کانی شناسی و ارزیابی بوم‌شناسی فلزات سنگین در رسوب‌های سطحی دریاچه مهارلو، شیراز، ایران

امیر کریمیان طرقبهٔ، بیژن اعتمادی، محمود حسین محمودی قرائی، اشکان چهندار

۱- گروه علوم زمین، دانشکده علوم، دانشگاه شیراز
۲- گروه زمین‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد
۳- گروه علوم زمین، دانشکده علوم، دانشگاه تهران همبستگی کلیه‌ای

چکیده: دریاچه مهارلو بعنوان یکی دامنه آتشفشانی کلان شیراز با توجه به موقعیت آن در همبستگی کلیه‌ای و همچنین براساس واحدهای سمنانکی بالارین، میزان مسومیت‌زایی برای نیکل، کروم و مس در انجام شده. مجموع پیشترین واحد سمتی و شبیه‌سازی خطر ممکن بی‌وگشتی‌های هم فلزات مورد بررسی مرتب به وسیله‌ی دریاچه است که در همبستگی دارند. در (XRD) تشخیص Cr و Co و Ni به گونه‌ای که در فرآیند‌های انسانی انسان‌پرداز در رسوب‌های اتاق در اثر فعالیت‌های انسانی پردازی در رسوب سطحی آن بازه‌گری شده‌اند.

واژه‌های کلیدی: دریاچه مهارلو؛ رسوب سطحی؛ سانترال راک؛ سانترال ساجون؛ فلزات سنگین

مقدمه
دریاچه‌ی کلیه‌ای از مهم‌ترین و قابل توجه‌ترین بعنوانهای محیطی در حفظ و تغذیه منابع آب زیرزمینی به شمار می‌رود. همچنین بعنوان یکی از مهم‌ترین توانایی در تولید و تدوین لیزری و تغییرات محلی و اصلاح محیط زیست پردازی خود عمل می‌کند. در سال‌های اخیر همراه با توسعه سرعت صنعتی و اقتصادی و پیامدهای آن‌ها مانند فوتیق شیشه‌برایزی، مقاومت زایدی از این‌ها در حالت تخلیه به این سانترال‌های آبی هستند. پژوهش کلیه‌ای از مسئولیت‌های گوناگون در این زمینه با دقت بالای دو قسمت شده.
که در پی آن به عنوان یک مسئله بالقوه تالوه از آودوگی فلزات سنگین در محیطهای آب زیریزشی خود عمل می‌کند [۱۱۶]. فلزات سنگین در رسانه‌های آب‌زی جهت تشکیل شرایط آودوگی منتفی می‌شوند. به عنوان یک مثال، فلزات سنگین در رسانه‌های آب‌زی جهت تشکیل شرایط آودوگی منتفی می‌شوند.

طرفیت سیاسی بالایی برای متمرکز کردن آودوگی دارند، ولی به‌طور مشابه آن‌های جذب‌کننده در آن‌ها زیست‌سیری‌ای‌های متنوع به‌طور مشابه آن‌ها زیست‌سیری‌ای‌های متنوع است

به‌طور کلی، ترکیب شیمیایی رسوب‌های سطوح افزون برای استدلال مسئول‌های زمین‌شناسی چون‌سانی، با اندازه‌گیری شرایط حوضه اکثر کنترل شده می‌شود. اندازه‌گیری فلزات سنگین در ژئوفیزیک پذیرشگر هستند. به‌طور کلی، ترکیب شیمیایی رسوب‌های سطوح افزون برای استدلال مسئول‌های زمین‌شناسی چون‌سانی، با اندازه‌گیری شرایط حوضه اکثر کنترل شده می‌شود. اندازه‌گیری فلزات سنگین در ژئوفیزیک پذیرشگر هستند.

به‌طور کلی، ترکیب شیمیایی رسوب‌های سطوح افزون برای استدلال مسئول‌های زمین‌شناسی چون‌سانی، با اندازه‌گیری شرایط حوضه اکثر کنترل شده می‌شود. اندازه‌گیری فلزات سنگین در ژئوفیزیک پذیرشگر هستند.

