سنگنگاری، شیمی کانی تورمالین، زئوژنی و جایگاه زمین‌ساختی سنگ‌های آذرین

تشریی منطقه‌ی شوراب (غرب خلیف)، خراسان جنوبی

علي اصغر غلامی، سید سعید محمدی، محمد حسین زرین‌کوب

گروه زمین‌شناسی، دانشکده علوم، دانشگاه پیروجند
(پژوهش‌های علمی و تحقیقاتی شرکت مهندسین ویژه)
زمنی شناسی

ماگامانیسم ترشی در منطقه این شهراب به عنوان بخشی از بلک لوت، به شکل قاعده‌ای و گردش سگه‌های آدرآواری و سگه‌های عمیق، نیز دیده شده است. سگه‌های آنششافانی نسبت به سگه‌های گردشی و نیز دیده در قالب دایک‌هایی با تركیب حذف‌واست و رستایی‌هایی به آن‌ها نسبت به شماهی و شمال غربی - جنوب شرقی است که در ناحیه شمالی و مرکزی منطقه شوراب رخنمون دارد (شکل 2). در سه‌گر - ی مورد بررسی، دو رشته گسل قاعده‌ای شماهی - جنوب غربی و شمال غربی - جنوب شرقی شماهی رخنمون می‌باشند که نقش مهمی در تغییرات زمین‌شناسی، واحدهای سطحی منطقه داشته است. براساس تقسیم زمین- شناسی خویش (11)، واحدهای سطحی گسترشی مورد بررسی از نظر سنتی به شکل گروه تشکیل می‌شوند.

1- واحدهای لوسنی سیانی: شامل واحدهای تکنیکی نشده مانند، تغییر و کنگلومورا در جنوب غربی منطقه، قاعده بررسی واقع شده و کوچک‌ترین رخنمون سنگی را در این گستره نشان می‌دهند. 2- واحدهای انسانی بائیلی: شامل اندیزه، کوارتز، پپروکسند. 3- واحدهای بیشترین (تیوا - بخش) 4- واحدهای کوچک‌ترین (تیوا - بخش) 5- واحدهای کوارتز پپروکسند. 6- واحدهای بیشترین (تیوا - بخش) 7- واحدهای بیشترین (تیوا - بخش)
توضیحات:

روش بررسی
پس از یک محدوده یک چندپوشانی به سبب دغریرشی‌ها و کربناتی‌ها بازسازی شده است، با استفاده از نکات تجزیه و تحلیلی با کاربردی عالی مناسب و داشتن کمربتنی گریه‌های ۱۰ نمونه از سنگ‌های ACME شناسایی و برای بررسی به ازای‌بیش‌گاه

شکل ۲ نقشه زمین‌شناسی منطقه‌ی شوراب.

شکل ۳ نقشه مخروط انتخاب‌شده‌ان در جنوب منطقه‌ی شوراب، دید به سمت جنوب غرب، ب، رخسی و پروکسی اندزه‌ی در شمال منطقه‌ی ب، دایک با ترکیب کوارتز مونزودوریت و لروفابی و امتدادی کشی شمایی - جنوبی در محور سنگ‌های اندزه‌ی در جنوب منطقه‌ی شوراب، نگاه عکس به سمت شمال شرق، ت، رخسی و پروکسی در شوراب و کوارتز و لروفابی در جنوب منطقه‌ی مورد بررسی، نگاه به شمال.

توجه مهم‌هایی:

تبایه‌های نیمه‌عمیق و دایک‌ها در واحدهای اندزه‌ی سبب دغریرشی‌ها ابی‌پوستی و کربناتی‌ها است. با ترتیب کننده‌ها توده‌های نفوذی و نیمه‌عمیق در بخش‌های غربی و جنوب غربی منطقه، شدت دگرگویی بی‌تربیت می‌شود. در اثر عملکرد گریه‌ها، پروکسی‌ها شعاعی در کوارتز و لوستوریت پویابویی و اندزه‌ی منطقه‌ی شکل‌شده است.
سنجشگری آنتزیت

در منطقه شوراب خوسف، اندزیت بیشتری در ناحیه به نام "آنتزیت" مشاهده شده است. در این منطقه، این سنگ با توانایی خاصی برای بررسی اندازه‌گیری کربنات و سرمیسیت به پایه کامل بستگی دارد. این سنگ با توجه به اندازه کربنات و سرمیسیت در این منطقه، این سنگ را تشکیل می‌دهد.

