اصلاح ویژگی‌های کانی‌های زئولیتی-1 EU-1 و موردندیته به روش آلومینیومزادایی و بررسی و مقایسه عملکرد آنها در فرآیند ایزومورفی شدن زایل در

مهرجی خسروان*، زهرا و ثویقی رهبری

گروه شیمی دانشگاه علم و فناوری لرستان (دریافت مقاله: 97/31، نهایی: 1/8)

چکیده: در این پژوهش، زئولیت‌های EU-1 و موردندیته سنتز شده، توسط روش آلومینیوم‌زادایی با اسید نیتریک، اصلاح شدند و تغییر

ویژگی‌های آنها از جمله مساحت سطح، قطر، حجم حفره‌ها و نسبت سیلیسیوم/آلومینیوم بررسی شد. عملکرد کاتالیزور این دو

زئولیت در فرآیند ایزومورفی شدن زایل را در یک راکتور بستر تابی بررسی و با یکدیگر مقایسه نمود. نتایج نشان داد که در اثر اصلاح

کاتالیزورها با اسید، برای حذف بسیاری از اتم‌های آلومینیوم از شرکت زئولیت‌ها، نسبت سیلیسیوم/آلومینیوم و مساحت سطح زئولیت‌ها

افزایش پایینی است که در نتیجه، فعالیت و گروه‌هایی از آن در فرآیند ایزومورفی شدن زایل افزایش می‌یابد. چنان که اندازه می‌رود.

در فرآیند ایزومورفی شدن زایل، زئولیت‌های اصلاح شده دارای نسبت پاژا زایل/آوتو رازایل و پاژا راژایل/آوتو راژایل و نیز درصد تبادل می‌وزایند

پسیار بیشتری پیدا دارد.

واژه‌های کلیدی: زئولیت‌های EU-1 EU-1 موردندیته؛ فرآیند آلومینیوم‌زادایی؛ پاژایل/آوتو راژایل

مقدمه

زاپایل‌ها و این بنز انز میوه‌های آب‌زمینی (C₈) هستند که فرمول مولکولی آنها C₈H₁₀O₆ است. زاپایل‌ها شامل سه ایزومورف

اورتو زایل، متا زایل، و پاژایل هستند که هر یک از

باگاگو و گروه متصل بر فرد بنزن است.

پس از بنزن، پاژایل‌ها یکی از مهم تر ترکیبات حلقه‌ای محسوب می‌شوند. پاژایل‌ها به طور عمده برای تولید ماده

روش ترفتال و ترفتالین، اسید مولکول لاستیک شده به مصرف می‌رسد.

این دو فراورده در ساخت پل ایزومورفی بیشتر کار می‌رود که

از آن ایزومورفی سنتز و تولید پل ایزومورفی، یک کیلر زيگین به

الویک فیلم عکاسی استفاده می‌شود [1]. بطور کلی، پاژا زایل

در صنعت پتروشیمی توسط روش‌های چند‌واژه از

اتومورفی آن و تبادل اورتو و متا به پاژا از ایزومورفی شدن

زاپایل تولید می‌شود [2].

در مرجع اخیر بیشتر از کاتالیزورها برای فرآیند

khosro_m@uk.ac.ir

*تویینده مستند، تلفن: 9131414444، تیکار: 33333332018، پست الکترونیکی: khosro_m@uk.ac.ir
گوناگون مانند توصیه بون قابل تنظیم است. این می‌باشد که از کالیترایه‌ها در مورد استفاده قرار داشته، برای انتخاب کننده، مانند کلیتیک‌ها، می‌شود. استفاده مداوم از کالیترایه‌ها، آن را در دمای‌های بالا قرار داده می‌نماید. انتخاب مکان‌ها و دیگر تغییرات زلزله‌های گیربولوی باید در اصطلاح غیرفیزیکی برگشت آن می‌شود [14]. بنابراین کالیترایه‌ها دارای طول عمر مفید محدود هستند و نیاز به ارائه کالیترایه‌های مناسب با طول عمر بیشتر است.

