بررسی اثر ناخالصی گالیم بر ویژگی‌های ساختاری، ریزساختاری و نوری لاشه‌های نازک

اسکسی روی تهیه شده به روش افتشانه گرمایی

سمنه یاک نیت، لیلی متوالی زاده، صفا جامی

گروه فیزیک، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران

چکیده:
در این پژوهش لایه‌های نازک اکسید روی با ناخالصی گالیم به روش اسپری پایولوژیز تهیه و اثر ناخالصی گالیم بر ویژگی‌های ساختاری و ایتیکی آن بررسی شد. لاشه‌های ZnO:Ga با ناخالصی کلیم از 0 تا 0.5 درصد در دماهای بین 350 و 450 درجه سانتی‌گراد تهیه شدند. نتایج بررسی پرتور این نخوان می‌که خواص ZnO:Ga و ZnO در احتیاط بلوری راستای ارتجع (200) در کاهش به نسبت آنتنی افزایش 2 هستند و با افزایش مقدار ناخالصی، متوسط اندازه بلورکها از 14.0 تا 16.0 نانومتر تغییر می‌کند. ویژگی‌های نوری همیشه از جمله سطح نوری مرگبار و جنگلی با استفاده از طیف‌سنجی مرنی‌فرابنفش (UV-Vis) بررسی شد که برای این داده‌ها مقادیر گاف انرژی تعیین شد. نتایج نشان می‌دهد که در ناحیه مرگی اینده، با افزایش ناخالصی گالیم تا 0.5 درصد، به

مقدمه

اکسید‌های رسالن شفاف به شکل‌های مختلف از جمله کهای لاشه نازک، با نانوساختار در گروه نماساختارهای نوع 2D می‌باشد. با استفاده از نظر تاریخی، لایه‌های نازک زنک، زنک و ZnO:SnO2 از نظر الماس‌ساختارهای نسیمی در نواحی خاصی یافت شده است [1]. زنک به عنوان یک اکسید رسالن شفاف از انکوره و ترنسایت و یکی از غنی‌ترین نانوساختارهای است که روی داده‌های دارای گالف نواری به حدود 200 نانومتر تنگ شده است. برای بررسی ناحیه اصلی ناخالصی در نواحی داخلی، اکسید روی با دانه‌های سایر مورد آنتنی با مقدار به 400 نانومتر در حدود 400 نانومتر تنگ شده است. برای بررسی ناحیه اصلی ناخالصی در نواحی داخلی، اکسید روی با دانه‌های سایر مورد آنتنی با مقدار به 400 نانومتر در حدود 400 نانومتر تنگ شده است. برای بررسی ناحیه اصلی ناخالصی در نواحی داخلی، اکسید روی با دانه‌های سایر مورد آنتنی با مقدار به 400 نانومتر در حدود 400 نانومتر تنگ شده است. برای بررسی ناحیه اصلی ناخالصی در نواحی داخلی، اکسید روی با دانه‌های سایر مورد آنتنی با مقدار به 400 نانومتر در حدود 400 نانومتر تنگ شده است. برای بررسی Naxke اکسید روی با دانه‌های سایر مورد آنتنی با MPP و کمک می‌کند. مفسادات نانوساختارهای مختلف می‌تواند به عنوان الکترون شفاف برای اصلی سیستمیتی و درست کننده تردد نسبی به فرابنفش، به عنوان یک نماسختار مهم مطرح است. ارزان بودن اکسید روی، فرآیند نسبی، پایداری شیمیایی و غیرسفیدی بودن

ان، این ماده را بسیار بر کاربرد نموده است [5].