شکل 4: BTEX از نظر اندازه‌گیری در پلازموکولارها، پلیمرهای وابسته به پلازموکولارها ممکن است باشد.

در این ناحیه، نور در شکل‌ها، پلازموکولارها، پلیمرهای وابسته به پلازموکولارها ممکن است باشد.

* گزارش نيزدهی علوم از دیدگاه است.

* منابع:

1. کتاب، اطلس جغرافیای جهان، ترجمه: علی‌اکبر پورمحمدی، انتشارات نیکور، سال 1389.

2. پلازموکولارها، نور در شکل‌ها، پلازموکولارها، پلیمرهای وابسته به پلازموکولارها ممکن است باشد.

* منابع:

1. کتاب، اطلس جغرافیای جهان، ترجمه: علی‌اکبر پورمحمدی، انتشارات نیکور، سال 1389.

2. پلازموکولارها، نور در شکل‌ها، پلازموکولارها، پلیمرهای وابسته به پلازموکولارها ممکن است باشد.

* منابع:

1. کتاب، اطلس جغرافیای جهان، ترجمه: علی‌اکبر پورمحمدی، انتشارات نیکور، سال 1389.

2. پلازموکولارها، نور در شکل‌ها، پلازموکولارها، پلیمرهای وابسته به پلازموکولارها ممکن است باشد.

* منابع:

1. کتاب، اطلس جغرافیای جهان، ترجمه: علی‌اکبر پورمحمدی، انتشارات نیکور، سال 1389.
trasaki anzendit

در نمونه دستی به رنگ‌های کاستری روشین و بافت اصلی این سیم‌های پورفوری با خمیره‌های رنگ‌های مختلف است. در تراکم‌های آندزین، پلاژیوکلاز با ترکیب آندزین نا ای‌گیکسی با صورت فنکورتیسپ و ریزی‌شکل 85 نا درصد حجم سینگ را تشکیل می‌دهد. رنگ‌های سینگ را تشکیل داده‌اند. کوارتز‌های پی‌گیم‌ها در همراه مسکن شیشه‌ی سیلیز این سگه‌ها را در نظر می‌گیرند. کانال‌های دیگر شامل کانال‌های نورپردازی، کانال‌های پشتی و کانال‌های رسته‌ای هستند.

پیروکسن آندزین

پیروکسن آندزین‌های شرایح رنگ‌های کاستری روشین، تراکم‌های بافت پورفوری با خمیره‌های رنگ‌های متعدد دارند. پلاژیوکلاز نوع آندزین‌های تراکم‌دار هرندار در حدود 70 نا درصد حجم سینگ‌ها را تشکیل می‌دهد. پلاژیوکلاز‌ها در سطح مسکن‌های نورپردازی، پی‌گیم‌ها و دیگر مکان‌های بهره‌برداری دارند. کوارتز‌های پی‌گیم‌ها به ساختار پی‌گیم‌های Coarse-sieve (درشت سیلیز) و Fine-sieve (سیلیز دفع کننده) بنا می‌شوند. بافت غربالی در پلاژیوکلازها دو شکل غربالی ساخته‌اند.

کوارتز آندزیت

بافت اصلی این سیم‌های پورفوری با خمیره‌های رنگ‌های متعدد است. پلاژیوکلاز 65 نا درصد غربالی 20 نا درصد و کوارتز 10 نا درصد گیکسی که 78 نا درصد حجم سینگ‌ها را تشکیل می‌دهد است. پلاژیوکلاز‌ها در همراه مسکن‌های نورپردازی نویسی را تشکیل می‌دهند. کوارتز‌های پی‌گیم‌ها به ساختار پی‌گیم‌های Coarse-sieve (درشت سیلیز) و Fine-sieve (سیلیز دفع کننده) بنا می‌شوند. بافت غربالی دو شکل غربالی ساخته‌اند.

