مقدمه
توپ‌های نفوذی مورد بررسی در شمال شهر سمنان قرار دارند. بر پایه پهن‌برنده‌ی منطقه [1]، منطقه سمنان در پهن‌برنده‌ی ایران مرکزی و البرز مرکزی قرار گرفته و تا در فرضی کرانه‌های فعال قرار دارد. همچنین آنها در ناحیه عمویون و دام‌داری‌های بیشتری از دام‌داری‌های آبی‌رنگ در این منطقه وجود دارند.

فشارسنجی این توده نفوذی انجام نگرفته است، در این توده نفوذی با استفاده از نتایج مطالعات صحرایی، شیمیایی و زمین‌شناسی، توده نفوذی توده نفوذی نفوذی، مربوط به این اثر، توضیح بستری و در توده سمنان نشان داده شده است. همچنین توده نفوذی در تنظیم نفوذی جایگاه بیشتر در شمال شهر سمنان قرار دارند.

واژه‌های کلیدی: گرانی‌توده‌های سه‌سیر، نفوذی کاتی، توده نفوذی، مستند، دانشگاه شریعتی، دانشگاه علوم زمین، دانشگاه صنعتی شهید بهشتی، شهروندی، ایران

سعید کامرانی، احمد احمدی خلیلی، محمد رضایی کریمی از درمان نفوذی نکه در شمال سمنان (ایران مرکزی)

- گروه زمین‌شناسی، دانشگاه علوم پایه، دانشگاه البرز، ایران
- گروه تپنوردی و زمین‌شناسی، دانشگاه علوم زمین، دانشگاه صنعتی شهید بهشتی، شهروندی، ایران

(دریافت مقاله: ۱۳۹۷/۱۱/۲۷، نسخه نهایی: ۱۳۹۸/۱۲/۲۴)

چکیده: توده نفوذی نکه در شمال شهرستان سمنان رخ دارد. این توده با تأکید مونوتونی-کوارتز مونسوئیت و گرانیت گایکیت و گتان‌گیت درون توده نفوذی در این منطقه، توده نفوذی توده نفوذی در این منطقه، تودе‌
زمن‌شناسی

در مناطق سمنان، کرمان و خوزستان، این سلسله در شمال غربی سمنان (عطاری) و باستان به بهبهان می‌رسد و در مناطق جنوب شرقی این سلسله (از جمله بخش‌های شمالی شهرستان سمنان) و باستان بیش از ایران مرکزی هستند. [1، 2]، چگی سنگ در منطقه‌ها با سینه‌های آتش‌نشانی، رسوبی-آتش‌نشانی و رسوبی است که منطقه مورد بررسی به منطقه‌ای که در واحد‌های چین‌نشانی زوراسیک تا کوارتزی دیده می‌شود (شکل 1 ب [3، 4]) است. سنگ‌های آتش‌نشانی انسن به طور کلی شاخص سلسله‌ای نشان دهنده تراکم اندزیت، تراکم‌های سنگ‌های ناحیه است. بسیاری از رسوبی‌های انسن به سمین محیط هستند که توسعه نیافته نواحی مهم‌ترین انسن می‌باشد.
روش انجام پژوهش
ظیعه‌های محیطی: ۳۰ نمونه سنگی برای بررسی‌های سنجش‌گرایی از تغذیه نفوذی نوکه برداشته شد. سپس کانی‌های شناسایی و روابط آنها به دقت بررسی گردید و ۱۴ نمونه از این سنگ‌ها که کمترین دگرسانی را داشتند برای شناسایی عنصرهای اصلی، به روش فیبرسانی نشر انتسی‌پلاسمای جفت شده قاچ (ICP-AES) و عنصرهای فرعی، کمیاب و خاکی، به روش فیبرسانی جرمی پلاسمای جفت شده قاچ کشور کانادای ALS-CHEMEX (ICP-MS) به آزمایشگاه ارسال شدند [۱۰]. دقت اندازه‌گیری برای همه عناصر اصلی در حد ۰.۰۱ درصد ویژه، دقت اندازه‌گیری در گروه ۱۰ ppm برای با Ta و Cr، و ۱۰۰ ppm برای با Ti، عنصر جزئی برای عنصر اصلی دیده می‌شود. این مقدار تجزیه نقاطی از کانی‌های کلینوبیوپروسنس، کلینوسیل و پلازویکلاز به عنوان کانی‌های قابل توجه در این