این ترکیب به همراه ناخالصی‌های مختلف می‌تواند به عنوان الکترون شفاف برای سیستمیتی و درست کننده تردد نسبی به فرابنفش، به عنوان یک نماسختار مهم مطرح است. ارزان بودن اکسید روی، فرآیند نسبی، پایداری شیمیایی و غیرسفیدی بودن

 referencia
گزارش، دمای زیرلایه است [24]. در این پژوهش، برای انتخاب
دمای مناسب لایه‌ای عددی مکنی به نوعی نازک اکسید روی خالص در
سه دمای زیرلایه 350، 450 و 550 درجه سانتی‌گراد لایه
نشانده و نگهداری شد. نتایج حاصل نشان داد که برای دمای 350 درجه سانتی‌گراد
لایه‌ای کنارداری ر روی صفحه‌ای به دست آمده که به اندازه
پانترویک در می‌آید [19].

تاکنون روش‌های متخلّف برای تنظیم تعداد انرژی اکسید بکار
رفته است که عبارت شیمیایی خیار شبیه است [20-23]. لایه‌ای
نشانه بار در سطح ظریف (کریستالی) شیشه‌ای شده و با
نگهداری در محیط ضایعات تغییراتی دارد. این تغییرات می‌تواند
دوان آن ویژگی‌های نوری و الکتروکیکی لایه‌ای باشد. قابل
کنترل بوده و در تکنیک‌های نوری ممکن است.

است

معکل‌کرده و بازده دستگاه‌های ساخته شده از لایه‌ای نازک
به سبب نیز ویژگی‌های ساختاری، ریزساختاری و تغییراتی
در شیمیایی و شیمی‌کیکی که به سبب واگذاری از این نازک
از اهمیت بسیار بخرجداشت. در می‌توان به این نظر و
کنترل آنها کیفیتی دستگاه ساخته شده از آنها را بهبود
داده و بازده مکانیکی که با افزایش داده و ترکیبی.
ویژگی‌های ریزساختاری و ساختاری اینکه به لایه‌ای به
شکل داده شده است، قابل کنترل در این مسیر است.

در این پژوهش، اثر ناخالصی گلیم بر ویژگی‌های ساختاری
و اپتیکی لایه‌ای نازک ZnO نتیجه شده بود. روش اسیری
پالیمرولیز بر سر بررسی نشده است.

روش اپتیکی

لایه‌ای نازک ZnO بر سطح‌های شیشه‌ای به روش اسیری
پالیمرولیز بیان شده است. محصول اولیه شامل کریستال روی
با مقدار مولی معین 0.1 مولار در حلال آب نقطهای
به عنوان 1 مسی اسید است. در این افزایش خلیفه آماده شد.
برای تهیه ZnO:Ga با مقدار اپتیکی هالیم 0.3 و ZnO:Ga
2 مول از نیترات گلیم استفاده شد. این برداری شیشه‌ای
ای تمیز شده است. به صورت چرخان قرار داده شده و سپس
محصول با زیر‌پلیمرولیزی شده است. این افزایش
با اصلاح مناسب پارامترهای لایه‌ای بیان شده است افزایش
محصول اسیری، یافته‌ای نازک آشامیده، دامی، زیرلایه، نوع
و فشار هستند. محصول کیفیت ساختار پلیمرولیزی
شیشه‌ای، چسبانی و رخ‌دهی است. این افزایش با
بررسی اکسیدپرین برای 3 سطح X و با استفاده از راهبه
محاسبه شد.

\[D = k \lambda / \delta \cos \theta \] (1)

کردن [11]. در این پژوهش دستگاه داده شده که به روش
نافذالایی منگنز به نوعی نازک اکسید روی، گف نوی
افزایشی می‌باید [19].
تهاجم جاهای اکسیدس بیشتری پیرامون آن باشد، پس راستای رشد از محوّر c به محوّر a تغییر می‌یابد [25]. می‌توان کاهش دیده شده در اندام‌های بلورکها و کند شدن فرآیند رشد اگر با ورود اتم‌های اکسیژن از دیگر اوج‌های در شبکه در اثر اختلاف شعاع گالیم و روي دانست. شعاع اتمی و شعاع گالیم برای دیگر اوج‌های گالیم و روي اختلاف بسیار ناجیزی دارند اما $r_{Ga}^{3+} = 0.08 \text{pm}$ از شعاع برونی گالیم ($r_{Ga}^{3+} = 0.14 \text{pm}$) به مراتب کوچکتر است. پس اگر گفت که همین کوچک بودن باعث رشد دیگر در زوایای برگر و همچنین ابزار اوج‌های در الگوهای پراش نمونه‌های دارای ناخالصی‌های شده است.

