سنگ‌نگاری، شیمی کانی تورمالین، ژنومی و جایگاه زمین‌ساختی سنگ‌های آذرین
ترشی در منطقه شوراب (غرب خوزستان)، خراسان جنوبی

علي اصغر غلامی، سید محمد صادقی، محمدحسین زرین کوب
گروه زمین‌شناسی، دانشکده علوم، دانشگاه بیرجند
(دریافت مقاله: 96/11/15، نسخه نهایی: 97/12/30)

چکیده: سنگ‌های آذرین ترشی در منطقه شوراب در بخش شرقی بلورک، که شامل برخی کانی‌های تورمالین، ژنومی، ژنومی و جایگاه زمین‌ساختی سنگ‌های آذرین و این سنگ‌ها شامل پرپروتی، کبلتی، کربناتی، سیلیسی و تورمالینی شدند. همچنین بررسی تجهیز ریزگوش اکترونی، تورمالینی در کوارتز و تورمالینی در منطقه شوراب دارای منطقه‌بندی ضعیف شیمیایی نسبت بالای Fe/Mg و از نوع دراوت با ماهیت قلیایی بوده و خاسیت‌های آن سنگ‌های متالیک و سیلیسی هستند. از نظر لیلل طبق شیمیایی LREE و Sr, K, Rb, Cs, Sr/Y, Zr و Ti, Nb, Nb از عناصر HREE و Fe/Mg و از نوع دراوت با ماهیت قلیایی بوده و خاسیت‌های آن سنگ‌های متالیک و سیلیسی هستند. از نظر لیلل طبق شیمیایی LREE و Sr, K, Rb, Cs, Sr/Y, Zr و Ti, Nb, Nb از عناصر HREE و Fe/Mg و از نوع دراوت با ماهیت قلیایی بوده و خاسیت‌های آن سنگ‌های متالیک و سیلیسی هستند.

واژه‌های کلیدی: آذرین، کوارتز، تورمالین، ترشی، شوراب، کلایفی

مقدمه
منطقه شوراب بین طول‌های جغرافیایی 39.50 تا 39.60 درجه شمالی و عرض‌های جغرافیایی 50.10 تا 50.15 درجه شرقی از ناحیه همبوشان و منطقه‌های خولدار و خور مورد بررسی قرار گرفته است. این منطقه از ناحیه‌های زمین شناسی ایران در بلوک لوت واقع شده است.

References

ssmohammadi@birjand.ac.ir

نویسندگان مسئول، تلفن: 05632240200 پست الکترونیکی:
نمزوز، مانند توپ که در بخش شمال شرقی گستره مورد بررسی واقع شده‌اند. ۶- واحدهای باستانی به کوانترنی: شامل پادگان‌های بلند و مخروطه‌های قدیمی.
واحدهای آذرآواری با ترکیب کلی آندزیت، شامل توپ-برش و آکلومرا هستند که به‌صورت طبقاتی نازک و گاه توده‌ای در شمال و شمال شرق منطقه‌ی شوراب گسترش پیدا کرده‌اند. (شکل ۴) سنگ‌های آنتفنشانی شامل آندزیت، گورتانزیت، پریوکسن آندزیت و تراکی سنگ‌های مخروطه‌های منقرض (شکل ۳، الف) به رنگ خاکستری نا سبز تیره و دارای بافت پوستی هستند. عوامل فیزیکی و شیمیایی این گندیها را تحت تأثیر قرارداده و ریخت‌شناختی به‌حساسیتی ماهور به رنگ‌های مختلف ایجاد کرده‌است. پریوکسن آندزیت‌ها رخخمون صخره‌های دازند و مرز این با آندزیتوهای اغلب واضح هستند (شکل ۴، ب). کوارتز، موزودورینیت بوزری و دیوریت نسبت به آندزیتوهای رخخمون‌های کوچک‌تری دارند. این سنگ‌ها در بخش‌هایی از جنوب غربی منطقه به شکل توده‌ای و گاهی به صورت دایک در واحدهای آندزیتی رخخمون دارند (شکل ۲). دایک‌ها نسبت به سنگ‌ها اطراف از مقاومت به‌جریان بوده و ریخت شناسی بالاتری را نشان می‌دهند (شکل ۲، ب و ت).
نزیق تواده‌های نیمه‌عمیق و دایک‌ها در واحدهای آندزینی، سبب درگیری‌های بیش‌تری و کوبنده‌تری شده است. با توجه شدن به تعدادی نفوذی و نیمه‌عمیق در بخش‌های غربی و جنوب غربی منطقه، شدت دگرسانی بیشتری می‌شود. در اثر عملکرد گرماب‌ها، تورمالین‌های شعاعی در کوارتز، موزوندوربیت و پورفیری و آندزین‌های منطقه تشکیل شده است.