مترودوریت و کوارتز‌های پورفوری

این سیم‌ها بافت دامی و پورفوری با خمیره‌های دامی‌های اصلی دارند. پلاژیوکلاز نوع اندزین‌های ای‌گیکسی حدود 70 نا درصد، کوارتز 5 نا درصد و بسترهای (آندزین) 12 نا درصد جسمی، کانال‌های تشکیل دهنده این سیم‌ها هستند. ترمولین‌های شعاعی اسفن‌بی، شکل‌هاینگ‌های پی‌گیم‌ها، سکل‌های نورپردازی و دیگر اجزایی به بیان این بافت کمک می‌کنند.
سنگ‌ها مشاهده می‌شوند. در منطقه شوراب، تورمالین‌های شفاف در کوارتز مونزودوریت و اندزیت‌های همجوار با این سنگ‌ها نشان شده است (شکل ۷، پ. و. ت). تورمالین‌های

شکل ۵: پلاژیوکلاز با بافت غربالی ریز، ب: حاشیه سوخته در هورتینته، نور هر دو شکل Hbl = پلاژیوکلاز، PL = XPL، CPx = کلینوپیروسن.

شکل ۶: افت گرانولار در دیوریت، ب: افت پورفیری با زمینه میکرو گرانولار و حضور هورتینته با حاشیه سوخته.

شکل ۷: افت دانه‌ای در مونزودوریت و کوارتز مونزودوریت شوراب، تورمالین‌های شفاف در نمودن ماکرو‌سکوپی کوارتز مونزودوریت شوراب، ب: بر پلی. PPL، XPL، کوارتز، Pl = پلاژیوکلاز، Qtz = تورمالین.
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Mineral Name</th>
<th>Si (%)</th>
<th>Al (%)</th>
<th>Mg (%)</th>
<th>Fe (%)</th>
<th>Fe (Fe+Mg) (%)</th>
<th>Na (%)</th>
<th>K (%)</th>
<th>Ca (%)</th>
<th>FeO*</th>
<th>Fe2O3*</th>
<th>B2O3*</th>
<th>MgO</th>
<th>CaO</th>
<th>TiO2</th>
<th>Total</th>
<th>H2O</th>
<th>Structural formula based on 31 atoms (O, OH, F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Davine</td>
<td>0.6</td>
<td>7.1%</td>
<td>0.1%</td>
<td>92.2%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>1.5%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>Davine</td>
</tr>
<tr>
<td>2</td>
<td>Davine</td>
<td>0.6</td>
<td>7.1%</td>
<td>0.1%</td>
<td>92.2%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>1.5%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>Davine</td>
</tr>
<tr>
<td>3</td>
<td>Davine</td>
<td>0.6</td>
<td>7.1%</td>
<td>0.1%</td>
<td>92.2%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>1.5%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>Davine</td>
</tr>
</tbody>
</table>

*Sample No. 1, 2, 3 are different samples of Davine. The table shows the composition of Davine in terms of various elements and oxides. The structural formula is based on 31 atoms (O, OH, F).
جدول 2 \(\text{نتایج تجزیه شیمیایی نمونه‌های منطقه شوراب، عنصر اصلی بر حسب درصد وزنی و عنصر کمیاب بر حسب تئام} \) یا است.