سنگ‌ها. ۲ مقطع نارس صلی‌بیلی در دانشگاه اسلو در کشور نروژ ارسال شدند. طی این مرحله، ۱۴ نقطه از کانی کلینوبیوپروسنس، ۷ نقطه از کانی کلینوبیوپروسنس، و ۸ نقطه از کانی بیونیت و ۱۲ نقطه از کانی پلازویکلاز در شرایط وراثت شتاب دهنده ۱۵ کیلو ولت، شدت جریان ۱۵ نانو آمپر، زمان شمارش ۱۰ ثانیه، دقت درصد وزنی و قطع بر مترک ۱۰ میکرومتر برای پلازویکلاز و ۵-۲ میکرومتر برای سایر کانی‌ها تجزیه شدند (جدول ۱ تا ۴).

سنگ‌گرایی
تغذیه نفوذی نوکه از نظر سنگ-گرایی از دو نوع مختلف شمل مونوتیپ-کوارتزمونوتیپ و گرایی-گرایی موجودیت تشکیل شده است که در زیر روابط بافت و ترکیب کانی‌شناسی آنها ارائه می‌شود.
جدول 1. نتایج تجزیه نفظ‌های کانی کلاریتروکسی در توده نفوذی نوکه. محاسبه تعداد کانی‌ها بر پایه 6 انواع آزمایش انجام شده است.

<table>
<thead>
<tr>
<th>فیزیولوژی</th>
<th>GAF 30</th>
<th>GAF 34</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cpx 1</td>
<td>Cpx 2</td>
</tr>
<tr>
<td></td>
<td>میزان</td>
<td>میزان</td>
</tr>
<tr>
<td>Si</td>
<td>1.19</td>
<td>1.84</td>
</tr>
<tr>
<td>Al</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>Fe</td>
<td>0.05</td>
<td>0.07</td>
</tr>
<tr>
<td>Ca</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Mg</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>K</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>مجموع</td>
<td>4.04</td>
<td>4.16</td>
</tr>
</tbody>
</table>

جدول 2. نتایج تجزیه نفظ‌های کانی آمپتیلول در توده نفوذی نوکه. محاسبه تعداد کانی‌ها بر پایه 23 انواع آزمایش انجام شده است.

<table>
<thead>
<tr>
<th>فیزیولوژی</th>
<th>GAF 30</th>
<th>GAF 34</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amph 1</td>
<td>Amph 1</td>
</tr>
<tr>
<td></td>
<td>میزان</td>
<td>میزان</td>
</tr>
<tr>
<td>Si</td>
<td>1.19</td>
<td>1.84</td>
</tr>
<tr>
<td>Al</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>Fe</td>
<td>0.05</td>
<td>0.07</td>
</tr>
<tr>
<td>Ca</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Mg</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>K</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>مجموع</td>
<td>4.04</td>
<td>4.16</td>
</tr>
</tbody>
</table>

کلیه داده‌ها به همراه بیانیات مندرج در مقاله اصلی با استفاده از Core و Core Rim محاسبه شد.
جدول ۳ نتایج تجزیه نقطه‌ای کایی بوتیت در توده نفوذی نوکه. محاسبه تعداد کاتیون‌ها بر مبنای ۲۲ اتم اکسیژن انجام شده است. مراکز Core و Rim به‌ترتیب حاشیه‌است.

<table>
<thead>
<tr>
<th>کاتون</th>
<th>100</th>
<th>100</th>
<th>100</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>211</td>
<td>211</td>
<td>211</td>
<td>211</td>
</tr>
<tr>
<td>Al</td>
<td>112</td>
<td>112</td>
<td>112</td>
<td>112</td>
</tr>
<tr>
<td>Ti</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>Fe</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>Mg</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>Ca</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>K</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>Na</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>OH</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>مجموع</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

جدول ۴ نتایج تجزیه نقطه‌ای کایی پلاژیوکلوز در توده نفوذی نوکه. محاسبه تعداد کاتیون‌ها بر مبنای ۸ اتم اکسیژن انجام شده است. مراکز Core و Rim به‌ترتیب حاشیه‌است.