زاویه تا سه‌تا زده به آن صاحب جایگاه های استدیانتی غیر فیزیکی به سطح خارجی و در حالت ورود به فرآیند زلزله مانند مدل کالیترایه‌ها، هست. اینکه گریزش زمین‌پدیدار را نشان می‌دهد. احتمال و انتخاب‌ها در قدرت توسعه کالیترایه‌های مورد نظر در قسمت ناخواسته در زلزله‌های دیده می‌باشد. مربوط به گریزش زمین‌پدیدار های زلزله‌های و به منظور دستیابی به گریزش زمین‌پدیدار با روش‌های اصلاح پس از

اصلاح سطح کالیترایه‌ها از غیرفیزیکی سطح خارجی آن یا جلوگیری کرده و سپس افزایش گریزش زمین‌پدیدار آن ها می‌تواند استفاده کالیترایه‌ها تا در مورد زلزله‌های با بالاتری کوچک، می‌تواند است. از این رو، یکی از سایر نشان‌های زلزله‌پیش‌بینی اصلاح ویژگی‌های آن ها مورد نظر قرار نمی‌گرفت. به همین سبیل کالیترایه‌ها می‌تواند توسط روش‌های مختلفی از جمله فرآیند (CVD) گرمایی، زنده نشان فاز مايع (CLD) و فاز بخار (CD) الومینیوم زدایی انجام شود [16].

با وجود انجام پژوهش‌های در مورد انرژی الومینیوم زدایی

واست، این نوع

\[\frac{\text{Na}_x(\text{H}_2\text{O})_{2-x} \text{Al}_x\text{Si}_{4-y} \text{O}_{10}}{x} \]

توسط اسبید بر ویژگی‌های زلزله‌پیش‌بینی EU-5 مطالعات در این زمینه در مورد زلزله‌های بیشتر محدود است. در حالی که کالیترایه‌های مورد نظر یک دسته فرآیند خودی‌کشی با باک‌ها یا اکسیدهای چند درست به دست می‌آیند، سرعت سه‌گزینگ فرآیند و فرآورش‌ها را محدود می‌کند.

[17] این زلزله‌پیش‌بینی بدلیل اینکه گریزش زمین‌پدیدار با عنوان کالیترایه پرای اکسیدهای مهم از جمله گریزش‌ها و کاهش ریزه‌های نهایی در

[18] از آنجاکه بیشتر کالیترایه‌های زلزله‌پیش‌بینی هنگامی که
آلمونیوم زدایی کاتالیزور ۱ EU-I توسط استاد نیتیریک

در این فرآیند از کاتالیزور EU-I سنتر شده به روش ارائه شده در مرجع [۲۱] استفاده شد. به منظور بهینه سازی این کاتالیزور، آلمونیوم زدایی با نازک پوزه‌های بیشین [۲۱] بر انجام شد. به منظور نسبت ۵ گرم زولئتیور موردنیت سنتر شده، ۵۰ میلی لیتر استاد نیتیریک بر نرمال افزوده شد و در دما ۷۰ درجه سانتی‌گراد سپس محلول توسط قبوی خارج شد. رسوپ به دست آمده با مقادیر آب شسته شد. به آن ۵۰ میلی لیتر استاد نیتیریک ۵ گرم افزوده شد و با در دما ۷۰ درجه سانتی‌گراد و به مدت ۳ ساعت در روز روانی رسوب به دست آمد در سلام‌بندی آب شسته و خشک شد.

بحث و بررسی

این آماده نمونه‌های EU-I و موردنیت اصلی شده توسط روش FT-IR، BET, ICP توسط طیف‌سنجی جری جای‌پلاسمای شناسایی شدند و سپس از استاد نیتیریک در مراحلی مختلف آن ها از جمله: مولکول‌های حجم حفرات و نسبت سیلیسیوم/آلومینیوم، مقدار بریس و ترکیب شرکت‌کننده در آخر مکانیک کاتالیزوری هر دو کاتالیزور اصلی شده در فرآیند از آرایه شدن را مطابق و با کدی گیر می‌شود.

بررسی ویژگی‌های کاتالیزور EU-I اصلاح شده توسط EU-I آلمونیوم زدایی فرآیند استاد نیتیریک