<table>
<thead>
<tr>
<th>عنصر</th>
<th>GH07</th>
<th>GH011</th>
<th>GH014</th>
<th>GH017</th>
<th>GH015</th>
</tr>
</thead>
<tbody>
<tr>
<td>مواد غذایی</td>
<td>1.20</td>
<td>0.32</td>
<td>0.45</td>
<td>0.42</td>
<td>0.37</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.85</td>
<td>0.89</td>
<td>0.83</td>
<td>0.87</td>
<td>0.86</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.85</td>
<td>0.89</td>
<td>0.83</td>
<td>0.87</td>
<td>0.86</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>42.18</td>
<td>51.28</td>
<td>46.25</td>
<td>49.27</td>
<td>42.80</td>
</tr>
<tr>
<td>MnO</td>
<td>0.09</td>
<td>0.10</td>
<td>0.05</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>MgO</td>
<td>1.17</td>
<td>1.11</td>
<td>1.24</td>
<td>1.08</td>
<td>1.19</td>
</tr>
<tr>
<td>CaO</td>
<td>0.46</td>
<td>0.65</td>
<td>0.58</td>
<td>0.51</td>
<td>0.52</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.25</td>
<td>0.37</td>
<td>0.32</td>
<td>0.31</td>
<td>0.27</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.16</td>
<td>0.22</td>
<td>0.24</td>
<td>0.25</td>
<td>0.24</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.20</td>
<td>0.21</td>
<td>0.19</td>
<td>0.24</td>
<td>0.14</td>
</tr>
<tr>
<td>LOI</td>
<td>4.3</td>
<td>4.7</td>
<td>3.8</td>
<td>4.1</td>
<td>3.9</td>
</tr>
<tr>
<td>CaO</td>
<td>0.46</td>
<td>0.65</td>
<td>0.58</td>
<td>0.51</td>
<td>0.52</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.25</td>
<td>0.37</td>
<td>0.32</td>
<td>0.31</td>
<td>0.27</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.16</td>
<td>0.22</td>
<td>0.24</td>
<td>0.25</td>
<td>0.24</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.20</td>
<td>0.21</td>
<td>0.19</td>
<td>0.24</td>
<td>0.14</td>
</tr>
<tr>
<td>LOI</td>
<td>4.3</td>
<td>4.7</td>
<td>3.8</td>
<td>4.1</td>
<td>3.9</td>
</tr>
<tr>
<td>عنوان</td>
<td>GH091</td>
<td>GH096</td>
<td>GH034</td>
<td>GH068</td>
<td>GH099</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>عنوان سدید</td>
<td>ΔH</td>
<td>ΔH</td>
<td>ΔH</td>
<td>ΔH</td>
<td>ΔH</td>
</tr>
<tr>
<td>دیورت</td>
<td>422.11</td>
<td>422.11</td>
<td>422.11</td>
<td>422.11</td>
<td>422.11</td>
</tr>
<tr>
<td>ΔG</td>
<td>422.11</td>
<td>422.11</td>
<td>422.11</td>
<td>422.11</td>
<td>422.11</td>
</tr>
</tbody>
</table>

جدول 2

<table>
<thead>
<tr>
<th>عنوان</th>
<th>GH091</th>
<th>GH096</th>
<th>GH034</th>
<th>GH068</th>
<th>GH099</th>
</tr>
</thead>
<tbody>
<tr>
<td>عنوان سدید</td>
<td>ΔH</td>
<td>ΔH</td>
<td>ΔH</td>
<td>ΔH</td>
<td>ΔH</td>
</tr>
<tr>
<td>دیورت</td>
<td>422.11</td>
<td>422.11</td>
<td>422.11</td>
<td>422.11</td>
<td>422.11</td>
</tr>
<tr>
<td>ΔG</td>
<td>422.11</td>
<td>422.11</td>
<td>422.11</td>
<td>422.11</td>
<td>422.11</td>
</tr>
</tbody>
</table>

جدول 3

<table>
<thead>
<tr>
<th>عنوان</th>
<th>GH091</th>
<th>GH096</th>
<th>GH034</th>
<th>GH068</th>
<th>GH099</th>
</tr>
</thead>
<tbody>
<tr>
<td>عنوان سدید</td>
<td>ΔH</td>
<td>ΔH</td>
<td>ΔH</td>
<td>ΔH</td>
<td>ΔH</td>
</tr>
<tr>
<td>دیورت</td>
<td>422.11</td>
<td>422.11</td>
<td>422.11</td>
<td>422.11</td>
<td>422.11</td>
</tr>
<tr>
<td>ΔG</td>
<td>422.11</td>
<td>422.11</td>
<td>422.11</td>
<td>422.11</td>
<td>422.11</td>
</tr>
</tbody>
</table>

