ساخت، مشخصه‌ی پایه و بررسی ویژگی‌های حسگری گازی لاپه‌های نازک

MoO₃

الهه قلی‌فرق، محمدباقر رمضانی*

دانشگاه فیزیک، دانشگاه صنعتی شریعتی، شاهدراز 1541495511藏着

چکیده: در این پژوهش، لاپه‌های نازک اکسید مولیبدن (MoO₃) بر زیر‌لایه‌های شیشه‌ای به روش اسبری پاپولوژیز لایه‌شناختی شد. آنالیز‌های XRD از محصولات محول بر ویژگی‌های ساختاری، نوری، ریخت‌شناسی و حسگر گازی لاپه‌ها بررسی شد. تحلیل الگوی برانش برتو (XRD) رشد ترکیجی در رشتهٔ ۲۵۰۰ و تکشکی اکسید مولیبدن را نشان داد. رشد ترکیجی در XRD موجب افزایش ۳ دیده شد که نشان دهنده پیوستگی بهتر این نمونه است. افزون بر این، طیف‌رایان این نمونه نتایج bar در فشار UV-Vis نمونه را نتایج طیف‌سنجی Gaf نواری (۲۵ ± ۰.۵۰) را دارد. تاثیب میکروسکوپ الکترونی روبشی (SEM) نشان داده که لاپه‌های مولیبدن بهبود ۱۸ بیشترین میزان جذب ایمپی شده و کمترین Gaf نواری (۲۵ ± ۰.۵۰) را دارد.

مقدمه

همه صنایع گونه‌ی بر محتوی زیست اثربخش می‌گذرانند از مواد: H2S, CO و ترکیبات گونه‌ی منتشر می‌شود. از خودروها نیز گازهایی مانند H2S, NH3, CO2 می‌گذرانند. در معرض این گازهای خطرناک باعث تهوع، تغییرات نوری مختلف و در بدن حالت منجر به مرگ می‌شود. در این را به نوبه اندامی هوا نیز ترکیبات آلی فرآیند سیمی و نرم حفاظت از محیط زیست اشکال‌گیری این گازهایی به مستنداری بانده می‌باشد. نیز امکانات کسید فلزی (TMOS) و ساختار نواوری الکترونی، ویژگی‌های فیزیکی و پایداری آنها در

واژه‌های کلیدی: اکسید مولیبدن، اسبری پاپولوژیز، ویژگی‌های ساختاری و نوری; میکروسکوپ الکترونی; حسگر گازی

مطابقه

می‌باشد.

محیط‌های شیمیایی، به عنوان یکی را انعطاف‌پذیر و در کاربردهای مختلف استفاده می‌کنند. با کاربرد مانند حسگری گازی، کاتالیزورها، و...، می‌توان به عنوان الکترون دارای بازیابی باید. این، فضاهای الکترونی هسته‌ای و غیره ویژگی‌های بیشتری را به صورت می‌گیرند.

مکمل

mbrahmani@yahoo.com

*توییندگی مستند، تلفن-نامه: ۹۸-۳۲۳۲۹۵۲۷۰، پست الکترونیکی:
هدف در محیط ریس بناهی کار رفتارهای MoO۳, α-MoO۳ و μ-MoO۳ غلظت گوناگونی در ترکیب هیدروژن و غلظت گوناگونی در ترکیب هیدروژن و غلظت گوناگونی در ترکیب H۲O, MoO۳, α-MoO۳ و μ-MoO۳

بهت و بررسی
ویژگی‌های ساختاری

(NH₄)₆Mo₇O₂₄·4H₂O \xrightarrow{450^\circ\text{C}} 7\text{MoO}_3(s) + 6\text{NH}_3(g) + 7\text{H}_2\text{O}(g) \tag{1}

روش آماده‌سازی و بررسی نمونه‌ها

برای تهیه لاشه‌های نازک اکسید مولیبدن از پودر آمونیوم (NH₄)₆Mo₇O₂₄·4H₂O هیتالمولیقدنشین‌های تراز 4، 8 و 16 در آب به ترتیب به‌وسیله همستریپاناسیب‌های دمای مجاور حاصل شده و برای رسیدن به لاشه‌های نازک اکسید مولیبدن به‌وسیله رشد در بخار تهیه شد. این لاشه‌ها در قالب

\begin{align*}
\beta\cos\theta &= \frac{0.9\lambda}{D} + 4\varepsilon\sin\theta \\
\end{align*} \tag{2}

جدول 1. پارامترهای مورد استفاده جهت لاشه‌های نازک اکسید مولیبدن α-MoO₃ در فشارهای مختلف \(\lambda \) طول امواج \(\lambda = 0.056 \text{nm} \)
شکل ۲: گروه XRD مربوط به لایه‌های نانو اکسید مولبدن با فشارهای مختلف گاز حامل (۱۸، ۲۰، ۲۲، ۲۴، ۲۵ bar).

