لايه نشاني و مشخصه يابي لايه هاي نازك SnO$_2$:Sb

محمد رضا فدوی اسلام

درافت مقاله: 24/11/97، نسخه نهایی: 24/11/97

چکیده: در این مطالعه به ایجاد نازک‌های اکسیدی شفاف اکسید سیلیکون در آن می‌تواند به عنوان حسگر گازی، کانالزور اکسیدی و رسانگاه شفاف بکار رود. [1, 11] و یازگی های مختلف اکسید سیلیکون را به‌یاری بیشتر کاربرده می‌تواند به ترتیب ناخالصی بهبود بخشید [11]. لایه‌های نازک اکسیدی اولانده به رسانگاه‌های الکتریکی بالا، غیر توانایی سیلیکون در تهیه شده در سلول‌های خورشیدی، نماشگر و قطعات الکترینیک کاربرد سلول‌های خورشیدی، نماشگر و قطعات الکترینیک کاربرد

مقدمه

لاه‌های نازک اکسیدهای رسانای شفاف از قبل، SnO$_2$, In$_2$O$_3$ و ZnO، نیکل اکسید سیلیکون، مناسب برای غیر نشان می‌کند. [1] نازک‌های اکسید به‌یدوخای فیزیکی قابل توجهی که درند هستند مرتفع از قطعات الکترینیک کاربرد [11]. در کافی اکسید نپرینسا نوع 1 نیز مورد بررسی در گستره 30-130 کیلوهertz ولت است، که به دلیل دارای بی‌بودن توربوزیگی و زیگی‌هایی از قبیل مواد الکترینیک پایین، شفافیت بالا در محصولات نور مرئی، پایداری و جوده داشته کافی نور است. [11-13]. نازک‌های اکسید کاربردی که به شکل این مورد می‌تواند آرتیک مسئله زیگی‌ها و قطعات الکترینیک و نمایشگر نیپرینسا دارد [13-15].

مراجع

m.r.fadavieslam@du.ac.ir

نویستنده مسئول، تلفن: 819، شماره: 090913252320، پست الکترونیکی: m.r.fadavieslam@du.ac.ir
روش تجربی

راه‌های مشخصه‌بایی ساختاری برای توجه مناسب‌تری باعث می‌شود که این دارای سب‌بلور هستند و نهایاً فاز دو (Sn2O3) ساختار جاروگویی مشکل شده است و فازهایی چون Sn2O3 و Sb2O3 و Sb2O3 با جانگزین پون در شکل Sn2O3 و یا اینکه در ناحیه غیر پلوری مز دانه‌ها قرار گرفته است. با افزایش ناخالصی آنتیومان از صفر تا 2.5% (213) و 3.5% (4) افزایش می‌یابد و فقط ترجمه می‌تواند به صورت (213) است. با افزایش ناخالصی از 2.5% تا 10% به جز مربوط به صفحه (110) شدت سپر قلئ‌ها کاهش می‌یابد.

آنالز مواد دانه‌های نمونه‌ها با بکارگیری رابطه شرور

\[D = \frac{A h}{L} \]}

جدول 1 شرایط لایتنیتی لایه‌ها

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ارتفاع نازلی±سمتر</td>
<td>650 (15)</td>
</tr>
<tr>
<td>فشار گاز حامل</td>
<td>100 (6)</td>
</tr>
<tr>
<td>دما (°C)</td>
<td>300</td>
</tr>
<tr>
<td>حجم محلول اسپری (ml)</td>
<td>30</td>
</tr>
</tbody>
</table>
آن‌ها که از افزایش ناخالصی آنتیموان از سفراً تا ۲.۵٪ انداده بلورک‌ها برای تولید تغییرات عبور لایه‌ها بر حسب طول موج (شکل ۲) نشان می‌دهند که میانگین انرژی انتیموان عبور کاهش می‌یابد [۲۷،۲۸،۲۹]. کاهش عبور بلورک‌ها در افزایش ناب‌طبیعی می‌باشد. افزایش اپت‌سم سرب در ضریب جذب لایه‌ها (α) از افزایش بر حسب محاسبه شد:

\[\alpha = \frac{2.303\text{SnO}_2}{t} \]

که در آن A جذب شده توسط طیفسنج اندازه‌گیری و t ضخامت لایه بر حسب نانومتر است. گاه انرژی (مستقیم) بر اساس رابطه تاک [۳۰]:

\[(\alpha h \nu)^2 = A(h \nu - E_g) \]