جدول 4

<table>
<thead>
<tr>
<th>عنوان</th>
<th>GH091</th>
<th>GH096</th>
<th>GH034</th>
<th>GH068</th>
<th>GH099</th>
</tr>
</thead>
<tbody>
<tr>
<td>عنوان سدید</td>
<td>ΔH</td>
<td>ΔH</td>
<td>ΔH</td>
<td>ΔH</td>
<td>ΔH</td>
</tr>
<tr>
<td>دیورت</td>
<td>422.11</td>
<td>422.11</td>
<td>422.11</td>
<td>422.11</td>
<td>422.11</td>
</tr>
<tr>
<td>ΔG</td>
<td>422.11</td>
<td>422.11</td>
<td>422.11</td>
<td>422.11</td>
<td>422.11</td>
</tr>
</tbody>
</table>
شکل 11. افق مواد اولیه آگارین شور، در نمونه‌های الگوی AFM، در برای
SiO$_2$* از 0.17 تا 0.27، ب. نمونه‌های پلاستیک شوی اشیاء از
الویمین 0.61.

برای بررسی الگوی تغییرات عناصر کمیاب سنگ‌های آگارین
منطقه شور، در نمونه‌های پلاستیک شوی اشیاء الیه
استفاده شد. در این نمونه روند کلی تغییرات فرآیند
برای مواد الگوی LIL، عناصر، مولی، عناصر
شکل 12 نشان می‌دهد و عناصر
Ti و *Nb* شکل 13 نشان می‌دهد و عناصر
منطقه دارند. برای بررسی الگوی تغییرات عناصر
خاکی کمیاب سنگ‌های آگارین شور، در نمونه‌های پلاستیک
شکل 14 استفاده شد.

عناصر نادر خاکی سنگ‌های آگارین شور، همیشه موارد
شناس می‌دهند. در رسانه‌های سنگ‌های
HREE نسبت به LREE منطقه‌ای در این سنگ‌های مشاهده
می‌شود. نسبت به LREE/HREE در این سنگ‌های زیاد است
و به‌هنجاری تقریباً منفی در *Yb* دیده می‌شود. با توجه به
فرآیند *PL* در سنگ‌های منطقه‌ای مورد بررسی، انتظار می‌رود که
Eu هنگاری مثبت در دیده شود. ولی هیچ یک از نمونه‌ها
Eu هنگاری مثبت نشان نمی‌دهند.
مقایسه ویژگی‌های زئوپیمایی سنگ‌های آدرین منطقه‌های شوراب با آدامیتا

واژه آدامیتا برای گروهی از سنگ‌های نفوذی و آتشنشانی پیشنهاد شده است که دارای سیلیس متوسط نیست، با این حال ویژگی‌های آن با سنگ‌هایی چون سیلیس درون پیوسته و برخی از سنگ‌های آدرین منطقه‌های شوراب ممکن است موزوست در آدامیتا بهتر است.

میانگین ppm این سنگ‌ها حدود 13.66 و مقدار Yb پراپر ppm Yb 13850 میانگین عناصر [Ta] متوسط ppm میانگین ppm 7.38 و همین‌طور Yb به ترتیب 0.4 و 0.6 ppm و در این سنگ‌ها Eu به ترتیب 2.8 و 2.6 ppm میانگین نسبت Sr/Y در حدود 29.69 و میانگین نسبت Yb/Nb در این سنگ‌ها 12.86 است. نتایج خصوصیات زئوپیمایی (La/Yb) نسبت سنگ‌های آدرین مورد بررسی با ویژگی‌های عمومی آدامیتا

جدول ۳ مقایسه خصوصیات زئوپیمایی سنگ‌های آدرین شوراب با آدامیتا [29,8]

