کاربرد شیمی کانی پلاژیوکلاز در بررسی روند تبلور مامگاه توده‌های نفوذی راونج
(شمال شرق دلیجان)

محبوبه جمشیدی‌پور، مهندز خامی، پاسا، فریبرز مسعودی

1- گروه زمین شناسی دانشگاه پیام نور، صنفی پی ب، تهران، ایران
2- گروه زمین شناسی دانشگاه علم زمین دانشگاه شهید بهشتی، تهران، ایران

(دریافت مقاله: ۱۳۹۲/۱۲/۰۳، نشیم نهایی: ۱۳۹۳/۰۸/۳۰)

چکیده: توده‌های نفوذی راونج با ترکیب تونلتان، کوارتز، سیلوپیت و میکروکوارتزبودورت در غرب رستاوان راونج، شمال شرق دلیجان و در بهشت اورومیه- دشت برودوز دارند. پلاژیوکلازها در سه اندازه متقارن در حالت، متساقط و ریزتلور در ترکیب‌های مختلف توده نفوذی راونج دیده می‌شوند. بیشتر روندهای درشت دارای منطقه‌نما هستند و مکملی‌های جنگلی در یک نمونه گیاهی K3O با روندهای مختلف نسبت به (An) در ترکیب‌های مختلف را نشان دهند. این نتایج که پلاژیوکلازها از اصل ماکماگای هستند. شیمی پلاژیوکلازها با مکملی‌های جنگلی در گوشه‌های An88/94- An88/98 - An88/98 نشان داده می‌کند. شیمی An کل با پلاژیوکلازها رونه با منطقه‌نماهای نویسی از تا لبه با ترکیب کمترین و بیشترین مقدار در توده‌های An در پلاژیوکلاز تونلتان Ti و Fe, Mg, اندرس و اندرسی An88/10 - An88/10 - An88/88 در اکثر منطقه‌نماهای پلاژیوکلازهای از لبه به لبه روند نوسانی نشان می‌دهد که وجود این تغییرات در پلاژیوکلازهای توده‌های راونج یک روند تبلور جدید ماکماگای همره برای گزیناً بالاگریز مولالی ماکماگای مافیک‌تر در حال تولید دمایی‌ها را مشخص می‌کند. تغییرات در مقدار Fe, Mg از پلاژیوکلازهای مافیک‌تر در مرکز توده‌های نفوذی راونج نسبت به لبه ان بیشتر است.

واژه‌های کلیدی: شیمی پلاژیوکلاز، پلاژیوکلاز، توده‌های نفوذی، راونج، بهشت اورومیه-دشت.

مقدمه
کاتی آن (An) کانی پلاژیوکلاز یکی از کانی‌های اصلی در روند تبلور مامگاه است. بررسی شیمی کانی پلاژیوکلاز در نتایج اکثر ارزش‌سنجیدنی از روند تبلور مامگاه را مشخص می‌نماید [۱-۸]. همچنین منطقه‌نماهای کانی پلاژیوکلاز نیز در راستای تغییرات روند تبلور ماکماگای توسط پژوهشگران مختلف برسی شده است (برای مثال، [۹-۱۲]) افزون بر تغییرات در روند فرسایش (An) پلاژیوکلازها، بررسی تغییرات در منطقه‌نماهای پلاژیوکلازهای نیز ارزیابی شده است (Fe, Mg, Ti) با تغییرات روند مادی باشند.

m_jamshidi@pnu.ac.ir
سنگ‌گاری توده‌های نفوذی راونج
توده‌های نفوذی راونج از نظر سنگ‌گاری شامل سنگ‌های تونالیت، کوارتز‌دیوریت و میکروکوارتز‌دیوریت هستند که در ناحیه راونج برونز دارند. پیش‌تر سنگ‌های تونالیت و کوارتز‌دیوریتی به صورت نفوذی به شکل استوک‌هایی با اندازه‌های متوسط هستند. البته این نوع سنگ‌ها، بازه ابعاد آن‌ها این سنگ‌ها، و کاری‌های توده‌های نفوذی راونج، کوارتز و هورنلند به دو گروه زیرگان و کاتی‌های کدر، و کاتی‌های نانوی کریت و سرسیت هستند (شکل ۳).