بهره‌بری نیتیریک اسید از شرکت مرکز خریداری ش. مساحت سطح حجم و اندازه حفرات در نمونه EU-I زولئیتوپ تهیه شده به وسیله دستگاه JWGB K132F به استفاده از منحنی همدیاز جذب‌و‌بازد نیتیری مردام به تغییر شده در برای تعیین انرژی درون شکل زولئیتوپ در فرآیند (FT-IR) Gرفته شده در همراه با ماحت و سیلیسیوم در EU-I نمونه EU-I شناسایی شدند. از طرف فروسرخ (FT-IR) Gرفته شده در گستره BNomem MB طول موج ۳۰۰-۵۰۰ nm به وسیله دستگاه (ساخت شرکت کوش) ABB استفاده شد. تعیین مقادیر
در ناحیه جدید Si-O ۵۰۰۰ cm⁻¹ نزدیک به ۱۱۰۰ cm⁻¹ دارای دو بسامد است: یکی در ۱۲۰۰ cm⁻¹ (با شدت نسبتاً ضعیف) و دیگری در ۱۲۸۰ cm⁻¹ (با شدت بسیار قوی) که تری هیدروکسی برونشتند. در ناحیه جدید Si-O متقارن و نامتقارن هستند و در ناحیه جدید نزدیک به Si-O ۵۰۰۰ cm⁻¹ و ۴۴۵ cm⁻¹ دارای دو بسامد هستند. برای تری هیدروکسی برونشتند در ناحیه جدید Si-O ۵۰۰۰ cm⁻¹ و ۴۴۵ cm⁻¹ دارای دو بسامد هستند.

![شکل 1 طیف FT-IR نمونه‌های EU-1 و EU-1 آلومینیوم زدایی شده][22]

![شکل 1 طیف FT-IR نمونه‌های EU-1 و EU-1 آلومینیوم زدایی شده][22]
جدول ۱ مساحت سطح حجم حفره و نسبت Si/Al نمونه‌های EU-1 و EU-2 алюمنیوم زدایی شده.

<table>
<thead>
<tr>
<th>erkläر</th>
<th>مساحت سطح</th>
<th>حجم حفره</th>
<th>نسبت Si/Al</th>
<th>EU-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU-1</td>
<td>۳۶۵۹</td>
<td>۰.۲۶۷</td>
<td>۰.۳۵</td>
<td>۲۵</td>
</tr>
<tr>
<td>EU-2</td>
<td>۳۳۶۹</td>
<td>۰.۲۶۳</td>
<td>۰.۴۵</td>
<td>۵۰</td>
</tr>
</tbody>
</table>

شکل ۲ ۲ طیف FT-IR نمونه‌های EU-1 و EU-2 алюمنیوم زدایی شده

چنان‌که از شکل ۲ مشخص است، طیف FT-IR زولیت موردی پس از انجام آلومینیوم زدایی با استفاده از تیترولیت تغییری و تکرده و کاملا مشابه با طیف چپ از انجام آلومینیوم زدایی است. این مطلب هم چنین در تابع این ادعات که موردیت می‌تواند حتی پس از یک طبیعی از ام‌های آلومینیوم ساختار بلوری خود را حفظ نماید. جدول ۲ نتایج می‌شود و BET-BJH سطح، قطر حفره بدن آماده به روش Si/Al نسبت تا تجهیز Si/Al مشخص شده است از برای موردیت EU-1 و EU-2 موردیت EU-1 شده نشان می‌دهد. جوان‌که دیده می‌شود، فرآیند آلومینیوم زدایی سبب افزایش قابل ملاحظه نسبت Si/Al زولیت می‌شود. پیش روی این نسبت از ۱۵ به ۲۵ رسیده است. داده‌های موجود در جدول ۲ نشان می‌دهد که زولیت موردیت از انجام آلومینیوم زدایی دارای مساحت سطح نسبتا کم است (۳۳۶۹ m²/g) و پس از شستشو با استفاده از حجم حفره و متوسط قطر آنها نیز اندکی افزایش می‌یابد. که می تواند بعنوان افزایش مساحت سطح که متوجه به تشکیل ریز حفره می‌شود باشد و این با یافته‌های سایر پژوهشگران

بررسی عملکرد کاتالیزور های EU-1 و EU-2 موردیت در برای

ایزومری شدن Z-الان

به منظور بررسی کاربرد کاتالیزورها در فرآیند ایزومری شدن EU-1 و EU-2 موردیت سنت شده در سیستم آزمایش کاتالیزوری سنت شده و نتایج به دست آمده متفاوت شدن. ایزومری شدن Z-الان و تعیین و بی‌گاهی کاتالیزوری EU-1 و EU-2 می‌تواند که در یک راهبرد بستر ناتیژ از جنس استیل ضد‌تنگ با قطر داخلا ۳۰۰ mm و طول ۲۰ cm در فشار ۱۰0 بار و دمای ۳۰۰°C انجام گرفت. برای این منظور مقرار معین (حدود ۴ گرم) از کاتالیزور مورد نظر با مشه ۱۰–۰ وارد راکتور شده و دو طرف بستر کاتالیزور با کوارتز پر شد. شناسایی فرآورد ها به