جدول ۲: اندازه‌گیری بلوک و کرنش لایه‌های نانو MoO۳.

<table>
<thead>
<tr>
<th>نامونه</th>
<th>SMP2.5</th>
<th>SMP2.2</th>
<th>SMP2.0</th>
<th>SMP1.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>۱۰۰۰</td>
<td>۳۸۲۹</td>
<td>۳۸۲۹</td>
<td>۲۸۸۸</td>
</tr>
<tr>
<td>(nm)D</td>
<td>۲۹۵۰</td>
<td>۲۹۵۰</td>
<td>۲۹۵۰</td>
<td>۲۹۵۰</td>
</tr>
<tr>
<td>(× ۱۰۰۰)</td>
<td>۵</td>
<td>۵</td>
<td>۵</td>
<td>۵</td>
</tr>
</tbody>
</table>

شکل ۳: نمودار ویلیام‌سون-حال نامونه ۲throws SMP2.0. بهبود شده در فشار گاز حامل ۲ بار.
(hk1) قابلیت صفحات دسته صفحه (هستن.) کرنش در نمونه 1.8 کاهش SMP2.0 نسبت به نمونه 1.8 کاهش گرفته است. نماینده به دلیل کاهش کشش که تابع شبکه fav (دی) پایین گرفته و برای عملیات افزایش کرنش کششی در نمونه‌های SMP2.5 و SMP2.2 تابع شبکه fav (دی) آغاز است.

ربیخت‌شناسی سطح نمونه‌ها

به منظور بررسی ریختاری سطح نمونه‌ها از تصاویر SEM (شکل 4) یک استفاده شد. دیده شد که نمونه‌ها از دانه‌های بهم چسبیده تشکیل شده‌اند. این نتایج نشان می‌دهد که نمونه‌ها در صفحه X مشخص است که نتایج بررسی بر اساس α-MoO₃ می‌باشد. نمونه، قابل تشکیل فاز α-MoO₃ را نویز به کند. نتایج یکی از مفاهیم عوامل نامتوانه‌سازی که بر ویژگی‌های ساختاری و عدم سازگاری هندسی در مزر بین شبکه‌های بلوری لایه‌ها و زیرلایه‌ها اثر می‌گذارد. کرنشها به دلیل این تنش‌ها در لایه گسترش می‌یابند. وجود کرنش داخلی می‌تواند متابیتش کرنش‌ها تشکیل مراکز ته و یا فشار کاهش زیاد اذاره بلورک می‌تواند مربوط به فاز راستگوک‌شی با استفاده از رابطه زیر [120] محاسبه و در جدول 3 اردوه شده است:

\[
\frac{d_{hl}}{1} = \frac{1}{\sqrt{a^2 + b^2 + c^2}}
\]

جدول 3: پارامترهای شبکه بلوری لایه‌های تارک α-MoO₃ نمونه‌های (الف) 1.8، (ب) 2.0 و (ت) 2.5

<table>
<thead>
<tr>
<th>(hk1)</th>
<th>20 (°)</th>
<th>نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3107</td>
<td>SMP1.8</td>
</tr>
<tr>
<td>3568</td>
<td>3411</td>
<td>SMP2.0</td>
</tr>
<tr>
<td>5332</td>
<td>2244</td>
<td>SMP2.2</td>
</tr>
<tr>
<td>5357</td>
<td>2244</td>
<td>SMP2.5</td>
</tr>
</tbody>
</table>

![دوگانه تصاویر SEM نمونه‌های (الف) SMP1.8، (ب) SMP2.0، و (ت) SMP2.5](image-url)
وبژگی‌های نوری

شکل ۵ جذب ایمنی (α) به دست آمده از طیف سنجی نوری UV-Vis را در گستره طول موجی ۴۰۰-۵۰۰ nm نشان می‌دهد. جفتی که دیده می‌شود نمونه‌ها از جذب بالایی در ناحیه فیرونتی برخوردارند و جذب نمونه‌ها در طول موج‌های بالاتر کاهش می‌یابد که می‌تواند مربوط به تبدیل جهانی اکسیژن در مواد باشد [۲۱]. میزان جذب نمایش دهنده میزان کاهش ۲.۲ bar روند کاهشی به دست آورده و با رسیدن به فشار ۲.۵ bar افراشی می‌یابد. این نتیجه به‌طور مکانی نمودار جذب (E_g) مربوط به گذار مستقیم می‌تواند توسط رابطه زیر محاسبه شود [۲۲]:

\[\alpha \text{hv}^2 = A_\alpha (\text{hv} - E_g)^2 \]

(۴)

جدول ۴ مقادیر گراف نواری نام‌های نازک MoO۳ تهیه شده با فشارهای مختلف گاز حامل (۱.۸، ۲.۰، ۲.۲، ۲.۵ bar).