پیش‌تر سنگ‌های میکروکوارتز‌دیوریتی به شکل استوک، آذین‌نویز لایه و آذرین‌نیزه است. البته این نوع سنگ‌ها، رنگ‌هایی و یا پفوربری است (شکل ۳). کاتی‌های اصلی سنگ‌های میکروکوارتز‌دیوریتی شامل پلاژیکلاز، کوارتز، برونز سنگ‌های توده‌های نفوذی راونج.

شکل ۲ تغییرات میکروسکوپی توده‌های نفوذی تونالیت و کوارتز‌دیوریت راونج (الف) به شکل دناهی، کاتی‌های کنترل‌给您加引号的文本如下：“سنگ‌گاری توده‌های نفوذی راونج توده‌های نفوذی راونج از نظر سنگ‌گاری شامل سنگ‌های تونالیت، کوارتز‌دیوریت و میکروکوارتز‌دیوریت هستند که در ناحیه راونج برونز دارند. پیش‌تر سنگ‌های تونالیت و کوارتز‌دیوریتی به صورت نفوذی به شکل استوک‌هایی با اندازه‌های متوسط هستند. البته این نوع سنگ‌ها، بازه ابعاد آن‌ها این سنگ‌ها، و کاری‌های توده‌های نفوذی راونج، کوارتز و هورنلند به دو گروه زیرگان و کاتی‌های کدر، و کاتی‌های نانوی کریت و سرسیت هستند (شکل ۳).

پیش‌تر سنگ‌های میکروکوارتز‌دیوریتی به شکل استوک، آذین‌نویز لایه و آذرین‌نیزه است. البته این نوع سنگ‌ها، رنگ‌هایی و یا پفوربری است (شکل ۳). کاتی‌های اصلی سنگ‌های میکروکوارتز‌دیوریتی شامل پلاژیکلاز، کوارتز، برونز سنگ‌های توده‌های نفوذی راونج.

شکل ۲ تغییرات میکروسکوپی توده‌های نفوذی تونالیت و کوارتز‌دیوریت راونج (الف) به شکل دناهی، کاتی‌های کنترل‌
شکل ۲: تصاویر میکروسکوپی توده میکروکوارتزوبریتوئیت راونج (الف) پلاژیوکلاز با حالت منطقه‌نی، و ماکل‌های چندپوسته و پیراشبست (ب) بافت شبیه پورتیت پلاژیوکلاز درشت پلاژیوکلاز با حالت منطقه‌نی، و ماکل پیراشبست (نور XPL).

روش بررسی

پس از بررسی‌های سنگ‌نگاری سنگ‌های گدازانی کمتر مقاطع نازک-سفتی در آزمایشگاه تهیه مقطع دانشکده علوم دانشگاه تربیت معلم تهیه شد. پلاژیوکلاز یکی از کالی‌های اصلی سنگ‌های منطقه راونج است. تجزیه نقطه‌ای از کالی‌های پلاژیوکلاز سنگ‌های کوارتزوبریت (نمونه PM144 توپا) (PM140) و میکروکوارتزوبریت (نمونه PM140) تهیه نمودی راونج در آزمایشگاه کمی شناسی ناحیه پایین‌تریفی취 آراوری مواد معدنی ایران با استفاده از دستگاه رزپوزیتیون الکترونی مدل ۱۰۵۰۰ ساخت کمپانی کوشر فرانس (EPMA) و سخت شکمی کامپیوتریک کشور خودش انجام داد. این ناحیه با ولتاژ شتاب دهنده ۲۵ کیلو‌واتر و پاداش جریان ۸۱۰ نانوآmp انجام شد.

بر اساس بررسی‌های میکروسکوپی، پلاژیوکلاز‌های رشته بر اساس پوشش سنگ‌نگاری پلاژیوکلازهای رشته-پلاژیوکلازهای ریزی نایبرای اغلب با ماکل چندپوسته دیده می‌شوند. ۹۰ تجدید نقطه‌ای از پوشش‌ها مختلف پلاژیوکلازها انجام شد.

