بررسی فرکتال متر دانه‌های کوارتز در گرانیت گنیس آبادی‌چی، شمال شهرکرد

فربی رایحی سامانی، ناهیدی‌پورچیان پروجکتی، علیرضا داوودیان ده‌کردی، بهنام بختیاری

دانشکده مهندسی طبیعی و علوم زمین، دانشگاه شهرکرد

چکیده: توده گرانیت گنیس آبادی‌چی در شمال دریاچه زاینده‌رود، در بخشی ساختمان سیستم-سیرجان قرار دارد. این توده از نظر کانی شناسی، دارای کانی‌های کوارتز، پلای‌کرالز، فلدسیت‌پتاسیم، بیوپتی، آمفیپول، موسمویت، زیرکن، اسفناج و آلی‌پت است. کوارتز یکی از فرآورده‌های کامیان سلولار، این سلک‌های کوارتز که از نظر بافتی شرایط منفعت دگرشکل‌های داینامیک وارد بر سلک‌های مورد بررسی (SGR) را به خوبی نشان می‌دهند. بلورهای کوارتز شاهد از بزرگ‌ترین کانی از قبیل تالوک (BLG) چرخش‌های شیلاتی مورد بررسی (GBM) را نشان می‌دهند. تغییر شکل بلورهای کوارتز وابسته به دما و نرخ کرونی است که توسط نمونه‌گیری (داختم) نخ رشته می‌توان (GBM) مقدار تغییر شکل را بپردازد. بطوری که، مقدار بعد فرکتال در مزر بلورهای کوارتز سلک‌های مورد بررسی بین 23 تا 11/1 و دما بین 400 تا 500 درجه سانتی‌گراد است. براساس دما و بعد فرکتال محاسبه شده، نرخ کرونی برای چهار گستره اندامه-گریتی و دگره‌ها (GBM, SGR, BLG) (داختم) نخند. نتایج بدست آمده از نمونه‌گیری به شاهد دگرشکل‌کل بلورهای کوارتز (GBM, SGR, BLG) و این خواندن دامنه‌ای بیشتری را به فرکتال کوانتی می‌دهد.

واژه‌های کلیدی: گرانیت گنیس؛ دانه‌های کوارتز؛ دگرشکل‌کل بلورهای کوارتز؛ نرخ کرونی؛ دگرشکل‌کل آبادی‌چی؛ بهنام بختیاری

مقدمه

مرزهای بین بلورهای یک کانی در سلک‌های دگرونیی و آذرین در شرایط ویژه‌ای به شکل گرانیت دیده می‌شوند. هر اکتشیک یک برمزهای برترد که دارای متغیر می‌باشد. (شکل 1) در طول مرز دانه‌ها، اتیک‌های گروهی از اتیک‌ها باکتری هیدروین برک کرده و با یک چگیپار در آن زندی گردیده و باعث تغییر شکل این مرزهای می‌شود. برای ارائه مسئله به‌طور کلی از دانه‌های مولکولی، دانه ماهور و بنا، به‌طور کلی نشان دهنده این گونه از ساختار دلیل است. تغییر شکل بلورهای مولکولی در اکتشیک و اکتشیک متغیرانه (SGR) و اکتشیک‌های مولکولی در اکتشیک‌های مولکولی در اکتشیک‌های مولکولی در اکتشیک‌های مولکولی در (SGR, BLG) را نشان می‌دهند. تغییر شکل بلورهای کوارتز وابسته به دما و نرخ کرونی است که توسط نمونه‌گیری (داختم) نخ رشته می‌توان (GBM) مقدار تغییر شکل را بپردازد. بطوری که، مقدار بعد فرکتال در مزر بلورهای کوارتز سلک‌های مورد بررسی بین 23 تا 11/1 و دما بین 400 تا 500 درجه سانتی‌گراد است. براساس دما و بعد فرکتال محاسبه شده، نرخ کرونی برای چهار گستره اندامه-گریتی و دگره‌ها (GBM, SGR, BLG) (داختم) نخند. نتایج بدست آمده از نمونه‌گیری به شاهد دگرشکل‌کل بلورهای کوارتز (GBM, SGR, BLG) (داختم) نخند. نتایج بدست آمده از نمونه‌گیری به شاهد دگرشکل‌کل بلورهای کوارتز (GBM, SGR, BLG) (داختم) نخند. نتایج بدست آمده از نمونه‌گیری به شاهد دگرشکل‌کل بلورهای کوارتز (GBM, SGR, BLG) (داختم) نخند. نتایج بدست آمده از نمونه‌گیری به شاهد دگرشکل‌کل بلورهای کوارتز (GBM, SGR, BLG) (داختم) نخند. Nahnid.shabanian@gmail.com