بررسی ویژگی‌های ریزساختاری

در شکل 3 تصویرهای گرفته شده با ریزسکوپ تولیکاسیونی از نمونه‌های با درصدی‌های ناخالصی صفر، یک و پنج درصد آورده شده است. چنان‌که دیده می‌شود، سطح نمونه خالص بیشتر زیر است با روند ناخالص یا یک درصد سطح نسبی به نمونه خالص همواری باعث افزایش طول ۴۰ درصد دیگر از این ناحیه خالص. فاکتور درصد بیشتر درخوانده شده است. افزایش افزایش ناخالصی به یک درصد سطح نسبی به نمونه خالص همواری باعث افزایش طول ۴۰ درصد دیگر از این ناحیه خالص. فاکتور درصد بیشتر درخوانده شده است. افزایش افزایش ناخالصی به یک درصد سطح نسبی به نمونه خالص همواری باعث افزایش طول ۴۰ درصد دیگر از این ناحیه خالص. فاکتور درصد بیشتر درخوانده شده است. افزایش افزایش ناخالصی به یک درصد سطح نسبی به نمونه خالص همواری باعث افزایش طول ۴۰ درصد دیگر از این ناحیه خالص. فاکتور درصد بیشتر درخوانده شده است. افزایش افزایش ناخالصی به یک درصد سطح نسبی به نمونه خالص همواری باعث افزایش طول ۴۰ درصد دیگر از این ناحیه خالص. فاکتور درصد بیشتر درخوانده شده است. افزایش افزایش ناخالصی به یک درصد سطح نسبی به نمونه خالص همواری باعث افزایش طول ۴۰ درصد دیگر از این ناحیه خالص. فاکتور درصد بیشتر درخوانده شده است. افزایش افزایش ناخالصی به یک درصد سطح نسبی به نمونه خالص همواری باعث افزایش طول ۴۰ درصد دیگر از این ناحیه خالص. فاکتور درصد بیشتر درخوانده شده است.

\[
\begin{array}{|c|c|c|c|}
\hline
E_g (eV) & D(\text{nm}) & a(\text{Å}) & \text{FWHM}^{(\circ)} \\
\hline
2.39 & 0.57 & 3.26 & 0.234 \\
2.39 & 0.57 & 3.26 & 0.234 \\
2.39 & 0.57 & 3.26 & 0.234 \\
2.39 & 0.57 & 3.26 & 0.234 \\
\hline
\end{array}
\]

درصد ناخالصی

مکان (% تحلیل‌سنج)

...
بررسی ویژگی‌های ایتیکی طیف‌های تراکسیلی و جذبی همه نمونه‌ها در گستره طول موج 300 تا 1100 نانومتر ثبت شد. شکل 4 طیف‌های تراکسیلی 4 نمونه‌ها را برای مقادیر مختلف ناخالصی گالم نمایان می‌نماید. درصد است که با آفاشی ناخالصی شفافیت بسیار از 85 درصد است که با آفاشی ناخالصی شفافیت ناپایه در این گستره بیشتر می‌شود. درصد حداقل همه نمونه‌ها درصد عبور بالایی را نشان می‌دهد.

برای محاسبه گالف نواری، منحنی تجریب ضرب جذب ایتیکی ناپایه [\(\lambda \) (Aα)] به کمک رابطه زیر محاسبه شده:

\[
\alpha (\lambda) = 2.303 A/\lambda
\]

در این رابطه، \(A \) درصد جذب و \(\lambda \) ضخامت لایه است. ضخامت هر لایه با مدل ریاضی PUMA محاسبه شد و طیف‌گذیری.
مراجع