<table>
<thead>
<tr>
<th>سنگ‌های آدرین شوراب</th>
<th>سنگ‌های آدامیتا</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین در سنگ‌های شوراب</td>
<td>میانگین در سنگ‌های آدامیتا</td>
</tr>
<tr>
<td>High SiO₂ ≥ 65% Wt</td>
<td>44.78</td>
</tr>
<tr>
<td>High Al₂O₃ ≥ 15% Wt</td>
<td>13.64</td>
</tr>
<tr>
<td>Low MgO, < 2% Wt</td>
<td>2.19</td>
</tr>
<tr>
<td>High Na₂O, > 3% Wt</td>
<td>44.78</td>
</tr>
<tr>
<td>High Sr, > 200 ppm</td>
<td>34.25</td>
</tr>
<tr>
<td>High Yb, > 3 ppm</td>
<td>13.64</td>
</tr>
<tr>
<td>High Sr/Y, > 200 ppm</td>
<td>34.25</td>
</tr>
<tr>
<td>Low Yb, < 1 ppm</td>
<td>13.64</td>
</tr>
<tr>
<td>Ta = 0.5, Nb < 3 ppm</td>
<td>No Eu anomaly</td>
</tr>
</tbody>
</table>

منبع: مقدمات ویژگی‌های زئوپیمایی سنگ‌های آدرین شوراب [27].

درون صحنه‌ای، گروه 2 نفوذ‌های همه‌مان با پرخوردگی و 3 نفوذ‌های پیسین نا پس پرخوردگی.

میاند عناصر کمیاب خاکی درگیر رفتار می‌کند. بنابراین به احتمال زیاد هنگام تبلور سنگ‌های منطقه‌ای شوراب، گردنشگی اکسیژن با لایه‌ای شروع شده است. بنابراین می‌توانید با روش استabhängی نسبت Eu/Eu* از نکاتی تفسیر تأثیر این تفسیر فراوانی باشد. عناصر ممکن است به وسیلهٔ Pd کنترل شود [32]. غنی شدگی Sr نشان می‌دهد که کاتی Pd در سنگ‌های شناخته‌ی علوم کاتی Sr باقی مانده حضور داشته است. [31]. [48] در پوسته قاره‌ای Eu ثابت‌تر می‌باشد و به عنوان سایر شمال‌های آذرین شوراب است. غلظت بالای Sr/Y ثابت‌تر پایین ی Y و متناقابل آن نسبت بالای Sr سنگ‌های آذرین است. سختگی استحکام شده‌ای در شرایط فلزی بالا از دبی قطعاتی بستگی به شکل‌های ساختاری بالا و نسبت بالای Sr/Y مقیار [59] بیشتر نمونه‌ها در گروه‌های آذرین شهردار از سنگ‌های La/Yb-130 بوده و بنابراین خصوصیات شبه‌آداکیتی نشان می‌دهدهنه. غلظت بالای Sr در سنگ‌های منطقه‌ای شوراب از 24 تا 242 در میلیون متغیر است. بنابراین در گروه‌های آذرین شوراب در نسبت بالای Sr سپیس بالا (HSA) [40] رد به نهادی می‌شود. غلظت بالا در گروه‌های سارناده این سنگ‌ها به محتوای Sr بالاتر خاستگاه بستگی دارد و در جهت غنی شدگی Sr و توصیه توسط پلی‌ژوئولایه‌های پسماند کنترل می‌شود [27]. به اعتبار پژوهان، خاستگاه‌ها اصلی و اولیه این آداکیت‌ها پوسته‌ای اقیانوسی فوروده است که با پریدنی‌ها گوشه‌های واقع‌نامه‌ای داشته است [41]. برای تشخیص محیطی زمین‌ساختی سنگ‌های آداکیتی از نمودار اکسیژن، ضربی جدایی برای Eu و گازهای عواملی بازالی REE بالا (پیش‌تر بالا از 1) و نسبت REE های دیگر، یک پیش‌تجزیه نشان می‌دهد [33] و در شرایط فعالیت زیان اکسیژن، ضربی جدایی برای Eu پایین بوده و این عنصر
MgAl2SiO5

References:

SiO2

in the system Na2O-K2O-CaO-Al2O3-TiO2-H2O-Fe2O3

[23] Shand S.J., Eruptive Rocks:Their Genesis, Composition, Classification, and Their Relation to