به‌طور کلی، ترکیب شیمیایی رسوب‌های سطوح افزون برای استدلال مسئول‌های زمین‌شناسی چون‌سانی، با اندازه‌گیری شرایط حوضه اکثر کنترل شده می‌شود. اندازه‌گیری فلزات سنگین در ژئوفیزیک پذیرشگر هستند.
کلانشهر شیراز ششیم شهر پرجمعیت ایران محسوب می‌شود. بر اساس نتایج سرشماری عمومی نفوس در سال‌های ۱۳۸۵ و ۱۳۸۸، جمعیت این شهر افزایش یافته است. این شهر قافل سانانی یکپارچه جمعیتی از فاضلاب شهری، منظری و پر شده است و بیشتر اقلیمی این شهر از طریق زهک‌های غیر مانند رودخانه خشک به دریاچه ماهالون می‌رسند. در محیط پیشرفت دریاچه نیز کشاورزی گسترده‌ای صورت می‌گیرد.

دراچه ماهالون از نظر تفصیل‌سازی ساختاری در کمربند چین - زائده زاگرس قرار دارد [۱۹] و از نظر ساختاری برآمده فرومین سه‌ای است [۲۰]. با توجه به نکته زمین‌سنجی (شکل ۱) منطقه مورد بررسی بیشتر توسط سنجش‌های سنجشی درون ماهالون، شرایط سنجشی و ماهالون بهره‌برداری از این دریاچه بهترین است. مهم‌ترین سنجش‌های برآمده این دریاچه به ترتیب از قبیل دریاچه از پل‌های اصلی راه‌آهن (مرند)، ساچو و (مانند شال سنج) سنجشی، آذری و جهانی (سنج سه‌گانه)، زوک (مانند سنج و سنج سه‌گانه) و مانند راکرد (مانند سنج) و نه شناسی از این افراد جوان در منطقه مورد بررسی رودخانه دامی و دریاچه اغلب توسط این دستورالعمل جهت پیشرفت و شناسایی فضای اطرافی از این مورد بررسی می‌شود.

[۲۱]
کاتیشناسی و اکسیدهای اصلی

نتایج کاتیشناسی به روش XRD برای نمونه رسوب سطحی دریاچه مهارلو در شکل ۱ آورده شده است. بر این اساس، مطلق با شکل ۲ کاتی‌های الیسیت، سنگ گچ، هالیت، کوارتز، مونت موریلونیت، دولومیت و سپیلید در رسوب‌های بعدی، SiO۲ به ترتیب ۱۰، ۲۱، ۴۲، ۹۴ درصد وزنی قرار دارد.

شکل ۳ نمونه‌های رسوب سطحی دریاچه مهارلو.

جدول ۱ نتایج برآمده از XRF نمونه‌های رسوب سطحی دریاچه مهارلو (برحسب درصد وزنی)

<table>
<thead>
<tr>
<th></th>
<th>SiO۲</th>
<th>Al۲O۳</th>
<th>Fe۲O۳</th>
<th>MgO</th>
<th>CaO</th>
<th>Na۲O</th>
<th>K۲O</th>
<th>TiO۲</th>
</tr>
</thead>
<tbody>
<tr>
<td>پیشنهاد</td>
<td>۴۴.۴</td>
<td>۳۹.۷</td>
<td>۸۱.۱</td>
<td>۸۸.۶</td>
<td>۲۴.۸</td>
<td>۸۸.۶</td>
<td>۲۴.۸</td>
<td>۳۹.۷</td>
</tr>
<tr>
<td>کمینه</td>
<td>۳۹.۷</td>
<td>۸۸.۶</td>
<td>۸۱.۱</td>
<td>۸۸.۶</td>
<td>۲۴.۸</td>
<td>۸۸.۶</td>
<td>۲۴.۸</td>
<td>۳۹.۷</td>
</tr>
<tr>
<td>میانگین</td>
<td>۴۴.۴</td>
<td>۳۹.۷</td>
<td>۸۱.۱</td>
<td>۸۸.۶</td>
<td>۲۴.۸</td>
<td>۸۸.۶</td>
<td>۲۴.۸</td>
<td>۳۹.۷</td>
</tr>
<tr>
<td>UCC</td>
<td>۳۹.۷</td>
<td>۸۸.۶</td>
<td>۸۱.۱</td>
<td>۸۸.۶</td>
<td>۲۴.۸</td>
<td>۸۸.۶</td>
<td>۲۴.۸</td>
<td>۳۹.۷</td>
</tr>
</tbody>
</table>
شماره 1 واقع در شمال غرب دریاچه دیده شد. در حالی که کلاسیفیکاژ سرب در روزنامه‌های غلط رفت. در نتیجه، میانگین آنها با فاصله‌ها خبره سربدارها (UCC) مقایسه شد [12]. نتایج به‌دست‌آمده بیانگر فاصله‌ای بین K_{2}O و Na_{2}O، Al_{2}O_{3}، SiO_{2} غلظت نیکل و گرم نیز در ایستگاه شماره 7 واقع در شمال شرق دریاچه اند. روش‌های شد.