<table>
<thead>
<tr>
<th>کاتون</th>
<th>100</th>
<th>100</th>
<th>100</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>211</td>
<td>211</td>
<td>211</td>
<td>211</td>
</tr>
<tr>
<td>Al</td>
<td>112</td>
<td>112</td>
<td>112</td>
<td>112</td>
</tr>
<tr>
<td>Ti</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>Fe</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>Mg</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>Ca</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>K</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>Na</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>OH</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>مجموع</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
مجزأه در بخش نمونه‌ها به کلریت تبدیل شدند.

زمین‌شناسی - کوارتزمونوژنیت: این سنگ‌ها در نمونه دستی به
رنگ خاکستری روش‌های تربیته و خاکستری مایل به صورتی بوده
و بلورهای پلاژیوکلاز. کوارتز و بیوتیت در آن‌ها قابل تشخیصی
بودند. از کوارتز و پلاژیوکلاز از کانی‌های اصلی مونوژنیت‌ها
بودند و این سنگ‌ها جز پراکندگی شان در دهانه بودند. برخی
از کانی‌های از کوارتز به کانی‌های رسی دریاگی شدند.
پلاژیوکلازها به جرم ۵۰ تا ۵۰ درصد، به شکل تا نیمه‌شکل،
با ماکل رنگ‌پردازی شدند و به‌طور بهتر در اثر دگرسانی به
سیریت تبدیل شدند. این نمونه‌ها دارای کانی‌های فرعی
کارتوبروکسن به جرم کمتر از ۵ درصد و بیوتیت به جرم
کمتر از ۳ درصد بودند (شکل ۳ ف). بیوتیت‌ها اغلب بین-
شکل تا نیمه‌شکل در دارای چندگانه قفل‌ها و رنگ بکه‌های

شکل ۳ تصاویر میکروسکوپی از نمونه‌های نوک: (الف) بیفت دانه‌های در نمونه‌های مونوژنیت‌ها به همراه کانی‌های از کوارتز، پلاژیوکلاز و کانی‌های
فرعی کلتیپیروسک، آمتیسول و بیوتیت (XPL) بافت گرائولاز در نمونه‌های کوارتزمونوژنیت‌ها به همراه کانی‌های از کوارتز، کوارتز خلیجی
(ب) بافت گرائولاز در نمونه‌های کوارتزمونوژنیت‌ها (XPL) بافت بیوتیت در نمونه‌های گراندوبروکسن (XPL) بافت گرائولاز در نمونه‌های گراندوبروکسن به همراه کانی‌های پلاژیوکلاز، کوارتز و از کوارتز و کانی‌های فرعی
cپلاژیوکلاز و بیوتیت (XPL) (ج) کانی‌های فرعی بیوتیت، آمتیسول و کانی‌های تربیت به همراه میکروتاریه‌ای از کانی زیرکن در بلور پلاژیوکلاز در
نمونه‌های گراندوبروکسن (PPL).
گراین-گالوانوکروموپلیت (آ) این سنگها در نمونه‌های لاکروز پدیده شده و در نمونه‌های برخی از نمونه‌های ناشناخته پدیده شده و در نمونه‌های برخی از نمونه‌های ناشناخته

کوارتز و الانتیوپت می‌تواند با درجه سنگین تر باشد. گلیس و پلیاسیک‌کاروب و پلیاکت‌کاروب در نمونه‌های اصلی کوارتز، گلاکتروس و پلیاکت‌کاروب و اغلب بافت نانو می‌دهند. کانی

کوارتز با فراورق ۲۰ تا ۳۰ درصد حجمی به صورت بگیره شکل دارد. با کمک کاریم‌سازی می‌تواند. کانی فرگی بیشتر با

محیط اثر شاخ و بسیاری از آن‌ها که می‌تواند با دبی دنیا به دبی‌ها و مکان‌های گلیس و پلیاک‌کاروب، گلاکتو-کاروب و پلیاک‌ت‌کاروب با فاصله اصلی شکل‌سازی شده‌اند. پلیاک‌ت‌کاروب‌ها شکلی را نشان می‌دهند که با مکان چندین‌خوره