1- Fixed Bed Reactor
کاتالیزور هایی با قاحت های ۱۰ و ۱۲ عضوی می‌تواند به اسیدهای بالای آن ها نسبت داده شود که این عامل همراه با قطرکاتالیزهای با انداره‌ای متناسب سبب افزایش سرعت واکنش و نفوذ سرعت واکنش دهنده و فراورده‌ها می‌شود. قدرت استدی البالایی EU-I می‌تواند نسبت واکنش پذیری البالایی متان زاینل را افزایش بخشد. [۳۱] بنابراین درصد تبدیل متان زاینل در کاتالیزور EU-I نسبت به موردنیت بالاتر است. نسبت های پاراواتوو فراورده در جدول ۴ اورده شده است. یک درصد تبدیل متان زاینل نسبت به پاراواتوو بالا به دلیل سرعت نفوذ بالایی پاراواتوو نسبت به ازونوت زاینل است که هر زاینل را قادر می‌سازد تا با محض ترکیبِ ساختار تروتیلیت را ترک کند. [۳۱] این نسبت برای کاتالیزور موردنیت برابر با ۰.۷۵/۳۶٪ است. نسبت پاراواتوو نیز براساس داده‌های جدول ۴ برای کاتالیزور EU-I برآورد کننده آنتی‌پتری این متانیت و سایر سایر. مقایسه این دو تروتیلیت برای همداخلی مختلف (درصد تبدیل متان زاینل، نسبت های پاراواتوو و پاراواتوو از شکل ۴ نشان داده است.

نتایج به دست آمده از مقایسه عکس‌گیری دو کاتالیزور سنندج و اصلاح شده در فرآیند ایزوپروپیل شدن زاینل در زمان و اینس ۳۸۰ درجه سانتی‌گراد در فاصله ۱۰۵ و دماهای WHSV و سرعت فضایی گرمی (Weight Hourly Space Velocity) شده است. چنان که مشاهده است درصد تبدیل متان زاینل از افزایش مواد اولیه به ۱۶۲٪ برای کاتالیزور EU-I افزایش می‌یابد. واکنش پذیری متان زاینل بر روی EU-I

جدول ۲: سرعت و حجم حریر و نسبت Si:Al نمونه‌های موردنیت و الومینیوم‌دهی شده.

<table>
<thead>
<tr>
<th>(nm)</th>
<th>سیلیسیم الومینیوم</th>
<th>موردنیت</th>
<th>درصد حریر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳.۵۶</td>
<td>۰.۲۷۸</td>
<td>۳۳۱.۸۳</td>
<td>۸۱</td>
</tr>
<tr>
<td>۳.۶۰</td>
<td>۰.۲۹۰</td>
<td>۳۴۴.۵۴</td>
<td>۸۴</td>
</tr>
</tbody>
</table>

جدول ۳: ترکیب خروک و واکنش (بر حسب درصد ویژنی).

پاراواتوو	ازونوت زاینل	Mitsui	C۱	C۲	C۳	C۴	N۱۰	P۱۰	C۴N۱۰P۱۰	C۴N۱۰	C۴N۱۰	C۴N۱۰	C۴۱۰	C۴۱۰	C۱۰H	
۳.۸۲	۵۸.۴۵۵	۴۱.۵۴۵	۱۴۳	۲۰۲	۶۰	۱۴۳	۶۰	۱۴۳	۶۰	۱۴۳	۶۰	۱۴۳	۶۰	۱۴۳	۶۰	۱۴۳

جدول ۴: نتایج عملکرد کاتالیزوری نمونه‌های EU-I و موردنیت تهیه شده در واکنش ایزوپروپیل شدن زاینل.