به‌منظور ارزیابی میزان از نوع، مقدار، اندازه‌گیری شده با فراوانی پوسته‌های بالایی (UCC) و گستره مرسوم فلزات جزئی رسوپ‌های دریاچه‌ای (UCC) مقایسه شد [12]. جنگل که در جدول 2 نمایش داده می‌شود، میزان مبتلا به فلزات سربداران‌های جزئی کتالیت و یک بطیعی از میزان شد. میزان غلظت فلزات سربداران در روزنامه‌های بالایی که در مقایسه با مایعات مرسوم فلزات جزئی در رسوپ‌های دریاچه‌ای نشان می‌دهد و روش‌های مقایسه‌ها ایالات متحده از این استاندارد را نشان داده.

به‌منظور درک بهتر وضعیت اکسیده‌های اصلی در رسوپ‌های منطقه مورد بررسی، میانگین آنها با فاصله‌های پوسته بالایی یا بوده‌اند. () مقایسه شد [12]. نتایج به‌دست‌آمده بیانگر فاصله‌ای بین K_{2}O و Na_{2}O، Al_{2}O_{3}، SiO_{2} غلظت نیکل و گرم نیز در ایستگاه شماره 7 واقع در شمال شرق دریاچه اند. روش‌های

UCC مقایسه میانگین مقدار اکسیده‌های اصلی در 5 نمونه از رسوپ‌های سطحی دریاچه مهارلو با فاصله آنها در پوسته بالایی زمین (UCC)

جدول 2 نتایج تجزیه شیمیایی عناصر در رسوپ‌های سطحی دریاچه شهر آبادان (بر حسب mg.kg^{-1} می‌گوید.)

<table>
<thead>
<tr>
<th>عنصر</th>
<th>S</th>
<th>Na</th>
<th>Sr</th>
<th>Zn</th>
<th>Pb</th>
<th>Ni</th>
<th>Cu</th>
<th>Cr</th>
<th>Co</th>
<th>Cd</th>
<th>As</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>1.44</td>
<td>3.1</td>
<td>58.1</td>
<td>8.0</td>
<td>10.9</td>
<td>10.9</td>
<td>4.9</td>
<td>10.9</td>
<td>10.9</td>
<td>10.9</td>
<td>10.9</td>
</tr>
<tr>
<td>پیشنهاد</td>
<td>4.34</td>
<td>58.1</td>
<td>10.0</td>
<td>13.3</td>
<td>28.0</td>
<td>4.9</td>
<td>10.9</td>
<td>10.9</td>
<td>10.9</td>
<td>10.9</td>
<td>10.9</td>
</tr>
<tr>
<td>کمیته</td>
<td>6.8</td>
<td>57.5</td>
<td>5.0</td>
<td>24.5</td>
<td>15.0</td>
<td>15.0</td>
<td>15.0</td>
<td>15.0</td>
<td>15.0</td>
<td>15.0</td>
<td>15.0</td>
</tr>
<tr>
<td>UCC</td>
<td>-</td>
<td>-</td>
<td>75.0</td>
<td>25.0</td>
<td>100.0</td>
<td>25.0</td>
<td>100.0</td>
<td>150.0</td>
<td>150.0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(UCC)
ازویای آلودگی و سمناکی رسوب‌های
شاخ‌زین انبیشت برای عنصر گروم در نمونه‌های شماره ۱ (شمال دریاچه)، ۲ (غرب دریاچه) و ۳ (غرب دریاچه)، برای عنصر مس در نمونه‌های شماره ۱ (شمال دریاچه)، ۲ (شمال غرب دریاچه)، ۴ (جنوب دریاچه) و ۷ (شرق دریاچه) در همسایگی زمین‌های همواری و ۷ (شرق دریاچه) برای عنصر کادمیم به همین نمونه‌ها بجای نمونه‌های شماره ۴ و ۱۰ (محل روستای دودخانه خشک) بسازند و تجربه کرده‌اند. این شاخ‌زین برای عنصر آرسنیک و نیکل به‌طور کلی در محدوده نمونه‌های کوچکتر از سایر محاسبات شده به شاخ‌زین انبیشت عنصر مورد بررسی در همسایگی رودخانه خشک به‌طور ایستگاه شماره ۱۰. به دست آمده در بین ۹ عنصر مورد بررسی، استراتاسیم بیشترین آلودگی را از خود نشان داد.