روش بررسی
پس از بایدیده‌های صحراشی و نمونه‌برداری منظم، ۱۰۰ مکان Leitz نازک، تهیه و بررسی آنها با میکروسکوپ فلوشی مدل انجام شد. براساس نوع واحدهای سنگی، پراکندگی جغرافیایی مناسب و داشتن کمترین دگرسانی، ۱۰ نمونه از سنگ‌های منطقه شوراب انتخاب و برای بررسی به آزمایشگاه ACME ترسیم شد.
دراي بافت غريزي، منطقه‌بندی نويساني و حاشيه واجدي همستنده (شكل 3، ألف و ب). انباضت درشت بلوطهاي از پلاژیکلاز، هوربيورن، كلينوبروپيورن و كاني‌هاي كدر باند سولوتورپيي را پديد آوردند (شكل 4، ب). این بافت نشنايي از خروده پلورها ضمن صعود ماگاماست (17). حضور امفيوبول درون پلاژیکلاز موجود در سگه‌هاي این منطقه شکل 4، ت) نشان مي‌دهد که امفيوبول زودتر از پلاژیکلاز متعول شده و اين ماگا وادار به است. هورنيوند سبز تا قهوه‌اي، امفيوبول اصلي اندرزيت‌هاي شوراب بوده و حدود 10 تا 15 درصد حجمي اين سگ‌ها را تشکيل مي‌دههد. كلينوبروپيورن نوع آوست به مقدار 3 تا 5 درصد حجمي به صورت درشتپلور و ريز بلوط در خمیره سيگوجود دارد. كوارتز به عنوان کاني فرعي در حدود 3 تا 4 درصد حجمي سنگ را تشکيل مي‌دهد. ريزپلور‌هاي پلاژیکلاز، اكسيدهاي آهن و كاني‌هاي تابعی هوربيورن سگ‌هاي اندرزيتی منطقه‌ي مورد بررسی را تشکيل مي‌دهند. از دوگرسان اندرزيت‌ها كريشان، سرسبين و ابتدای حاسدلست اعتماداً افراد محلي گرينگشي اکسيز نفس مهمي در شکل‌گيری ابتدای داشته است (8).

کانادا ارسال شدند. نيون‌هاي بر اساس ۴۰A2۵۰۴ برای
عناصر اصلي به روش ICP-MS و كد ۴۰B۳۰ به روش ICP-ES بررسی شدند. براي عنصر كمیاب نادر خاص (۴۰تعنصري) آلابيرگ شد. به منظور شناسایي نوع تورمالين در مقطعی شوراب، یک مقطعه نازک مصلي تهیه شده از نمونه کوارتز مونودورپيي، به آزمایشگاه مرکز تحقیقات فراوردي مواد معدني ایران ارسال و 9 نقطه از كاني تورمالين با يک ريز برداشته الکترونی مدل Cameca SX100 ساخت شرکت (ولنژز) اکسلاژر ۲۰۰nA و اهميت (ولنژز) ۱۵kV و ۲۰۰nA و زمان ۲۰ ثانيه برای هر عنصر، بررسی شدند. برای ترسیم نويداري هاي سنگ شناسی و استفاده GCD Kit و Excel كاني شناسی از نرم افزارهای افزار ARC GIS ترسیم شد. نشتين سنگ شناسی منطقه به مقياس ۱/۵۰۰۰۰ با نرم افزار ARC GIS ترسیم شد.