بر نمودار دیبر و همکاران [۲۴] نشان داده شده است.
جدول 1
نتایج تجزیه نکته‌ای کلیه پلازیکولز با ماکل

نمونه‌ها

| نمونه‌ها | سطح | سال | الماس | الکتریزاسیون | تعداد | بازگشت | همگیت | متوسط | فاصله | درصد | رشته‌برداری | فرآیند | نتایج | زمان | فاصله | رنگ | نتایج | نتایج | نتایج |
|----------|------|-----|------|---------------|-------|---------|--------|--------|---------|------|-------------|--------|-------|------|--------|------|--------|-------|
| | | | | | | | | | | | | | | | | | | |

جدول 2
نتایج تجزیه نکته‌ای پلازیکولز با منطقه‌بندی نوسان در نمونه میکروکوارترزوریت توده نفوذی را

نمونه‌ها

| نمونه‌ها | سطح | سال | الماس | الکتریزاسیون | تعداد | بازگشت | همگیت | متوسط | فاصله | درصد | رشته‌برداری | فرآیند | نتایج | زمان | فاصله | رنگ | نتایج | نتایج | نتایج |
|----------|------|-----|------|---------------|-------|---------|--------|--------|---------|------|-------------|--------|-------|------|--------|------|--------|-------|
| | | | | | | | | | | | | | | | | | | |

* DOI: 10.26295/jpcm.27.2.361*
جدول 3 نتایج تجزیه نقطه‌ای پلاژیوکلاز با منطقه‌بندی نوسانی در نمونه‌های نوعی درون‌گردیده را نشان می‌دهد.

تراکم‌کننده

<table>
<thead>
<tr>
<th>نوع</th>
<th>نتایج</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaO</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td></td>
</tr>
<tr>
<td>Al2O3</td>
<td></td>
</tr>
<tr>
<td>SiO2</td>
<td></td>
</tr>
<tr>
<td>K2O</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td></td>
</tr>
<tr>
<td>TiO2</td>
<td></td>
</tr>
<tr>
<td>Fe2O3</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Ab %</td>
<td></td>
</tr>
<tr>
<td>An %</td>
<td></td>
</tr>
<tr>
<td>Or %</td>
<td></td>
</tr>
</tbody>
</table>

سایر

به‌طور کل، ترکیب پلاژیوکلازهای نوعی درون‌گردیده را نشان می‌دهد که ترکیب پلاژیوکلازهای نوعی درون‌گردیده را نشان می‌دهد که ترکیب پلاژیوکلازهای در گستردگی آندزین تا اواسط لایا‌پروپت به‌طور می‌گیرند.
برچاک و همکاران [A] معتقدند که نیود میانیار از فازهای دیگر در بخش مرکزی بلورهد پلاژیوکلزا و رون خشک آنورتیت نسبت به K_2O نشان دهنده این است که پلاژیوکلزا قاز اصلی ماؤمامت، ویژه‌گی به یاده در بلورهای پلاژیوکلزا مورد بررسی قابل مشاهده است (شكل 5 الف). به نظر می‌رسد که مراکز گنی از آنورتیت در مراحل اولیه جداش ایجاد و سپس با پلاژیوکلزا‌هایی با درصد آنورتیت کمتر پوشیده شده‌اند، این فرآیند نتیجه گاهی دما در ماؤمامت. در حالی که K_2O معادل به درصد غنی از آنورتیت در مراحل اولیه جداش است، این نشان دهنده که مقدار K_2O در پلاژیوکلزا با کاهش درصد آنورتیت مشابه‌تر می‌شود (شكل 5 ب).

شیمی پلاژیوکلزا با منطق‌برنده

تجزیه ریپژدارانت برای 30 نقطه از هر یک از بلورهای پلاژیوکلزا با منطق‌برنده در نمونه تولیدی و میکروکارترزوریتی انجام شد. نتایج به دست آمده به همراه فرمول ساختاری آنها در جدول 2 و 3 ارائه شده است.

مقدار غنی انتهای آنورتیت در پلاژیوکلزا با منطق‌برنده در نمونه میکروکارترزوریتی از $An_{74,98}$ تا $An_{91,17}$ تا $An_{95,19}$ کند. اما بیشتر در گستره $An_{91,17}$ تا $An_{95,19}$ و و مقدار K_2O موجود در پلاژیوکلزا که رون خشک نشان دهنده که پلاژیوکلزا قاز اصلی ماؤماماست. ب) تغییرات مقدار آن که در پلاژیوکلزا نسبت به مقدار An به همراه داده‌های مربوط به مركز بلورها و علائم مثلی شکل مربوط به لبه بلورهای، رنگ فرمز، نشانگر، و رنگ زنی نشان دهنده تغییرات دوره ای است. (شكل 5 الف).
شکل 6 (الف) موقعیت نقطه تجزیه شده پلاژیوکلاز با منطقه‌بندی در نمونه میکروکواراتژیوریتی در نمونه سه‌تایی فلدسپات‌ها (ب) تصویر الکترونی پس پراکنده (BSE): پیکان سفید رنگ در تصویر مسیر تجزیه نقطه‌ای جهت بررسی منطقه‌بندی را نشان می‌دهد و (ب) تصویر میکروسکوپی پلاژیوکلاز با منطقه‌بندی در نمونه میکروکوارتزیوریتی.