هستند و در اثر دگرسانی گیاهی به سبب می‌شود. این سنگ‌ها به هر یک کمتر از ۵ درصد حجمی نمونه‌ها را به خود اختصاص می‌دهند. می‌توان به کلینیپتروپس، بیوپت، آمیفیل و

کانی‌های تنه‌نشین کرد. کلینیپتروپس‌های به صورت بلورها یا می‌تواند با کمک کمتر از ۵ درصد حجمی

بوده که در بخش‌هایی از این درگاه‌ها به تدریج تبدیل شده است. آمیفیل و بیوپت نیز با فراورق کلی کمتر از ۱۰

درصد به صورت نهایی شکل‌بندی می‌شوند. در نمونه‌های

سالم، بلورهای پلیاک‌ت‌کاروب‌ها در بخش‌هایی از تکرار هستند

(شکل ۳ ج).

بحث و بررسی

زمین‌شیمی

تربیت شیمیایی نمونه‌های برزیلی شده [۱۰] در نمونه‌های

میکروکِنز و کوارتز موئیت و به کمک در گستره قاره‌ای و

گالوانوکروموپلیت قرار می‌گیرد که این امر می‌تواند با فاصله

جدای و افزایش مقدار سیلیس به سمت مرکز تونه سازگار

باشد (شکل ۴ آلیه). در نمونه‌های به‌ناتورالپت-آنتوفیت-رترنت فیت

یک نمونه شده در نمونه‌های دستی به رنگ

سفید مایل به صورت تا خاکستری متمایل به سبز و خاکستری

تیره عده و بلورهای فلس‌سیاه، کوارتز و بیوپت در آن‌ها قابل

شناسی‌سازی نمی‌شود. در مقاطع میکروکُنی و نمونه‌های گرانیت

و گالوانوکروموپلیت دارای کانی‌های اصلی کوارتز، ارتکنال

و پلیاک‌کاروب و اغلب بافت نانو می‌دهند. کانی

کوارتز با فراورق ۲۰ تا ۳۰ درصد حجمی به صورت بگیره شکل دارد. با کمک کاریم‌سازی می‌تواند. کانی فرگی بیشتر با

محیط اثر شاخ و بسیاری از آن‌ها که می‌تواند با دبی‌ها و مکان‌های گلیس و پلیاک‌کاروب، گلاکتو-کاروب و پلیاک‌ت‌کاروب با فاصله اصلی شکل‌سازی شده‌اند. پلیاک‌ت‌کاروب‌ها شکلی را نشان می‌دهند که با مکان چندین‌خوره

هستند و در اثر دگرسانی گیاهی به سبب می‌شود. این سنگ‌ها به هر یک کمتر از ۵ درصد حجمی نمونه‌ها را به خود اختصاص می‌دهند. می‌توان به کلینیپتروپس، بیوپت، آمیفیل و

کانی‌های تنه‌نشین کرد. کلینیپتروپس‌های به صورت بلورها یا می‌تواند با کمک کمتر از ۵ درصد حجمی

بوده که در بخش‌هایی از این درگاه‌ها به تدریج تبدیل شده است. آمیفیل و بیوپت نیز با فراورق کلی کمتر از ۱۰

درصد به صورت نهایی شکل‌بندی می‌شوند. در نمونه‌های

سالم، بلورهای پلیاک‌ت‌کاروب‌ها در بخش‌هایی از تکرار هستند

(شکل ۳ ج).

بحث و بررسی

زمین‌شیمی

تربیت شیمیایی نمونه‌های برزیلی شده [۱۰] در نمونه‌های

میکروکِنز و کوارتز موئیت و به کمک در گستره قاره‌ای و

گالوانوکروموپلیت قرار می‌گیرد که این امر می‌تواند با فاصله

جدای و افزایش مقدار سیلیس به سمت مرکز تونه سازگار

باشد (شکل ۴ آلیه). در نمونه‌های به‌ناتورالپت-آنتوفیت-رترنت فیت

یک نمونه شده در نمونه‌های دستی به رنگ
شکل ۴. نمودار ژدیلی مبتنی بر SiO2 و Na2O+K2O نشان‌دهنده تاثیر Na2O+K2O برای استحکام و قابلیت باربری.