سنگ‌گراي آنزيتی
در منطقه‌ي شوراب خوسن، اندرزيت بيشتری را داشته و به رگه‌اي خاکستري، سرميالي به خاکستري و نيره ديده مي‌شود و بافت پلورپييي دارد. اندرزيت پلاژیکلازها از ۲۰ تا ۲۵ درصد هواي ۴ مليمتر و حدود ۱۰۰ درصد حجمي سنگ را تشکيل مي‌دهد. پلاژیکلازها از نوع الیگوکلاز تا اندرزيت پوده و اغلب

شکل ۴: بافت غريزي و منطقه‌بندی نويساني در پلاژیکلاز، پ حاشيه واجدي در پلاژیکلاز، پ: بافت کلومورپيورپيي، ت: بافت کلينوبروپيورپيي، Cpx: کلينوبرن، Hbl: پلاژیکلاز، PL: XPL.
ترکیب آندزیت
در نمونه دستی به رنگ خاکستری روشن و بافت اصلی این سنگ‌های پورفیری با خمیره زرد بلواری است. در تراکم‌های آندزیت‌های این منطقه، پلاژیوکلاز با ترکیب آندزیت‌های تا الیگوکلاز به صورت فنکروستیت و ریزولوری و هنگام حدود 30 درصد حجم سنگ را تشکیل داده‌اند. کوارتز‌های بی‌شکل همراه ساده‌گردن حداکثر 10 دستای حجمی سنگ‌ها این سنگ‌ها را می‌سازند. کانال‌های دیگر شامل کانال‌های تب، کلیسیت و اکسپیدهای آهن است.

پیروسکن آندزیت‌های شوراب رنگ خاکستری روشن را نیز و بافت پورفیری با وزن‌های زرد بلوری دارند. پلاژیوکلاز نوع آندزیت‌های تراکم‌دار حدود 75 تا 85 درصد حجم‌های سنگ‌ها را در حجم‌های پورژنتیت تشکیل می‌دهد. الیگوکلاز‌ها در حجم‌های تراکم‌دار ناقص دیده می‌شوند. بافت غربالی در پلاژیوکلاز‌ها به دو شکل غربالی مشاهده می‌شود (شکل 5). بافت غربالی درشت به علت احاله در اثر نرم متفاوت کاهش فشار در شرایط بی در روی و محقنه آب این سنگ‌ها تشکیل می‌شود. غربالی رنگ نازک از واکنش بلور با Ca است [11]. کلینتروکسن ازتیت 15 درصد حجم‌های سنگ است. کانال‌های مثل آمپولیت، پورژنتیت و کانال‌های تب ازگیری دیده می‌شود. کوارتز در حدود 2 تا 3 درصد حجم سنگ است. کانال‌های مثل آمپولیت، پورژنتیت و کانال‌های تب ازداید دیده می‌شود. کوارتز در حدود 2 تا 3 درصد حجم سنگ است. کانال‌های مثل آمپولیت، پورژنتیت و کانال‌های تب ازداید دیده می‌شود.

کوارتز آندزیت
بافت اصلی آن‌ها پورفیری با خمیره زرد بلواری است. پلاژیوکلاز 85 تا 90 درصد، سیلیت 10 تا 15 درصد و کانال‌های کایسی 2 تا 8 درصد حجم جزئی تشکیل دهنده سنگ‌ها می‌باشند. پلاژیوکلاز‌ها سطحی از سنگ‌ها را تشکیل می‌دهند و به رنگ خاکستری روشن دیده می‌شوند. الیگوکلاز‌ها به صورت پورژنتیت و ریزولوری به حداکثر 75 درصد حجم سنگ‌ها و بافت‌های پورفیری با خمیره زرد بلواری است و سنگ‌ها بر اساس شکل‌های فلورا و اسفن‌بی در این سنگ‌ها مشاهده می‌شود.
سنگ‌ها مشاهده می‌شوند. در منطقه شوراب، تورمالین‌های شعاعی در کوارتز مونوزودوریت و آندزیت‌های همجوار با این سنگ‌ها تنش شکل شده است (شکل 1). تورمالین‌های