شکل 7 (الف) موقعیت نقطه تجزیه شده پلاژیوکلاز با منطقه‌بندی در نمونه تونالیتی در نمونه سه‌تایی فلدسپات‌ها (ب) تصویر BSE. پیکان سفید رنگ در تصویر مسیر تجزیه نقطه‌ای جهت بررسی منطقه‌بندی را نشان می‌دهد و (ب) تصویر میکروسکوپی پلاژیوکلاز با منطقه‌بندی در نمونه تونالیتی.
پلاژیوکلاز نمونه میکروکوارتیزیوری از مرکز با ترکیب $\text{An}_{0.5}$ تشکیل شده و از مرکز به لبه پلور دارای ناهنجاری‌های معنادید در فواصل 50، 100 و 250 میکرومتر از مرکز Fe^{3+} بلور است. ناهنجاری‌های نام برده مطابق با غنی شدگی در این فواصل است. پلاژیوکلاز نمونه نتایج است. در نتیجه، دامنه تغییرات در نمونه میکروکوارتیزیوری بیشتر از نمونه نتایج است. همچنین طول و دامنه تغییرات در هر دو بلور پلاژیوکلاز نمونه میکروکوارتیزیوری و نتایج است. در لبه بلور گسترش بیشتری نسبت به مرکز بلور دارد (شکل‌های 8 اف و 9 اف).

همخویان دارد (شکل‌های 9 اف و ب).
ترکیب پلاژیوکلازهای با منطقه‌بندی مورد بررسی بر اساس Si⁴⁺، Ca²⁺، Na⁺، Al³⁺ و Si⁴⁺ شکل گرفته است (شکل‌های 10 الف، ب). در منطقه‌بندی پلاژیوکلاز را ایجاد کرده است.

روند منفی Si⁴⁺ نسبت به Fe³⁺ شکل 10 ب (احتمالاً نشان دهنده جانشینی Si⁴⁺ به Ca²⁺ در بلورهای Fe³⁺ به جای Al³⁺) نمودارهای نشان دهنده فرا آینده‌ای جانشینی در پلاژیوکلازهای با منطقه‌بندی در سنگ‌های میکروکاوان‌دورینی و تونالیتی توده نفودی را نشان می‌دهد.

شکل 11 نمودار تغییرات درصد مولی عضو انتهایی آنورتیت پلاژیوکلازهای با منطقه‌بندی نسبت به تغییرات انتهای سه طرفیتی.
بحث و بررسی

مدلهای غیرخطی مختلف جهت توضیح منطقه‌نامی در پلاژیکالی‌ها از منظر شناسنامه است. منطقه‌نامی در پلاژیکالی‌ها توسط درصد مولی آن‌های کننده میدود [10,11].

ارگان و برگیر گروهی منطقه‌نامی پلاژیکالی‌ها ممکن است برآمد از پلی‌وزنی و متابولیسم میکروبی خودکار گزینه‌ای از میکروبی شورت در منطقه‌نامی فیزیکی بایستد [9]. مدل تریاکت مولی میکرابی گروهی از پلاژیکالی‌ها جدایی نشوده و نشانه‌های منطقه‌نامی تبدیل به میکروبی در پلاژیکالی‌های کاریزی دوپیون، مشخص کرده‌اند [10].

