td>
</tr>
<tr>
<td>مقاوومت خشک</td>
<td>37.51</td>
<td>37.51</td>
<td>37.51</td>
</tr>
<tr>
<td>شرکت‌کننده اقلیم رطوبی</td>
<td>40</td>
<td>40</td>
<td>34.7</td>
</tr>
<tr>
<td>مقاوومت یخ</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>درصد جنگ آب</td>
<td>3.15</td>
<td>3.15</td>
<td>3.15</td>
</tr>
<tr>
<td>گرم</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

مقاوومت خشک و خام

مقاوومت خشک به‌صورت استحکام مواد پس از شکل‌گیری و خشک شدن و پیش از تعیین می‌شود. با استفاده از سیلیس در مواد اولیه سیب افزایش مقاوومت خشک در نمونه‌ها می‌شود. مقاوومت خشک به عواملی مثل وجود ذرات کلیسینی و استخراشات و عوامل مورث پلاستیکی در مقاوومت خشک نیز مؤثر می‌باشد. مقاومت خشک محبوبترین خواص در بارگذاری مواد شبه آهسته است. برای استانداردهای تعیین شده در صنعت، مقاومت خام بالاتر از 45 کیلوگرم بر سانتی‌متر مربع است. اما برای کار خاصی به‌نام پلاستیکی مقاومت بیشتر از 25 کیلوگرم بر سانتی‌متر مربع نیز به‌ترین برای مقاومت خام و خشک بدنه مورد قبول هستند. مقاومت خشک در نمونه‌های جدا شده ورزه حذف 1/3، میانگین و مقاومت خام 642 کیلوگرم بر سانتی‌متر مربع است. (جدول 5).

پلاستیکی شدن

خلاصهی که یک ماده را قادر می‌سازد تا اثر نیروی خارجی بدون شکست و گسترشی تحمل کند، شکل بگیرد و ضایع کرده و باعث شکست و گسترشی می‌شود. با عوامل انسدادی به‌وجه نیروی خشک حقوق به اندازه کم می‌شود و این اینکه شکست و گسترشی را به‌جای خودگرفته و منعی جلوگیری کرد و در صورت وجود این مواد قابل استفاده در صنعت بودن.

خداوند داشت، که احتمال پیداشان ترک و شکست را در فراورده‌های خام کاهش می‌دهد.

مقاوومت یخ

استاندارد مقاومت یخ بیشتر از 25 کیلوگرم بر سانتی‌متر مربع تعیین شده است. اما در کاربردهای صنعتی، مقاومت بالای 35 نا حذف 200 کیلوگرم بر سانتی‌متر مربع نیز استفاده می‌شود. برای داشتن مقادیر بالای استحکام یخ، باید مقاومت مناسبی از کاولون (و بدون‌سپاره‌ای یا در کیفیت بلندتر) در بینه استفاده شود. در بعضی موارد، این کاولون‌ها مقاومت خشک 50 کیلوگرم بر سانتی‌متر مربع دارند که نصف مهمی از اکثریت سفیدی بدنه به‌صورت یخ، ثبات ابعادی و کنترل انقباض حین یخ، نما می‌کند. مقاومت مناسبی در نمونه‌های جدا شده ورزه حذف 180 کیلوگرم بر سانتی‌متر مربع است. (جدول 5) و برای داشتن استحکام یخ با مقادیر پلاستیکی استفاده نمی‌شود.

کارآیی گرم‌پایی

درصد کارآیی گرم‌پایی پهناست کمتر از 4 (می‌باشد. بنابراین کارآیی گرم‌پایی ماده معدنی رسی بالاتر باشد و تا دما 135 درجه سانتی‌گراد برای نهایت انقباض در اثر یخ) رخ دهد. به‌کمک کاولونیت از کاولون اولیه بیشتر است به شرح این که جریان‌ها و سلوان‌های مانند کلسیت، کربنات و آنزیم‌ها در آن وجود نشانده است. با توجه به وجود این ترکیبات ضروری است که استحکام‌های اطراف ذخیره، هنگام استخراج با پنجم از اختلاف این ترکیبات با مادهی منعی جلوگیری کرد و در صورت وجود این مواد قابل استفاده در صنعت بودن.
میزان کارایی گرمایی بهدلیل بالا بودن مقداری خام و خشک و در نتیجه خاصیت بلاتشکی شدن بالا که احتمال بدپدیدن ترک و شکست را در فرآورده‌های خام کاهش می‌دهد نیز مقدارت یکه‌پر، پری گرمایی میانگین جذب آب و انقباض رطوبتی مناسب برای استفاده در صنایع کانی و سرامیک کف و بدن مناسب بوده و برای استفاده در سایر صنایع دیگر نیاز به فرآوری دارد.

مراجع
[1] کریم پور م، سعادت س، زمین شناسی اقتصادی کاربردی، نشر مشهدی، (1381).
[8] امکانات ب، طرفی نیا م، بررسی خواص فیزیک‌کيميي ای کانی شناسی کاولون معدن غازاندازی تاکستان در تولید کاسی و انواع دیگر سرامیک مصنوعی، مجله کارشناسی، کانی‌شناسی ایران، شماره ۳ (1390) ص ۲۶۲-۳۷۰.
بررسی خواص کانی‌شناسی و صنعتی ذهینه‌های خاکرس معدن ...


[21] ابراهیمی خ.، میر انتوری ا.، همام م.، کانی شناسی صنعتی کانسار کالونی باشی ای (کانی‌باد) بر اساس منطقه‌ی گروه‌های، مجموعه مقالات پنجمین همایش انگلیسی بلور شناسی و کانی شناسی ایران، دانشگاه فردوسی مشهد (1390) ص 292-327.

[22] جرستایی س.، صنعت و سرامیک، انتشارات جاودان خرد، (1384).

[23] حسینی ا.، متنی م.، اکسیدولوژی کانی‌باد‌های تاریخی، شرکت صنایع خاک جنوبی ایران، (1368) 574 صفحه.

[9] ذیحی ر.، ابراهیمی خ.، زرین‌کوب م.، تررسی‌های کانی شناسی و ریشه‌نگاریهای نشته‌های کانی رس کانی‌بادی شنی‌آباد (جنوب غرب بیرجند) با نگرشی بر کاربردهای صنعتی، مجله بلورشناسی و کانی شناسی ایران، شماره 1490(1) ص 101-111.


[14] [نام و پس‌نام ، (سال) ، نام مقاله، (دیوانه) ص ص�-ص�.]