*پژوهش مسئول، تلفن: 09133142424، پست الکترونیکی:
پیچیده، چاپ‌گری‌ای آنها با تعدادی چندضلعی است که از قانون
ارزیت $L = r^{1/d}$ لپوری می‌گذارد که طول کلی هر چندضلعی
طول یک طرف از یک چندضلعی (طول گام) و توان D به
بعد فرمول نامیده می‌شود بسیار سریع بعد منحنی
می‌باشد. این پیچیدگی منحنی را نشان می‌دهد و می‌توان
نمایش هندسی برای تعیین یک طرح دو لگاریتمی با استفاده
شبیه منحنی از رابطه خطی 2-1 باشد. [7]

با وجود پژوهش‌هایی که پیرامون نرخ کرنش و درگیری‌های
در آزمایش‌ها صورت گرفته است، به‌هیچ‌کدام از تغییر
شکل سنجش‌ها یک چالش است. فیشر و همکاران [8] بر
پایه نتایج بررسی‌های کرنش به این نتیجه رسیدند که نرخ
تفاوت‌های زمانی 10-15 تا 20 است. افتادن به این است که
نرخ کرنش عادی تغییر شکل زمانی بین 10-15 تا 20 در
روسان است. [9].هر که به تازگی برخی اشاره دارد
هایی مانند موضع گیری‌ها به نرخ کرنش سریع‌تر اشته‌ای دارد
[10]. بررسی آزمایش‌های مختلف در مورد تغییر شکل
دانه‌های کوارتز در دما و نرخ کرنش متغیر [11]. مشخص شد
که شکل دما به طوری که در دما پایین و نرخ کرنش بالا، شکل‌ها
پیچیده‌تر می‌شود و برگزیده توسط درفینه و همکاران
(1)
$D = \Phi \log e^* + \rho/T + 1.08$
$\rho = 6.44 \times 10^{-2} (K) \Phi = 9.34 \times 10^{-2} \left(\frac{[\log e^*]}{4} \right)$

1- (Besicovitch-Hausdorff)
روش بررسی پس از نمونه‌برداری و ثبت جایگاه جغرافیایی از چهار منطقه مشخص شده در شکل 2 با استفاده از دستگاه GPS در منطقه آبادچی، از نمونه‌های سالم ۲۰ مقطع تهیه شد و مراحل توضیح میکروسکوپی خطی و سطحی بررسی شدند. از ویژگی‌های بافتی دانه‌های کوارتز عکس‌هایی در نور طبیعی و مراحل تهیه قواعدی که در مطالعه‌های متابولیک یک حیاتی مورد استفاده قرار می‌گیرد پژوهشی بایستی به شکل میدانی و قلم گرافیک جغرافیایی منطقه مورد بررسی و تدوین نمود. (Google Earth)

زمین شناسی (۲۱) گهگاه نقاط بررسی بر تصویر ماهواره‌ای (تصویر برگرفته شده از گوگل ارث) با توجه به تحصیلات غفروی پهناور، دقت و نمونه‌گیری سه‌بعدی مورد بررسی قرار گرفت. نمونه‌برداری در نقاط مختلف پهناور ۳۲-۴۶ درجه رشته و ۵۴-۶۳ درجه پهنای از شرق به غرب و ۳۵-۴۲ درجه های دنباله بر اساس طرح‌برداری و نمونه‌گیری صورت گرفت.

گردد، برای محاسبه أحد فرکتال (D) دانه‌های کوارتز، مقاطع با نزدیک‌ترین وضعیت شیب X بررسی شدند. دست کم ۲۰۰ CorelDraw دانه کوارتز از هر مقاطع با استفاده از نرم‌افزار رسم شده و مورد بررسی و اندازه‌گیری شدند. به طور کلی برای تعیین بعد فرکتال دو روش منداول وجود دارد [۲۱] که عبارتند از روش تقسیم (با استفاده از چندضلعی‌ها) و روش (2)DY 6 YC>0: z #& 5>I <0#9 P:#(I =Q8%19 % . . . Z

شکل 2 الف) جایگاه منطقه‌های مورد بررسی در استان چهارمحال بختیاری، ب) موقعیت جغرافیایی منطقه مورد بررسی و تدوین نمود. بر نقشه (Google Earth)
شمارش جمعه‌ای در این پژوهش، با کمک روش جمعه‌ی بعد فرکتال مرز دانه‌های کوارتز تعبیه شده و سپس با استفاده از نرم‌افزارهای CorelDraw و ImageJ نمودارهای لازم تهیه شدند.