شکل 5: پلاتِیوکلاز با بافت غربالی ریز، ب: حاشیه سوخته در هورتبلند، نور هر دو شکل Hbl = پلاتِیوکلاز، PL = PLXPL، XPL = کلینوپروسین.

شکل 6: اف: بافت کرانولار در دیوریت، ب: بافت پورفیری با زمینه میکرو کرانولار و حضور هورتبلند با حاشیه سوخته.

شکل 7: اف: بافت دانه‌ای در مونوزودوریت و کوارتز مونوزودوریت شوراب، تورمالین‌های شعاعی در نمونه ماکروسکوپی کوارتز مونوزودوریت شوراب، ب: PPL، ت: حضور تورمالین شعاعی در کوارتز مونوزودوریت منطقه‌ی شوراب در نور XPL، PL = Plایزیکلاز، Qz = کوارتز، Tur = تورمالین.
شیمی کانی تورمالین
نتایج تجزیه‌ی ریز پردآزاری کانی تورمالین منطقه‌ی شوراب در جدول 1 آمده‌اند. براساس محاسبات عنصرسنجی، تورمالین‌های منطقه‌ی شوراب از نوع دراویت [15] تعبیه شده که بیشترین میزان عصاره روی (K و Na) X بر این اساس تورمالین‌های مورد بررسی در گروه تورمالین‌های قلبی [15] قرار می‌گیرند (شکل 8). میزان SiO۲ به روش عنصرسنجی محاسبه‌شده است.

جدول 1 بررسی ریز پردآزاری کانی تورمالین منطقه‌ی شوراب.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO۲</td>
<td>25.75</td>
<td>25.61</td>
<td>25.60</td>
<td>24.78</td>
<td>24.46</td>
<td>24.37</td>
<td>23.84</td>
<td>23.73</td>
<td>23.81</td>
</tr>
<tr>
<td>TiO۲</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
</tr>
<tr>
<td>Al۲O۳</td>
<td>29.88</td>
<td>29.93</td>
<td>29.90</td>
<td>29.97</td>
<td>29.94</td>
<td>29.92</td>
<td>29.90</td>
<td>29.90</td>
<td>29.90</td>
</tr>
<tr>
<td>V۲O۵</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Cr۲O۳</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>FeO</td>
<td>7.64</td>
<td>7.64</td>
<td>7.64</td>
<td>7.64</td>
<td>7.64</td>
<td>7.64</td>
<td>7.64</td>
<td>7.64</td>
<td>7.64</td>
</tr>
<tr>
<td>MgO</td>
<td>6.82</td>
<td>6.82</td>
<td>6.82</td>
<td>6.82</td>
<td>6.82</td>
<td>6.82</td>
<td>6.82</td>
<td>6.82</td>
<td>6.82</td>
</tr>
<tr>
<td>CaO</td>
<td>5.48</td>
<td>5.48</td>
<td>5.48</td>
<td>5.48</td>
<td>5.48</td>
<td>5.48</td>
<td>5.48</td>
<td>5.48</td>
<td>5.48</td>
</tr>
<tr>
<td>MnO</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>ZnO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Na۲O</td>
<td>2.15</td>
<td>2.15</td>
<td>2.15</td>
<td>2.15</td>
<td>2.15</td>
<td>2.15</td>
<td>2.15</td>
<td>2.15</td>
<td>2.15</td>
</tr>
<tr>
<td>K۲O</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>F</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>H۲O</td>
<td>2.77</td>
<td>2.77</td>
<td>2.77</td>
<td>2.77</td>
<td>2.77</td>
<td>2.77</td>
<td>2.77</td>
<td>2.77</td>
<td>2.77</td>
</tr>
<tr>
<td>B۲O۳*</td>
<td>1.23</td>
<td>1.23</td>
<td>1.23</td>
<td>1.23</td>
<td>1.23</td>
<td>1.23</td>
<td>1.23</td>
<td>1.23</td>
<td>1.23</td>
</tr>
<tr>
<td>Li۲O*</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>Total</td>
<td>98.87</td>
<td>98.87</td>
<td>98.87</td>
<td>98.87</td>
<td>98.87</td>
<td>98.87</td>
<td>98.87</td>
<td>98.87</td>
<td>98.87</td>
</tr>
<tr>
<td>O=F</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
</tbody>
</table>