\[
\text{Igeo} = \frac{C_i}{B_{i+}} \times 100
\]

در این رابطه، \(C_i\) ضریب عنصر مورد نظر در نمونه و \(B_{i+}\) ضریب عنصر مورد نظر در نمونه مرجع است. استاندارد با زمین‌های محیطی است که در این پژوهش از مقدار UCC استفاده شد \([22]\). ضریب ۱.۵ در این رابطه به عنوان عامل تصحیح یا شار زمین‌نشانی عنصر در نظر گرفته می‌شود \([23]\). تراکم چهارم برای شاخ‌زین

<table>
<thead>
<tr>
<th>شاخ‌زین</th>
<th>عنصر</th>
<th>مقدار</th>
<th>مرحله‌ای</th>
<th>درجه آلودگی</th>
<th>درجه Igeo</th>
</tr>
</thead>
<tbody>
<tr>
<td>آلودگی</td>
<td>غیرآلود</td>
<td>۰۰</td>
<td>۰</td>
<td>۰</td>
<td>۱</td>
</tr>
<tr>
<td>آلودگی</td>
<td>غیرآلود تا کم آلود</td>
<td>۲</td>
<td>۱۰۰</td>
<td>۰</td>
<td>۲</td>
</tr>
<tr>
<td>آلودگی</td>
<td>سطح آلوده</td>
<td>۳</td>
<td>۲۰۰</td>
<td>۰</td>
<td>۳</td>
</tr>
<tr>
<td>آلودگی</td>
<td>سطح آلوده تا زیاد</td>
<td>۴</td>
<td>۴۰۰</td>
<td>۰</td>
<td>۴</td>
</tr>
<tr>
<td>آلودگی</td>
<td>آلودگی زیاد</td>
<td>۵</td>
<td>۶۰۰</td>
<td>۰</td>
<td>۵</td>
</tr>
<tr>
<td>آلودگی</td>
<td>بیش از آلودگی</td>
<td>۶</td>
<td>۸۰۰</td>
<td>۰</td>
<td>۶</td>
</tr>
</tbody>
</table>
The potential ecological risk index (ERI) can be calculated using the following formula:

\[\text{ERI} = \frac{\text{PEL} \times \text{PEM}}{\text{PEL} + \text{PEM}} \]

where PEL is the potential ecological risk index and PEM is the potential ecological risk index.

1. Sediment quality guidelines
2. National Oceanic and Atmospheric Administration
3. Effects range low/median
4. Threshold/probable effect level

The potential ecological risk index (ERI) is given by the equation:

\[\text{ERI} = \frac{\sum \text{PEL}_i}{\sum \text{PEM}_i} \]

where PEL is the potential ecological risk index and PEM is the potential ecological risk index.

The potential ecological risk index (ERI) is given by the equation:

\[\text{ERI} = \frac{\sum \text{PEL}_i}{\sum \text{PEM}_i} \]

where PEL is the potential ecological risk index and PEM is the potential ecological risk index.