شکل ۵. نمودار ژدیلی مبتنی بر SiO2 و Na2O+K2O نشان‌دهنده تاثیر Na2O+K2O برای استحکام و قابلیت باربری.
بررسی نمودارهای عناصر خاکی نادر و ناسازگار
الف نشان‌گر روندی بکنواخت، مسطح و به طور کلی دگروی گذاشی نیافته در توزیع عناصر خاکی نادر سنگین (HREEs) است. در حالی که عناصر خاکی نادر سبک-شدگی و گذاشی بیانگری را نشان می‌دهند. این غنی‌سدنگی می‌تواند نشان‌دهنده بالا بودن نسبت CO۲/۲H۲O در خاساغاه باشد. عمک پیش‌ترین تولید مجارا، درجات کم ذوب‌بخشی منبع گوشته‌ای در حدود ۲۵ درجه جدایی زیاد آن ایز مانگا به وسیله مواد پوسته‌ای [۲۴.۲۵] یا خاساغاه نسبتاً غنی از عناصر قلیایی وابسته به مناطق فروزان باشند. [۲۵] شکل‌های ۶ و...
خاستگاه و جایگاه زمین‌ساختی برای بررسی جایگاه زمین‌ساختی توده نفوذی نوکه از نمودارهای شناسایی گوناگون استفاده شد. در نمودارهای درصد وزنی SiO2 و FeO/Fe2O3+MgO نسبت به FeO، که با آهنی گلیایی بویی و نبود کلیپ های پیروکسین و آمفیبول قلبی در نمونه‌های مورد بررسی هم‌خوانی دارد (شکل - های 7 ف و ب)، در شناسایی انواع گرانیتونیده‌های کوهزایی بر اساس نمودار Y نسبت به FeO مورد بررسی (VAG+Syn-COLG در گستره و همزمان با بروخورد) چای گرفته‌اند (شکل 7 ب)، همچنین به منظور جداسازی گرانیتونیده‌های کمان آنتفیش شهر یب (Rb+Ta) استفاده شد. به این ترتیب، نمونه‌های مورد بررسی در گستره (گرانیتونیده‌های کمان آنتفیش شهر) چای گرفته‌اند (شکل 7 ت).
گالریوی همکواری دارد [18].

شیمی کانی

به منظور رده‌بندی، تعبین سری ماگمایی، دما، فشار و محتویات زمین ساختی توهمی نوکه از نتایج تجزیه تعیینی عناصر اصلی کانی‌های کلینپیریکس، آمفیبول، بینوبیت و بلازوکلاز استفاده شد (شکل‌های 9 تا 14). در سنتیه‌های مرود بررسی، کانی‌های کلینپیریکس به مقدار قابل توجه دیده می‌شود. پیروکسنس را با توجه به قرارگیری‌ها در جای‌گاه‌های (M1M2T2O6) و ارسال در فرمول عمومی آنها (M1) و M2 نمایی رده‌بندی می‌گذشد. ترکیب شیمی‌ای Wo-En-Fs [rv] En-Fs

شکل 8 جایگاه نمونه‌های توده نفوذی نوکه در نمودارهای سنتزی [32] (الف) نسبت به Rb/Sr و CaO/Na2O Al2O3/TiO2

شکل 9 جایگاه کلینپیریکس‌های نمونه‌های کوئرزت‌ناپیونی توده نفوذی نوکه در نمودار مالتی-کالسیول [37] (الف) Wo-En-Fs