نتایج نشان می‌دهد که این میزان‌ها ممکن است باعث ایجاد شکستگی در کانی تورمالین شوند.

جدول 2: حیطه‌ی تحلیلی عنصرسنجی.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO۲</td>
<td>25.75</td>
<td>25.61</td>
<td>25.60</td>
<td>24.78</td>
<td>24.46</td>
<td>24.37</td>
<td>23.84</td>
<td>23.73</td>
<td>23.81</td>
</tr>
<tr>
<td>TiO۲</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
</tr>
<tr>
<td>Al۲O۳</td>
<td>29.88</td>
<td>29.93</td>
<td>29.90</td>
<td>29.97</td>
<td>29.94</td>
<td>29.92</td>
<td>29.90</td>
<td>29.90</td>
<td>29.90</td>
</tr>
<tr>
<td>V۲O۵</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Cr۲O۳</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>FeO</td>
<td>7.64</td>
<td>7.64</td>
<td>7.64</td>
<td>7.64</td>
<td>7.64</td>
<td>7.64</td>
<td>7.64</td>
<td>7.64</td>
<td>7.64</td>
</tr>
<tr>
<td>MgO</td>
<td>6.82</td>
<td>6.82</td>
<td>6.82</td>
<td>6.82</td>
<td>6.82</td>
<td>6.82</td>
<td>6.82</td>
<td>6.82</td>
<td>6.82</td>
</tr>
<tr>
<td>CaO</td>
<td>5.48</td>
<td>5.48</td>
<td>5.48</td>
<td>5.48</td>
<td>5.48</td>
<td>5.48</td>
<td>5.48</td>
<td>5.48</td>
<td>5.48</td>
</tr>
<tr>
<td>MnO</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>ZnO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Na۲O</td>
<td>2.15</td>
<td>2.15</td>
<td>2.15</td>
<td>2.15</td>
<td>2.15</td>
<td>2.15</td>
<td>2.15</td>
<td>2.15</td>
<td>2.15</td>
</tr>
<tr>
<td>K۲O</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>F</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>H۲O</td>
<td>2.77</td>
<td>2.77</td>
<td>2.77</td>
<td>2.77</td>
<td>2.77</td>
<td>2.77</td>
<td>2.77</td>
<td>2.77</td>
<td>2.77</td>
</tr>
<tr>
<td>B۲O۳*</td>
<td>1.23</td>
<td>1.23</td>
<td>1.23</td>
<td>1.23</td>
<td>1.23</td>
<td>1.23</td>
<td>1.23</td>
<td>1.23</td>
<td>1.23</td>
</tr>
<tr>
<td>Li۲O*</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>Total</td>
<td>98.87</td>
<td>98.87</td>
<td>98.87</td>
<td>98.87</td>
<td>98.87</td>
<td>98.87</td>
<td>98.87</td>
<td>98.87</td>
<td>98.87</td>
</tr>
<tr>
<td>O=F</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
</tbody>
</table>
سنگ‌های آذرین شوراب در نمونه‌های گستره‌ای کلسیمی - قلیایی قرار می‌گیرند (شکل 11-الف) و براساس نمونه‌ها در برابر rotor SiO2 به سری ماسی می‌باشد.