بررسی سنگ‌نگاری نمونه‌ها براساس بررسی‌های میکروسکوپی انجام شده و با استخدام ورقه‌های شکننده است که از نظر مرز دانه‌ای از اینترلوبیت تأمین شده‌اند. شکل تغییر می‌کند. تغییرات فلزی‌های اصلی گروه‌گرایی آبادی جز کوارتز، پلایزیکوز، بیوانیت و موسوکیت، کلینه‌های فرعی مگنتیت، زیرکن، امفیبول و آلتای‌های سنتگه‌ست که در آبادی متنگیر، شکل‌دار نیز مشاهک است و از نظر رفتار بالمیکتروفیک دیامانیکی وارد شده و بر گرایی‌های مورد بررسی نشان می‌دهند.

شکل 2 نمایی میکروسکوپی از بلوهره کوارتز (الف) نشان می‌دهد که در اطراف هسته‌هایه، قدمی کوارتز، BLG، در مقطع 6-4 به چی‌های کوارتز (ب) در مقطع 6-4، XPL، (ب) در مقطع 6-4، XPL.
جدول 1 محاسبه بعد فرکتال (D) داده‌های کوارتز محاسبه شده از بررسی نمونه‌های منطقه آبادی (نمونه D) اندازه داده و نرخ کرنش. تغییر محاسبه نرخ کرنش. نمونه D، انددازه داده و نرخ کرنش.

<table>
<thead>
<tr>
<th>نمونه</th>
<th>n</th>
<th>d range (mm)</th>
<th>D</th>
<th>Strain-rate (s⁻¹) with T</th>
</tr>
</thead>
<tbody>
<tr>
<td>RH 4-6</td>
<td>446</td>
<td>0.22 - 0.158</td>
<td>1.33</td>
<td>1 × 10⁻⁴ (50°C) - 1 × 10⁻⁵ (400°C)</td>
</tr>
<tr>
<td>RH 5-4</td>
<td>255</td>
<td>0.79 - 0.12</td>
<td>1.17</td>
<td>1 × 10⁻⁴ (400°C) - 1 × 10⁻⁵ (50°C)</td>
</tr>
<tr>
<td>RH 5-5</td>
<td>414</td>
<td>0.59 - 0.88</td>
<td>1.12</td>
<td>1 × 10⁻⁴ (50°C) - 1 × 10⁻⁵ (50°C)</td>
</tr>
<tr>
<td>RH-6-2</td>
<td>247</td>
<td>0.81 - 0.12</td>
<td>1.11</td>
<td>1 × 10⁻⁴ (50°C) - 1 × 10⁻⁵ (50°C)</td>
</tr>
</tbody>
</table>

شیب سیز بالایی، آمپیلولیت و گرانولیت‌ها برای تغییرشکل و شکل پذیری طبیعی به دلیل تغییر دارند. (به طور کلی دارند. (به طور کلی تا ۰.۵ درجه سانتی‌گراد با پایین حال، با استفاده از شکل ارائه شده توسط [۱۲]) در دماهای بیش از ۴۵ درجه سانتی‌گراد نرخ کرنش بالا برآورده می‌شود. این تغییرشکل که در شکل ۵ دیده می‌شود، در دماهای ۶۰۰ درجه سانتی‌گراد، ۱ و نرخ کرنش بینش از ۱۰⁻⁸۸ باید بین حداکثر ۲ تا ۳ بیشتر شده و داشته باشد. ژرمنهای داده‌های انرژی است که با توجه به شکل ۵ می‌توان نتیجه گرفت که در نرخ کرنش طبیعی (۱۰⁻۸۸) کمترین دماهای نیاز برای D = ۱، برای از ۲۳۵ دماهای بیش از ۴۵ درجه سانتی‌گراد D > ۱ و مربوط به نرخ کرنش کمتر از ۱۰⁻۸ است. ر财ارهای

![Graph](https://example.com/graph.png)