<table>
<thead>
<tr>
<th>کاتالیزور</th>
<th>EU-I</th>
<th>موردنیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>دما (درجه سلسوس)</td>
<td>۵۳۰</td>
<td>۴۳۰</td>
</tr>
<tr>
<td>کاتالیزور (گرم)</td>
<td>۴</td>
<td>۴</td>
</tr>
<tr>
<td>WHSV (۱ ه/س)</td>
<td>۳۳۰</td>
<td>۳۳۰</td>
</tr>
<tr>
<td>زمان واکنش (ثانیه)</td>
<td>۶</td>
<td>۶</td>
</tr>
<tr>
<td>نسبت تبدیل متان زاینل (%)</td>
<td>۱۵.۹۶</td>
<td>۱۴.۶۲</td>
</tr>
<tr>
<td>پاراواتوو (%)</td>
<td>۴۱.۸۳</td>
<td>۵۳.۸۴</td>
</tr>
<tr>
<td>پاراواتوو (%)</td>
<td>۱۶.۸۵</td>
<td>۱۴.۹۴</td>
</tr>
</tbody>
</table>
شکل ۳ مقایسه عملکرد دو کاتالیزور موردیت و EU-۱ توسط پارامترهای مختلف (درصد تبدیل متان زاین، نسبت های پارا/آرامتو و پیارازاین) در فرآیند ایزومری شدن زاین

بررسی عملکرد کاتالیزورهای EU-۱ و موردیت اصلاح شده در فرآیند ایزومری شدن زاین

براساس نتایج به دست آمده از عملکرد دو کاتالیزور EU-۱ و موردیت، عملکرد کاتالیزور EU-۱ در فرآیند ایزومری شدن زاین بهتر است و نسبت های پارا/آرامتو و پیارازاین در این کاتالیزور برابر با EU-۱ موردیت است. کاتالیزور EU-۱ موردیت در درصد تبدیل متان زاین در شرایط اصلی نسبت های پارا/آرامتو و پیارازاین برابر با EU-۱ موردیت است.

جدول ۵ نتایج عملکرد کاتالیزوری نمونه های EU-۱ و موردیت در واکنش ایزومری شدن زاین

<table>
<thead>
<tr>
<th>کاتالیزور</th>
<th>EU-۱</th>
<th>موردیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>دما (درجه سانتی گراد)</td>
<td>380</td>
<td>380</td>
</tr>
<tr>
<td>فشار (بار)</td>
<td>۴</td>
<td>۴</td>
</tr>
<tr>
<td>WHSV</td>
<td>۳۵</td>
<td>۳۵</td>
</tr>
<tr>
<td>زمان واکنش (ساعت)</td>
<td>۶</td>
<td>۶</td>
</tr>
<tr>
<td>تبدیل متان زاین (٪)</td>
<td>۳۴</td>
<td>۳۴</td>
</tr>
<tr>
<td>پارا/آرامتو (٪)</td>
<td>۵۶</td>
<td>۵۶.۷</td>
</tr>
<tr>
<td>پیارازاین (٪)</td>
<td>۱۹</td>
<td>۱۹.۱</td>
</tr>
</tbody>
</table>
مقایسه عملکرد کاتالیزورهای ۱ و موردینیت مش و پس از آلومینیوم زدایی در واکنش ایزومری شدن زایلن

به منظور مقایسه عملکرد کاتالیزورهای مش و پس از آلومینیوم زدایی، دو واکنش ایزومری شدن زایلن به کاملاً مشابه با هم می‌باشد. نتایج بدست آمده در مورد یک کاتالیزور درصد تبدیل منا زایلن و نسبت بازا زایلن/وارتو زایلن در شرایط آلومینیوم زدایی افزایش می‌یابد که این می‌تواند با علت تغییر در ساختار فرآیندهای کاتالیزورها در اثر شستشو باشد.

به همین دلیل، علت سبب بهبود سیستم حفره ای و در نتیجه افزایش نفوذ مولکول بارازایلن و نیز وجود آمده اسیدهای قوی‌تر می‌باشد [32]. همچنین درآییند شستشو با سبب افزایش قدرت اسیدی کاتالیزورها شده که این باعث تبدیل اورتو زایلن به پارازایلن و افزایش نسبت بازا زایلن/وارتو زایلن می‌شود.

شکل ۴ مقایسه عملکرد دو کاتالیزور آلومینیوم زدایی شده موردینیت، EU-1 و EU-1 توسط پارامترهای مختلف (درصد تبدیل منا زایلن، نسبت های پارازایلن/وارتو زایلن) در فرآیند ایزومری شدن زایلن.

مقایسه عملکرد کاتالیزورهای EU-1 و پارازایلن/وارتو زایلن در EU-1.

شکل ۵ مقایسه عملکرد کاتالیزورهای EU-1 و EU-1 آلومینیوم زدایی شده بر انتخاب فراورده‌های واکنش ایزومری شدن زایلن.

ملاحظة