در سنگ‌های آذرین منطقه‌ای شوراب، میزان ۶۷/۲ در برابر B و نیازی به تغییر بوده و نیاز به نامگذاری ماسی می‌باشد.

آذرین شوراب از نوع Nbr قرار می‌گیرد و به‌طور عمیق و نیمه‌عمیق شوراب از نمایه کلسیمی‌هایی از نمونه‌های مختلفی از نمونه‌ها در شکل ۱۱-ب هستند.

فقط صورت‌های منطقه‌ای در مسیر کلسیمی‌هایی از Nbr در مقابل Nb (شکل ۱۲) با نامگذاری منطقه‌ای در کلاه‌هایی از آذرین شوراب از Nbr باشد.
جدول ۲ نتایج تجزیه شیمیایی نمونه‌های منطقه شربات، عنصر اصلی بر حسب درصد وزنی و عناصر کمیاب بر حسب پی بی‌پی است.

<table>
<thead>
<tr>
<th>عنوان نمونه</th>
<th>GH01V</th>
<th>GH011</th>
<th>GH014</th>
<th>GH017</th>
<th>GH015</th>
</tr>
</thead>
<tbody>
<tr>
<td>مواد جنگل‌آبی</td>
<td>مولفه ۴۱۹۵۵۰۰۰</td>
<td>مولفه ۴۱۹۵۵۰۰۰</td>
<td>مولفه ۴۱۹۵۵۰۰۰</td>
<td>مولفه ۴۱۹۵۵۰۰۰</td>
<td>مولفه ۴۱۹۵۵۰۰۰</td>
</tr>
<tr>
<td>SiO₂</td>
<td>۵۳.۲</td>
<td>۵۲.۱</td>
<td>۵۲.۲</td>
<td>۵۲.۲</td>
<td>۵۲.۱</td>
</tr>
<tr>
<td>TiO₂</td>
<td>۰.۴</td>
<td>۰.۴</td>
<td>۰.۴</td>
<td>۰.۴</td>
<td>۰.۴</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>۴۸.۱</td>
<td>۴۸.۱</td>
<td>۴۸.۱</td>
<td>۴۸.۱</td>
<td>۴۸.۱</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>۴.۸</td>
<td>۴.۸</td>
<td>۴.۸</td>
<td>۴.۸</td>
<td>۴.۸</td>
</tr>
<tr>
<td>MnO</td>
<td>۰.۹</td>
<td>۰.۹</td>
<td>۰.۹</td>
<td>۰.۹</td>
<td>۰.۹</td>
</tr>
<tr>
<td>MgO</td>
<td>۱.۸</td>
<td>۱.۸</td>
<td>۱.۸</td>
<td>۱.۸</td>
<td>۱.۸</td>
</tr>
<tr>
<td>CaO</td>
<td>۵.۵</td>
<td>۵.۵</td>
<td>۵.۵</td>
<td>۵.۵</td>
<td>۵.۵</td>
</tr>
<tr>
<td>Na₂O</td>
<td>۲.۷</td>
<td>۲.۷</td>
<td>۲.۷</td>
<td>۲.۷</td>
<td>۲.۷</td>
</tr>
<tr>
<td>K₂O</td>
<td>۱.۳</td>
<td>۱.۳</td>
<td>۱.۳</td>
<td>۱.۳</td>
<td>۱.۳</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>۰.۴</td>
<td>۰.۴</td>
<td>۰.۴</td>
<td>۰.۴</td>
<td>۰.۴</td>
</tr>
<tr>
<td>LOI</td>
<td>۲.۷</td>
<td>۲.۷</td>
<td>۲.۷</td>
<td>۲.۷</td>
<td>۲.۷</td>
</tr>
<tr>
<td>Sum</td>
<td>۹۹.۸</td>
<td>۹۹.۸</td>
<td>۹۹.۸</td>
<td>۹۹.۸</td>
<td>۹۹.۸</td>
</tr>
<tr>
<td>Ni</td>
<td><۰.۱</td>
<td><۰.۱</td>
<td><۰.۱</td>
<td><۰.۱</td>
<td><۰.۱</td>
</tr>
<tr>
<td>Sc</td>
<td>۵</td>
<td>۵</td>
<td>۵</td>
<td>۵</td>
<td>۵</td>
</tr>
<tr>
<td>Ba</td>