<table>
<thead>
<tr>
<th>گراف ایمنی (eV)</th>
<th>نام‌های نازک</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳.۴۸</td>
<td>SMP1.8</td>
</tr>
<tr>
<td>۳.۵۴</td>
<td>SMP2.0</td>
</tr>
<tr>
<td>۳.۶۶</td>
<td>SMP2.2</td>
</tr>
<tr>
<td>۳.۵۳</td>
<td>SMP2.5</td>
</tr>
</tbody>
</table>

شکل ۵ (الف) نمودار جذب بر حسب طول موج مربوط به لاشه‌های نازک اکسید مولیبدن با فشارهای مختلف گاز حامل (۱.۸، ۲.۰، ۲.۲، ۲.۵ bar)
طقف رامان
طقف رامان نمودار 0. در دماه اتاق در شکل 6 نشان داده شده است. نمونه 0. طبق رامان از قله‌های
واقع در 120, 132, 143, 153, 165, 434, 445, 437, 427, 472, 485, 495 تیز بودن قله‌ها نشان می‌دهد که حالت‌های ارتقاء ناشی از
ساختار بسیار منظم است.

قله موجود در حدود 0.995 cm1 در MoO6=O واقع در نوك هشتو‌جهی MoO6 اکسیژن واقع در راستای محور a در واقع اکسیژنی که بین هشت جهیه های
بهاشته می‌شود. محور a در حالت کنشی اکسیژنی واقع در دمای
دوم هشتو‌جهی MoO6. این قله برای Mo3 اتم Mo3 به عنوان گزار گوشی اکسیژنی مشترک در
MoO3 می‌شود که این جذابیت غیره اکسیژنی مشترک در
MoO3 نمی‌شود. این قله برای Mo3 با استفاده از رابطه زیر تعیین
می‌شود [20].

\[S(\%) = \frac{(R_a - R_g) R_o}{R_g} \times 100 \]

که مقاومت لاشه \(R_o \) در حضور هوا و مقاومت آن در
حضور گاز انداز است.

\[R_g = \text{مقاومت لاشه در حضور گاز انداز} \]

\[R_a = \text{مقاومت لاشه در حضور هوا} \]

\[R_g = \text{مقاومت لاشه در حضور گاز انداز} \]

جلد 27، شماره 2، تابستان 1398

شکل 6. طبق رامان نمودار 0. در دماه اتاق

S(\%) = \frac{(R_a - R_g) R_o}{R_g} \times 100 \]

\[R_g = \text{مقاومت لاشه در حضور گاز انداز} \]

\[R_a = \text{مقاومت لاشه در حضور هوا} \]

\[R_g = \text{مقاومت لاشه در حضور گاز انداز} \]

S(\%) = \frac{(R_a - R_g) R_o}{R_g} \times 100 \]

\[R_g = \text{مقاومت لاشه در حضور گاز انداز} \]

\[R_a = \text{مقاومت لاشه در حضور هوا} \]

\[R_g = \text{مقاومت لاشه در حضور گاز انداز} \]
شکل ۷ طرح‌واره قطعه حسگری ساخته شده با استفاده از لایه‌های نازک α-MoO₃

بیشترین میزان حساسیت و نمونه ۲ ppm با بیشترین گاز نواری درای کمترین حساسیت است [۲۴]. دمای کار به دلیل اینکه بر تحرک الکترونی و رساندگی الکتریکی مواد اثر می‌گذارد یکی از عوامل مهم در پاسخ حسگر در گاز یا پایه نیمه‌ساختاری اکسید فلزی است. بنابراین به منظور به دست آوردن دمایی بهینه حسگری، پاسخ نمونه نسبت به بخار اتانول در دماهای مختلف و در حضور ۲۰۰ ppm بخار اتانول اندازه‌گیری شد. شکل ۹ نمودار تغییرات زمانی حساسیت نسبت به دماهای مختلف را برای نمونه SMP1.۸ نشان می‌دهد. بیشترین پاسخ حسگر در دمای ۲۰۰۰ ppm رخ می‌دهد. بنابراین دمای بهینه حسگری برای نمونه SMP1.۸ برابر با ۲۰۰۰ C است.