در پلاژیکالی‌های مرد دیده می‌شود، لی مدایر پلاژیکالی‌ها در برخی نقاط دیگری تغییرات مشخصی یافته و سبب ایجاد منطقه‌نامی نوسان در شکل است. برای تغییرات مشخصی پژوهشگران منطقه‌نامی نوسان تغییرات جویی ترکیب شیمیایی می‌شود. این است که نتایج ترکیب شیمیایی کلی شناسایی شده می‌باشد و فقط باعث تغییر در نتایج شیمی می‌شود [9]. در سیستم‌های دوازده به پلاژیکالی‌ها، عناصر اصلی برای تشخیص پارامترهای متدودی که ترکیب کانی را کنترل می‌کند کافی نیستند، به همین دلیل توجه به فراوانی عناصری Ti و Fe, Mg در پلاژیکالی‌ها کمبود می‌شود [9].

تغییرات نوسانی Ti, Fe, Mg در پلاژیکالی‌ها نشانگر تغییر ترکیب شیمیایی می‌باشد [9]. تغییرات گروهی اکسیده‌ای Ti و Fe, Mg حسب درصد وزن از جمله Ti و Fe, Mg افزایش مقدار آن‌ها در پلاژیکالی‌های منطقه‌نامی همراه است. این روند نشان دهنده تغییر فراوانی عناصر کمیابی در میان در تغییر با بلوارها و باینگر همگام می‌باشد [9].

نتیجه کنک [12].

تأثیر فشار بر گروهی منطقه‌نامی در بررسی‌های تجربی به‌این‌جا رسیده است. بررسی‌های دیده که تغییرات تا 14 مول درصد در مقدار آن‌ها در پلاژیکالی‌ها تغییرات 2 تا 3 کیلوبار مهیا می‌باشد. همچنین تغییرات فشار کمتر از 4 کیلوبار نیز تأثیر بیش از 5 درصد بر مقدار آن‌ها در پلاژیکالی‌ها تاثیر داشته است. [10] تغییرات میکرو تغییرات شیمیایی مشخص با تغییرات فشار ترکیب پلاژیکالی‌ها دارد [13]. این حال این تغییرات میکرو نیز نمودار بالای تغییرات درصد آن‌ها در پلاژیکالی‌ها مورد بررسی را توجیه می‌کند [10].
روند صعودی مقدار Fe^{3+} نسبت به An (شکل 11) بیانگر آمیختگی شیمیایی در ماجماست [31]. در صورتی که روی
منفی بین این دو مقدار در اثر فرآیند جدايش ماکمایی ایجاد می‌شود [32].

شکل 11 نمودار تغییرات مقدار اکسیدهای Fe، Mg و Ti در پلاژیوکلاز‌های نموده کوارتزدوریتی.
برداشت
در منطقه راونج، با بررسی سنگ‌نگار و شیمی کانی پلاژیوکلاز در توده‌های میکروکوارتزدوریتی، کوارتزدوریتی و تونالیتی می‌توان نتایج ژرف در سرود تبلور پلاژیوکلازی منطقه بکر کرد.

1- درصد مولی آلی‌سیل بلو پلاژیوکلازهای دارای منطقه‌بندی به طور کلی از مرکز به لبه رونده کاهشی را نشان می‌دهد که نشان دهنده تاثیر فراگری تبلور جدايش است.

2- بلو پلاژیوکلازهای دارای منطقه‌بندی نوسانی بوده که احتمالاً بر اثر بازگرایی منوالی و توزیع ذرات مافیک‌سیر به درون اثرپلاژیوکلازی فلزیک در حالت تبلور ژرف داده است که باعث ایجاد تغییرات مقادیر آلی‌سیل بلو پلاژیوکلازها شده است.

3- تکیب پلاژیوکلازهای دارای منطقه‌بندی توسط جانشینی‌های همی‌گیمی که در اینجا وجود تعادل کریستال طی تبلور ممکن است.

4- بازگرایی منوالی در اثر تریک ماسیفلیک‌سیر به درون اثر پلاژیوکلازی فلزیک یک کواین ماسیفلیک می‌تواند اثرگذاری کننده تبلور تندی پلاژیوکلازهای دارای منطقه‌بندی است که باعث ایجاد تغییرات در تکیب شیمیایی پلاژیوکلازها شده است.

5- توده نفوذی راونج بخشی از فاز فعالیت ماسیفلیک می‌سوزن کمک ماسیفلیک اروپیه دختر بوده که در اثر فوسفات بوتیسی به زیر میزان ایران مرکزی شکل قرار گرفته است و احتمالاً فراگری تبلور جدايشی و بازگرایی منوالی ماسیفلیک نقش مهمی را در تکامل توده نفوذی راونج داشته است.

مراجع