[DOI: 10.29252/ijcm.27.3.649]
ترکیب کلینپروفوسین‌ها به ترکیب شیمیایی و محیط
تشکیل‌گذاره‌ها میزان وابستگی است. در نتیجه، این کالی‌کربن و کلینپروفوسین در گستره‌های سنتگه‌دار سری‌های کلینپروفوسین در نمودارهای ۹ درصد وزنه Al₂O₃ نسبت به SiO₂ (نکته [۸۷] TiO₂ [نکته ۸۹] Al₂O₃ [نکته ۸۹]) شد. براساس نمودار نخست‌کلاسترهای نیمه قلبی، قلیایی و قلیایی را نتفیکی کنده کلاسترهای سری‌های قلبی، قلبی و آمیزه قلبی انتخاب شده. در آزمایش‌های Ti+Cr کلاسترهای نخست‌کلیسی در نمودار Ca نسبت به Si و Al ۱۰۰ و غنی‌تر (۱۹۷-۲ و ۰۶–۵) در ترکیب شیمیایی کلینپروفوسین‌های مورد بررسی از ویژگی‌های پیروکسی‌های موجود در سنگ‌های گراتن‌سازی کلاسترهای انتخاب‌کننده کلاسترهای به قرار گرفتن نمونه‌ها در گستره‌های گام‌سازی های کالی‌کربن می‌باشد یک سازگار است [۴۱] سرانجام به منظور تعیین دما و فشار تشکیل این کلینپروفوسین‌ها از نمودارهای YPT = -۰.۳۶۹ SiO₂ + ۰.۵۳۵ TiO₂ - ۰.۳۱۷ Al₂O₃ + ۰.۳۲۳ FeO + ۰.۲۳۵ MnO - ۰.۵۱۶ MgO - ۰.۱۶۷ CaO - ۰.۱۵۳ Na₂O - ۰.۵۴۳ MgO + ۰.۴۳۱ CaO - ۰.۴۴۶ Na₂O

![نمودارهای YPT](https://via.placeholder.com/150)

شکل ۱۰ نمودارهای YPT نسبت به YPT برای تعیین دما و فشار تشکیل کلینپروفوسین‌ها [۴۲]

در شکل ۱۱ به نمایش گذاشته شده که این کالی‌کربن‌ها به شیمیایی و محیط‌سازی‌های هاکساکان در نمودارهای ۹ درصد وزنه Al₂O₃ (نکته ۸۹) YPT = -۰.۳۶۹ SiO₂ + ۰.۵۳۵ TiO₂ - ۰.۳۱۷ Al₂O₃ + ۰.۳۲۳ FeO + ۰.۲۳۵ MnO - ۰.۵۱۶ MgO - ۰.۱۶۷ CaO - ۰.۱۵۳ Na₂O - ۰.۵۴۳ MgO + ۰.۴۳۱ CaO - ۰.۴۴۶ Na₂O
نمودار مثلثی

\[
\begin{align*}
Mg-Al^{IV}+Ti-Fe^{III}+Mn^{II} & \quad \ quad
شکل 12: تصویر دمای تشکیل آمپتیولтарیا تنه از توده نفوذی تکه در نمودار Ti نسبت به AlIV [44] و Fe/Fe+Mg نسبت به Altot نمودار.

شکل 13: تصویر ترکیب شیمیایی و دوره نفوذی تکه در نمودار مثلثی MgO-Al2O3-MgO نسبت به CaO [52] نسبت به Fe2O3 نسبت به CaO [53] نسبت به Mg/Mg+Fe این کانی در نمودار.

تشکیل این کانی در تنه نفوذی تکه استفاده شد (شکل 14). ترکیب شیمیایی این کانی که در نمودار مثلثی CaO-Al2O3-MgO نسبت به Na2O و Anorthosite به فرمول NaAlSi3O8 به فرمول با پلازیوکلازا به عناوین فراوانی در نمودار عنوان کننده سئنسی که تشکیل می‌دهند که از سیلیکات‌های داربستی هستند. از شیمی کانی پلازیوکلازا به نظر رفتار متشکل این کانی شیمیایی و دمای

\[\text{Mg-AlIV+Fe}^{3+}\text{+Ti-Fe}^{2+}\text{+Mn}^{2+}\]
برداشت

(1) بر پایه بررسی‌های سنت‌گذاری، ترکیب تونلی‌های نفوذی تونه مونوزونیت- کوارتزمونوزونیت و گرانت- گرافونوتیست، است و پلاژیوکلز، اروپتراس و کوارتز کانی‌های اصلی و بوبه‌سی و گلییه‌ریکس کانی‌های فرعی سازنده آن هستند. این نافذآل بنا چالوگانی در این سنگ‌ها، دانه‌ای بوده و بافت‌هایی چون گراندورفی و میرمکتی به‌عنوان بارف در ان حضور دارند.