[۱۲] شکل ۵ نمودار I/T × 10⁴(K⁻¹) نسبت به [log [۲/sec⁻¹]] برای شرایط کرنش است. که نمایشگر رابطه بین ابعاد فرکتال (D) و شرایط کرنش است. برگرفته از شکل ۴ از مرجع [۱۲] با اصلاحات.
منشأ تکرش در مرحله 2) برای آزمودن و تایید نخ کرنش برآورد شده از مفهوم D (شکل 6) استفاده می‌شود [14]. به این ترتیب شکل از مفهوم D محاسبه و نمایش داده شده در نمودار دما/نرخ کرنش (شکل 6) و در جدول 1 آورده شدهان. در منطقه 4-6 RH کوارتزا در شرایط دمای 200 - 250 درجه سانتی-گراد قرار گرفته که این کوارتزا در گستره قرار گرفته است. به همین صورت گفتگه شد که بافت کوارتزا در دمای 200-250 درجه سانتی-گراد می‌باشد. یا باید با این حال چنان که برای به‌کارگیری برای این کوارتزا در گستره BLG و SGR قرار گرفته شد که در چنان که به‌طور مستقیم از 6 گستره منطقه 4-5 و 6-7 و 5-6 ر هر کوارتزا در دمای 500-550 درجه سانتی-گراد دارا می‌باشد. این کوارتزا از میان بانگ (شکل 4 تا 7) و (شکل 6-2 و 6-7) SGR در منطقه در نمودار (sec^-1). T(°C)/e (sec^-1) از گستره 5-4 گستره SGR و BLG. MB. SGR و BLG. MB. SGR و BLG.

برای برآورد شرایط تغییرشکل در نمودارهای مورد بررسی با استفاده از سازوکار بارترول دانه‌های کوارتزا در مناطق مورد بررسی (4-6) و (6-7) وتوصیه است. و همکاران [33] پیشنهاد شده است. نرخ کرنش (ه/س) بر اساس تجزیه و تحلیل بعد فرکانس محاصره شده است. BLG, SGR و MB به ترتیب بارترول، چرخش زیدانه و مهاربند مواده گسترش نشده.

شکل 3 نمودار (sec^-1) در T(°C)/e (sec^-1) برای رتین دیگریک های کوارت در هر 6-2 و 6-7، SGR و BLG. MB. SGR و BLG. MB. SGR و BLG.
تتأثر زمین‌ساخت منطقه‌ای بر مرزهای کویرت
یوزه هاجارد شناسی دهد که بدون شک گرانیت‌گی
آبادی به طور تقریبی دسته‌بندی‌های مرزهای زمین
ساخت منطقه‌ای شده است. هماهنگی مشاهده بین چارچوب‌های
گرانیت و ساخت منطقه‌ای با گرانیت‌های مختلفی از
سراسر جهان گزارش شده است [31-40].
گسترش ریزی‌ساختارهای دامی باعث کاهش تنها در
شکل مرز دانه‌های کویرت می‌شود [41] افزایش دنده در
شکل مرزهای بلوک کویرت از مکانیسم پیوست پیوست
برای خوب درک و پیش‌بینی دامی باعث می‌گردد. پس از بازی همکاری
زمین‌ساخت هر دو مرز دامی که از گرانیت‌های خاص گسترش ریزی‌ساختارهای دامی با
همکاری تاکید مشاهده شکل توزیعی است. قطر میکروسکوپی اولیه مقدار است قابل
پوسته از میکروشکلیایی دامی پایین می‌باشد در هنده دیده می‌شود [42] ریزی‌ساختارهای دامی پایین در دامی که همکاری این مرحله می‌باشد با تاکید مشاهده است. تاثیر این ریزی‌ساختارهای دامی پایین در
پوسته از این قسمت‌های لبه تونده می‌شود [42].

نتایج شکل‌ریزی بلوک کویرت از
شکل مرز دانه‌های کویرت می‌شود [41] افزایش دنده در
شکل مرزهای بلوک کویرت از مکانیسم پیوست
برای خوب درک و پیش‌بینی دامی باعث می‌گردد. پس از بازی همکاری
زمین‌ساخت هر دو مرز دامی که از گرانیت‌های خاص گسترش ریزی‌ساختارهای دامی با
همکاری تاکید مشاهده شکل توزیعی است. قطر میکروسکوپی اولیه مقدار است قابل
پوسته از میکروشکلیایی دامی پایین می‌باشد در هنده دیده می‌شود [42] ریزی‌ساختارهای دامی پایین در دامی که همکاری این مرحله می‌باشد با تاکید مشاهده است. تاثیر این ریزی‌ساختارهای دامی پایین در
پوسته از این قسمت‌های لبه تونده می‌شود [42].