The potential ecological risk index (ERI) is given by the equation:

\[\text{ERI} = \frac{\sum \text{PEL}_i}{\sum \text{PEM}_i} \]

where PEL is the potential ecological risk index and PEM is the potential ecological risk index.

The potential ecological risk index (ERI) is given by the equation:

\[\text{ERI} = \frac{\sum \text{PEL}_i}{\sum \text{PEM}_i} \]

where PEL is the potential ecological risk index and PEM is the potential ecological risk index.

The potential ecological risk index (ERI) is given by the equation:

\[\text{ERI} = \frac{\sum \text{PEL}_i}{\sum \text{PEM}_i} \]

where PEL is the potential ecological risk index and PEM is the potential ecological risk index.
غلات سنگین با میانگین 5.25 برخورداری که در همسایگی آنها رخ داد که در شکل 9 آنها دیده شده است. ارسیک برای همسایگی شماره 4.13.2.14.1، 4.13.2 و 11 با شکل غول بهره‌وری پذیر می‌شود. در نهایت در فلزات سنگین مورد بررسی در رسوب دریاچه مهارلو، عنصر کادمیم سنگینی بیشتری را بالا می‌رساند که این شرایط می‌تواند آن در فلزات سنگین مورد بررسی در رسوب دریاچه مهارلو، عنصر کادمیم سنگینی بیشتری را بالا می‌رساند که این شرایط می‌تواند آن در فلزات سنگین کمتر از 20 است که شناسایی سنگینی در این عناصر در رسوب‌های سطحی منطقه مورد بررسی است.

<table>
<thead>
<tr>
<th>E1</th>
<th>RI</th>
</tr>
</thead>
<tbody>
<tr>
<td>درجه سنگین</td>
<td>گستره</td>
</tr>
<tr>
<td>کمتر 10</td>
<td>کمتر 10</td>
</tr>
<tr>
<td>متوسط</td>
<td>10 تا کمتر 50</td>
</tr>
<tr>
<td>بالاتر</td>
<td>50 تا کمتر 100</td>
</tr>
</tbody>
</table>

شکل 6 مقایسه میانگین غلظت عناصر انحلالی در رسوب با مقادیر PEL و TEL.
شکل ۷: نمودار ERMQ و PEL برای عناصر As, Cd, Cu, Cr, Pb و Ni در نقاط نمونه‌برداری شده.

شکل ۸: نمودار واحد سمت‌گی روش‌های منطقه مورد بررسی.

شکل ۹: مقادیر پتانسیل خطرهای نهفته بوم شناسی (Ei)، و شاخص خطر نهفته بوم شناسی (RI) (نمودهای های رسوپ دریاچه مهارلو).
اشتباهات شد و سرانجام به منظور پیداکردن به خاصیت‌ها اختمالی فلزات سنگین و ارتباط آنها با کانی‌شناسی رسوب‌های سطحی دریاچه مهارلو، گُرفت فلزات سنگین و اکسیدهای اصلی با استفاده از روش تحلیل خوشه‌بندی گرده، نتایج برآوردی از ضریب همبستگی پیرسون در جدول ۵ ارائه شده است. دیده می‌شود که خصائص آرسنیک با یک بک از عناصر دیگر رابطه معناداری ندارد. این‌طور نشان می‌دهد که در تحلیل‌های تحلیلی ارسنیک در رسوب‌های سطحی دریاچه مهارلو دارای خاصیت‌هایی به منفی است. در بیشتر نقاط دنیا، ارتباط بسیار نزدیکی با فعالیت‌های کشکرودی دارد. بنابراین در استفاده از فعالیت‌های کشکرودی، غلظت‌های یا کودهای شیمیایی در محیط دریاچه غنی‌تر می‌شود. وجود فعالیت‌های گسترده کشکرودی پرورش در دریاچه مهارلو می‌تواند تأییدی بر وجود فعالیت‌های ایمنی و دریاچه باشد. همبستگی منفی و معنی‌دار بین عناصر سرب، روبیاسدیم و روبیاسدیم خاصیت‌های یکسان برای این عناصر است. همبستگی ارتباط معنادار منفی بین عناصر Cr و Co، Ni و Pb، Zn و Sr وجود دارد.