<td>۷.۶</td>
<td>۷.۶</td>
<td>۷.۶</td>
<td>۷.۶</td>
<td>۷.۶</td>
</tr>
<tr>
<td>Co</td>
<td>۱.۱</td>
<td>۱.۱</td>
<td>۱.۱</td>
<td>۱.۱</td>
<td>۱.۱</td>
</tr>
<tr>
<td>Cs</td>
<td>۲.۲</td>
<td>۲.۲</td>
<td>۲.۲</td>
<td>۲.۲</td>
<td>۲.۲</td>
</tr>
<tr>
<td>Ga</td>
<td>۱۴.۵</td>
<td>۱۴.۵</td>
<td>۱۴.۵</td>
<td>۱۴.۵</td>
<td>۱۴.۵</td>
</tr>
<tr>
<td>Hf</td>
<td>۰.۶</td>
<td>۰.۶</td>
<td>۰.۶</td>
<td>۰.۶</td>
<td>۰.۶</td>
</tr>
<tr>
<td>Nb</td>
<td>۸.۲</td>
<td>۸.۲</td>
<td>۸.۲</td>
<td>۸.۲</td>
<td>۸.۲</td>
</tr>
<tr>
<td>Rb</td>
<td>۴۴.۵</td>
<td>۴۴.۵</td>
<td>۴۴.۵</td>
<td>۴۴.۵</td>
<td>۴۴.۵</td>
</tr>
<tr>
<td>Sn</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
</tr>
<tr>
<td>Sr</td>
<td>۳۳۴.۹</td>
<td>۳۳۴.۹</td>
<td>۳۳۴.۹</td>
<td>۳۳۴.۹</td>
<td>۳۳۴.۹</td>
</tr>
<tr>
<td>Ta</td>
<td>۰.۵</td>
<td>۰.۵</td>
<td>۰.۵</td>
<td>۰.۵</td>
<td>۰.۵</td>
</tr>
<tr>
<td>Th</td>
<td>۴.۳</td>
<td>۴.۳</td>
<td>۴.۳</td>
<td>۴.۳</td>
<td>۴.۳</td>
</tr>
<tr>
<td>U</td>
<td>۱.۵</td>
<td>۱.۵</td>
<td>۱.۵</td>
<td>۱.۵</td>
<td>۱.۵</td>
</tr>
<tr>
<td>V</td>
<td>۵</td>
<td>۵</td>
<td>۵</td>
<td>۵</td>
<td>۵</td>
</tr>
<tr>
<td>W</td>
<td>۰.۸</td>
<td>۰.۸</td>
<td>۰.۸</td>
<td>۰.۸</td>
<td>۰.۸</td>
</tr>
<tr>
<td>Zr</td>
<td>۱۷۵.۵</td>
<td>۱۷۵.۵</td>
<td>۱۷۵.۵</td>
<td>۱۷۵.۵</td>
<td>۱۷۵.۵</td>
</tr>
<tr>
<td>Y</td>
<td>۲.۴</td>
<td>۲.۴</td>
<td>۲.۴</td>
<td>۲.۴</td>
<td>۲.۴</td>
</tr>
<tr>
<td>La</td>
<td>۱۸.۵</td>
<td>۱۸.۵</td>
<td>۱۸.۵</td>
<td>۱۸.۵</td>
<td>۱۸.۵</td>
</tr>
<tr>
<td>Ce</td>
<td>۳۶.۵</td>
<td>۳۶.۵</td>
<td>۳۶.۵</td>
<td>۳۶.۵</td>
<td>۳۶.۵</td>
</tr>
<tr>
<td>Pr</td>
<td>۳۷.۱</td>
<td>۳۷.۱</td>
<td>۳۷.۱</td>
<td>۳۷.۱</td>
<td>۳۷.۱</td>
</tr>
<tr>
<td>Nd</td>
<td>۱۴.۷</td>
<td>۱۴.۷</td>
<td>۱۴.۷</td>
<td>۱۴.۷</td>
<td>۱۴.۷</td>
</tr>
<tr>
<td>Sm</td>
<td>۲۷.۸</td>
<td>۲۷.۸</td>
<td>۲۷.۸</td>
<td>۲۷.۸</td>
<td>۲۷.۸</td>
</tr>
<tr>
<td>Eu</td>
<td>۰.۹</td>
<td>۰.۹</td>
<td>۰.۹</td>
<td>۰.۹</td>
<td>۰.۹</td>
</tr>
<tr>
<td>Gd</td>
<td>۱.۷</td>
<td>۱.۷</td>
<td>۱.۷</td>
<td>۱.۷</td>
<td>۱.۷</td>
</tr>
<tr>
<td>Tb</td>
<td>۰.۴</td>
<td>۰.۴</td>
<td>۰.۴</td>
<td>۰.۴</td>
<td>۰.۴</td>
</tr>