شکل ۸ نمودار تغییرات زمانی حساسیت نمونه‌های ۱.۸ ppm و ۲.۰ ppm و ۲.۲ ppm و ۲.۵ ppm در دمای ۲۰۰۰ ppm نسبت به ۲۰۰۰ ppm اتانول در دمای ۲۰۰۰ C
شکل ۹ تغییرات زماني حساسيت نمونه ۱.۸برای غلظت یا های مختلف غاز اتانول

به‌طور کلی، می‌توان گفت که به دلیل ذوب‌گیری در دمای بالا و ناخالصی‌های محیطی، نتایج دقیقی در جویی‌ها و حمله‌ها و دیگر عوامل ممکن است. به این صورت فاکتورها می‌توانند بر تغییرات در حساسیت اثر بگذارند.

شکل ۱۰ تغییرات زماني حساسيت نمونه ۱.۸برای غلظت یا های مختلف غاز اتانول

نتیجه‌گیری

یافته‌های این پژوهش نشان داد که تغییرات زمانی حساسیت نمونه‌ها در حمله‌های مختلف نسبت به غلظت‌های مختلف غاز اتانول ممکن است. در نتیجه، برای بهتری در محاسبه و پیش‌بینی حساسیت‌های مختلف نمونه‌ها، می‌توان به استفاده از روش‌های نشان‌دهنده تغییرات زمانی حساسیت، از جمله روش‌های تجزیه‌بندی مکانیکی و روش‌های نرم‌افزاری استفاده کرد.

بحث:

نتیجه‌گیری‌های این پژوهش نشان می‌دهد که تغییرات زمانی حساسیت نمونه‌ها در حمله‌های مختلف نسبت به غلظت‌های مختلف غاز اتانول ممکن است. در نتیجه، برای بهتری در محاسبه و پیش‌بینی حساسیت‌های مختلف نمونه‌ها، می‌توان به استفاده از روش‌های نشان‌دهنده تغییرات زمانی حساسیت، از جمله روش‌های تجزیه‌بندی مکانیکی و روش‌های نرم‌افزاری استفاده کرد.
جدول حساسیت، زمان پاسخ و پریود نمونه 1.8 SMPl نسبت به غلظت‌های مختلف گاز اتانول در دما بهینه حسگر C 200

<table>
<thead>
<tr>
<th>زمان پاسخ (s)</th>
<th>حساسیت (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>109</td>
<td>8.8</td>
</tr>
<tr>
<td>119</td>
<td>9.55</td>
</tr>
<tr>
<td>123</td>
<td>14.13</td>
</tr>
<tr>
<td>125</td>
<td>15.62</td>
</tr>
<tr>
<td>127</td>
<td>16.17</td>
</tr>
</tbody>
</table>

ضخامت آن برای با طول ناحیه خشم نواری است. با این حال
در محیط گاز کاهنده، گاز کاهنده توسط اکسیژن جذب شده
اکسید می‌شود و منجر به آزاد شدن الکترون و برگرداندن آن به
نوار رسانش می‌شود. در نتیجه سد پتانسیل و طول لایه بار
فضایی کاهش یافته و بنتیارین مقاومت کاهش می‌یابد [11].

سازوکار حسگر گاز
یک نیمرسانی نوع n است که در آن حامل‌های
اکثریت الکترون‌ها هستند. بیست ترشیت مقاومت مواد حساس،
به تراکم الکترون‌ها واسطه است. هنگامی که حسگر در هوا گاز
دشتی می‌شود، موکول‌های اکسیژن در سطح حسگر جذب
می‌شوند و الکترون‌ها از نوار رسانش به دام می‌اندازند. این
امر منجر به یک خشم نواری و یک ناحیه نهی از الکترون در
ناحیه سطحی حسگر می‌شود. در نتیجه سد پتانسیل را افزایش
می‌دهد و پس از آن مقاومت حسگر افزایش می‌یابد. ناحیه نهی
از الکترون به اصطلاح لایه‌ی بر فضا نامیده می‌شود که

شکل 11 طرح‌ریزی سازوکار واکنش در حسگر برای (الف) انولوپ و (ب) هو [11].

برداشت

در این پژوهش، افرادی تازه، اکسید مولیبدن (MoO₃) با فشار بالا مکمل چربی حلال به روش افت الکتریکی برای تیز (α-MoO₃) با فشار، چربی حلال UV-Vis نمایش دهنده بررسی گردید. نتایج تحلیل طیف XRD نشان داد که میزان چربی حلال 2.6 bar روند کاهش داشته و با رسیدن به فشار 2.6 bar افزایش می‌یابد. گاز نواری نمایش نشان داد که همگنی می‌یابد.

مراجع

[21] Martínez HM., Torres J., López-Carreño LD., Rodríguez-García ME., "The Effect of Substrate...