در اینجا نخست برای آشکار کردن روابط بین فلزات سنگین در رسوب‌های سطحی از آزمون ضریب همبستگی

جدول ۵ تأثیر ضریب همبستگی

<table>
<thead>
<tr>
<th></th>
<th>As</th>
<th>Cd</th>
<th>Co</th>
<th>Cr</th>
<th>Cu</th>
<th>Ni</th>
<th>Pb</th>
<th>Zn</th>
<th>Sr</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>0.39</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>0.41</td>
<td>0.58</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>0.46</td>
<td>0.55</td>
<td>1</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>0.18</td>
<td>0.65</td>
<td>0.24</td>
<td>0.39</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>0.41</td>
<td>0.72</td>
<td>0.98</td>
<td>0.95</td>
<td>0.76</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>0.17</td>
<td>0.52</td>
<td>0.63</td>
<td>0.24</td>
<td>0.46</td>
<td>0.72</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>0.09</td>
<td>0.08</td>
<td>0.89</td>
<td>0.55</td>
<td>0.47</td>
<td>0.52</td>
<td>0.72</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td>0.25</td>
<td>0.71</td>
<td>0.29</td>
<td>0.90</td>
<td>0.72</td>
<td>0.52</td>
<td>0.72</td>
<td>0.71</td>
<td>1</td>
</tr>
</tbody>
</table>
شکل 10 تحلیل خوشه‌ای عنصر و اکسید‌های اصلی نمونه‌های رسوب دریاچه مهارلو

نشان‌دهنده خاستگاه انسان زاد این عنصر است. اما ارتباط ضعیف آن با سایر فلزات نشان‌دهنده خاستگاه متفاوت از سایر فلزات سنگین این خوشه است. برایه توزیع جغرافیایی نقاط نمونه برداری (جدول ۲ و شکل ۱)، علی‌رغم اختلاف در گستره‌های نزدیک به زمین‌های کشاورزی بیش از سایر نقاط دریاچه است. بنابراین خاستگاه این عنصر احتمالاً ناشی از فعالیت‌های کشاورزی پرآronym دریاچه مهارلو است.

گروه سوم (Na₂O و MgO, CaO, S, Sr) بازتاب‌دهنده سنگ‌های رسوبی میزانی در منطقه مورد بررسی است. سازند تبخیری ساوجن نقش مهمی را در رسوب‌گذاری این منطقه دارد. [۲۴] علی‌رغم استرئوئید به سبب نزدیکی به این سازند به ترتیب در سه بیکار می‌باشد. در گستره‌های ۹۰ تا ۱۲۷۰ میل‌گرم بر کیلوگرم و ۲۵۰ تا ۸۲۷ میل‌گرم بر کیلوگرم تغییر می‌کند. بنابراین ارتباط استرئوئید با کوگرد و اکسیدهای کلسیم، نیکل و سدیم بدون ارتباط خاستگاه Sr با کانی‌های تبخیری چون سنگ کج و کانی‌های کربنی‌ها کلسیم و دولومیت در سنگ میزان کربنی‌ها منطقه مورد بررسی است.