در این رابطه، D متوسط اندازه بلورک‌ها در جدول ۲ ارائه شده است. جنتاکه دیده می‌شود، با افزایش تعداد مختلف آنتیموان از سفراً تا ۲.۵٪ انداده بلورک‌ها افزایش می‌یابد و سپس با افزایش تغییرات عبور لایه‌ها بر حسب طول موج (شکل ۳) نشان می‌دهد که میانگین انرژی انتیموان عبور کاهش می‌یابد [۲۷،۲۸،۲۹]. کاهش عبور بلورک‌ها در افزایش ناب‌طبیعی می‌باشد. افزایش اپت‌سم سرب در ضریب جذب لایه‌ها (α) از افزایش بر حسب محاسبه شد:

\[\alpha = \frac{2.303\text{SnO}_2}{t} \]

که در آن A جذب شده توسط طیفسنج اندازه‌گیری و t ضخامت لایه بر حسب نانومتر است. گاه انرژی (مستقیم) بر اساس رابطه تاک [۳۰]:

\[(\alpha h \nu)^2 = A(h \nu - E_g) \]
جدول 2: نتایج برآمده از طیف‌سنجی XRD

<table>
<thead>
<tr>
<th>hkl</th>
<th>110</th>
<th>101</th>
<th>200</th>
<th>211</th>
<th>220</th>
</tr>
</thead>
<tbody>
<tr>
<td>2θ°</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>D (nm)</td>
<td>32</td>
<td>33</td>
<td>35</td>
<td>37</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>33</td>
<td>35</td>
<td>37</td>
<td>39</td>
</tr>
<tr>
<td>6°</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>D (nm)</td>
<td>72</td>
<td>74</td>
<td>77</td>
<td>79</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>74</td>
<td>77</td>
<td>79</td>
<td>82</td>
</tr>
<tr>
<td>7.5°</td>
<td>80</td>
<td>85</td>
<td>90</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>D (nm)</td>
<td>91</td>
<td>93</td>
<td>95</td>
<td>97</td>
<td>100</td>
</tr>
</tbody>
</table>

شکل 2: تصاویر FESEM با درصد‌های مختلف آنتیمون.

شکل 3: نمودارهای عبور از طیف‌سنجی بر حسب طول موج نور درصد‌های مختلف SnO2 با درصد‌های مختلف آنتیمون.
جدول ۲ نتایج مشخصه‌های ایزوتیپی، الکتریکی و ترمومالکتربیکی SnO۲:Sb

عنصر	عدد های اتمی	تناسب	اثرات
Sn	50.5	3.73	افزایش
Sb	49.5	3.77	افزایش

مقدار ضریب سیبیک (K) در صفحه سیبیک

جدول ۳ نتایج مشخصه‌های الکتریکی و ترمومالکتربیکی SnO۲:Sb

عنصر	عدد های اتمی	تناسب	اثرات
Sn	50.5	3.73	افزایش
Sb	49.5	3.77	افزایش

مقدار ضریب سیبیک (K) در صفحه سیبیک

شکل ۴ نمودارهای (hν) بر حسب (aνhν۲) با درصد مختلف ناخالصی انتیمیان SnO۲:Sb

کلمات کلیدی: SnO۲:Sb، الکتریکی، ترمومالکتربیکی، انتیمیان، ناخالصی.
شکل 5 مقایسه تغییرات متوسط اندازه ذراتی، کاف ایتیک و مقاومت لاشه با حسب مقدار آنتیموان.

برداشت
بررسی الگوهای ریپش نمونه‌ها نشان می‌دهد که آنها XRD ناحیه‌های پیشرفت و اندازه پیل‌کشی آنها در گستره 15 تا 27 نانومتر است که با افزایش ناخالصی آنتیموان روند افزایش کاهشی را دنبال می‌کند. افزون بر آن، افزایش قدرت حرارتی آنتیموان سبب می‌شود که در گستره نور مرئی از 72 به 75% به 15% و گاف نوری از 2.37 به 2.98 eV کاهش یابد. مناسب‌ترین الکتریکی نمونه‌ها نشان می‌دهد که آنها نیمرسانای نوع n هستند و

aluminium- und wolframspänen", Acta Metallurgica 1 (1953) 22-31
[27] G.K Williamson, W.H Hall, “X-ray line broadening from filed aluminium and wolfram