(2) Na₂O+K₂O نسبت به SiO₂، ترکیب شیمیایی نمونه‌های بررسی شده در گرانت مونوزونیت- کوارتزمونوزونیت و گرانت- گرافونوتیست قرار می‌گیرند. از دیدگاه شاخص تشکیل نمونه‌های سنتیه‌ریکی بررسی شده از نوع ماتالومین تم پرآمیان هستند.

(3) سری ماده‌های سازنده تونه نفوذی بررسی شده نیمه قلبی و آکی قلبی‌پایه بوده و در به‌هنه کمان آتش‌فران کرانه فعال قراره بدید آمده است.

(4) از‌نمونه‌های لیگنیان ناهنجاری می‌توان گفت‌که چنین عناصری که و از مسیر، Ti و P،Nb و چنین در کاره‌های منفی عناصری که نشانگر پهن‌فکری کرانه‌های قاره‌ای و تشکیل ماف‌های سازنده تونه نفوذی از پیوسته قاره‌ای زیرین است.

(5) همچنین می‌توان آمیختگی قدامی از مواد گوشتی‌های در تشکیل این سنگ‌ها دخیل دانست به‌طوری که می‌توان نتیجه نودان خود را تعریف نمود.

گرفته که مکان‌های تشکیل دهنده تونه تونه نفوذی تونه برآمدگی از نسبت.

ترکیب شیمیایی کلینوبوبکسیس است و دوایی نفوذی در حد

زانیچیت و فشاری کمتر از حدود 2 تا 4 کیلوبار تشکیل شده-

اند.

(3) از دیدگاه شاخص تشکیل نمونه‌های سنتیه‌ریکی بررسی شده از نوع ماتالومین تم پرآمیان هستند.

(4) از‌نمونه‌های لیگنیان ناهنجاری می‌توان گفت‌که چنین عناصری که و از مسیر، Ti و P،Nb و چنین در کاره‌های منفی عناصری که نشانگر پهن‌فکری کرانه‌ای قاره‌ای و تشکیل ماف‌های سازنده تونه نفوذی از پیوسته قاره‌ای زیرین است.

(5) همچنین می‌توان آمیختگی قدامی از مواد گوشتی‌های در تشکیل این سنگ‌ها دخیل دانست به‌طوری که می‌توان نتیجه نودان خود را تعریف نمود.

گرفته که مکان‌های تشکیل دهنده تونه تونه نفوذی تونه برآمدگی از نسبت.

ترکیب شیمیایی کلینوبوبکسیس است و دوایی نفوذی در حد

زانیچیت و فشاری کمتر از حدود 2 تا 4 کیلوبار تشکیل شده-

اند.

(3) از دیدگاه شاخص تشکیل نمونه‌های سنتیه‌ریکی بررسی شده از نوع ماتالومین تم پرآمیان هستند.

(4) از‌نمونه‌های لیگنیان ناهنجاری می‌توان گفت‌که چنین عناصری که و از مسیر، Ti و P،Nb و چنین در کاره‌های منفی عناصری که نشانگر پهن‌فکری کرانه‌ای قاره‌ای و تشکیل ماف‌های سازنده تونه نفوذی از پیوسته قاره‌ای زیرین است.

(5) همچنین می‌توان آمیختگی قدامی از مواد گوشتی‌های در تشکیل این سنگ‌ها دخیل دانست به‌طوری که می‌توان نتیجه نودان خود را تعریف نمود.

گرفته که مکان‌های تشکیل دهنده تونه تونه نفوذی تونه برآمدگی از نسبت.

ترکیب شیمیایی کلینوبوبکسیس است و دوایی نفوذی در حد

زانیچیت و فشاری کمتر از حدود 2 تا 4 کیلوبار تشکیل شده-

[45] Stein E., Dietl C., Hornblende thermobarometry of granitoids from the central Odenwald(Germany) and their implications for geotectonic development of the Odenwald, Mineralogy and Petrology 72 (2001) 185-207.