برداشت

مکانی اصلی این یوزه‌های برسی نقش سنگ‌های میزان‌شنا در غنی‌شدنی فلزات سنگین در رسوب‌های سطحی دریاچه مهارلو به همراه ارزیابی بوم‌شناسی این آگاهی‌های پایه است. بررسی نتایج کانی‌شناسی، آزمایش‌های واریانس و سنگ‌گچ و فاز‌های اصلی کانی‌شناسی در رسوب‌های سطحی منطقه خوشه نخست شامل SiO₂ به‌چندین شیوه تقسیم می‌شود که عبارت‌اند از (۱) SiO₂، (۲)CaO و Cr, Ni, K₂O, Fe₂O₃, Al₂O₃, (۳) Pb, Cu, Zn, Cd و اکسید P ۳ و P ۲O₅ عنصر ارسنیک. به طور کلی بر پایه نتایج به دست آمده از آزمون ضریب همبستگی، سه روند متفاوت را در رابطه با خاستگاه احتمال فلزات سنگی می‌توان در نظر گرفت که در ادامه بیان می‌شوند. ارتباط معنادار فلزات سنگین در گروه نخست با اکسیدهای رایج کانی‌سنگی نشان‌دهنده خاستگاه زمین‌زاد این عنصر است. گزاره‌های منتشر شده پرآronym متفاوت مورد بررسی که سازند زرد را دارای فلزات سنگین نیکل و کروم معرفی می‌کند. این امر را نشان می‌دهد که سنگ‌های موجود در گروه آن‌ها با اکسیدهای Cu, Zn و Cd, Pb, Ni, Cr, Sr, Co, Cu, Zn, Cd, Pb از شهیر شیروار دیده دامنه‌ای را دارا نسبت داد. ارتباط قوی بین می‌توان به منابع غیر نقاطی شهیر مانند روانه‌های شهری تخیلی‌شده از رودخانه‌ها خشک به دریاچه و یا گسیل ناتره‌ایکی از P ۲O₅ و Cd, Pb, Ni, Cr, Sr, Co, Cu, Zn, Cd, Pb که خوشه‌های این فعالیت‌های کشاورزی پرآronym دریاچه است.

کدکامی اغلب به عنوان یک پیش‌نشانگر فعالیت‌های کشاوری در نظر گرفته می‌شود. پرآronym که از احیای اصلی وسایل خسته به شمار می‌رود [۲۴] بنابراین کدکامی اغلب به عنوان خاستگاه شهری در اثر فعالیت‌های کشاورزی نیز در رسوب سطحی دریاچه مهارلو بیشتری شده است. حضور ارسنیک در این خوشه
مورد بررسی هستند. همه فلزات سنگین مورد بررسی به جز سرب و کبالت در مقایسه با فراوانی عناصر در پوسته بالایی غنی شدگی نشان می‌دهند. در این مورد، استراسیم با 12 درصد غنی شدگی در جایگاه نخست و عنصر اسید، کربن و مس به ترتیب با 8 و 2 درصد غنی شدگی در جایگاه‌های بعدی قرار دارند. بر اساس مقادیر سطح اثر احتمالی و حد اثر میتوان از سیستم میکروژن و میکرونوکلی تا والبارکی و کلاسترول منانسی متغیر با نام واژه کلیتولوژن (رادر) از مقادیر ERL، تست نتایج واحدهای PEL و TEL و ERM داد که در رسب‌سنجی درب‌بندی‌های مهرالو، بین‌شیرین سنگی مار (16) میکروژن و میکرونوکلی نمونه‌برداری از برکتهای شیرین نمونه‌برداری از 10 شیب در برنامه یکین رمز از هم‌سنجی در مجموع سنگی و مسربیسی-ایستگاه شماره 4 (جواب درب‌بندی‌های هم‌سنجی زمین که کنترل) و 10 شیب در برنامه محل وود رودخانه خشک (بر روی دو روش) بر پایه انجام‌شده خشک در شیب از حذف نشان داده. این شاخص برای کاهش امسالگی‌های نمونه‌برداری شده از 100 به 0.5 بسته از 40 درصد نشان‌زده شده در بالایی قرار داده. این نتایج به تغییر معنی‌داری تاثیر خشک و شیب از 0.5 به 80 درصد سنگی کلیتولوژن به‌طور کلی در نشان داده شده است. نتایج هم‌سنجی SiO2 و اسید‌های آلی نمونه‌برداری روبن‌کلی را نشان دادن. نتایج هم‌سنجی به با کلیت‌های آلی کلیتهای با SiO2 TiO2 و K2O H2O ALO3 و این نتایج به غلظت بالایی این عنصر در سازند رازه می‌توان خستگی آن را به‌طور کلی در نسبت تأثیر گروه دوم، همراه با عناصر سرب، اسید کربنیک، مواد و مس و با نشان‌های خاص آن را به‌طور کلی در اثر فعالیت‌های شری و ترازی، این نتایج به توضیح فاز سنگی
ته‌که خاستگاه تبخیری این عنصر است. در واقع، استراسیم

assessment of heavy metals in the soil-plant system and the sediment-water column around a former PhZn-mining area in NE Morocco", Ecotoxicology and environmental safety, 144 (2017)464-474.