<tr>
<td>Dy</td>
<td>۱.۸</td>
<td>۱.۸</td>
<td>۱.۸</td>
<td>۱.۸</td>
<td>۱.۸</td>
</tr>
<tr>
<td>Ho</td>
<td>۶.۶</td>
<td>۶.۶</td>
<td>۶.۶</td>
<td>۶.۶</td>
<td>۶.۶</td>
</tr>
<tr>
<td>Er</td>
<td>۲.۴</td>
<td>۲.۴</td>
<td>۲.۴</td>
<td>۲.۴</td>
<td>۲.۴</td>
</tr>
<tr>
<td>Tm</td>
<td>۰.۴</td>
<td>۰.۴</td>
<td>۰.۴</td>
<td>۰.۴</td>
<td>۰.۴</td>
</tr>
<tr>
<td>Yb</td>
<td>۱.۹</td>
<td>۱.۹</td>
<td>۱.۹</td>
<td>۱.۹</td>
<td>۱.۹</td>
</tr>
<tr>
<td>Lu</td>
<td>۰.۴</td>
<td>۰.۴</td>
<td>۰.۴</td>
<td>۰.۴</td>
<td>۰.۴</td>
</tr>
<tr>
<td>ScY</td>
<td>۲۱.۳</td>
<td>۲۱.۳</td>
<td>۲۱.۳</td>
<td>۲۱.۳</td>
<td>۲۱.۳</td>
</tr>
<tr>
<td>La·Yb</td>
<td>۱۱.۱</td>
<td>۱۱.۱</td>
<td>۱۱.۱</td>
<td>۱۱.۱</td>
<td>۱۱.۱</td>
</tr>
<tr>
<td>(La·Yb)N</td>
<td>۱.۷</td>
<td>۱.۷</td>
<td>۱.۷</td>
<td>۱.۷</td>
<td>۱.۷</td>
</tr>
<tr>
<td>Eu·Eu*</td>
<td>۱.۰</td>
<td>۱.۰</td>
<td>۱.۰</td>
<td>۱.۰</td>
<td>۱.۰</td>
</tr>
<tr>
<td>نام نمونه</td>
<td>نوع سک</td>
<td>اندی</td>
<td>دیوریت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>------</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiO2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al2O3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe2O3T</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na2O</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K2O</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2O5</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOI</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sc</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ga</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hf</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sn</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ta</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sm</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SrY</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La-Yb</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(La-Yb)N</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu/Eu*</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
شکل 10. موقعیت سنگ‌های عمیق و نیمه عمیق منطقه‌ی شوراب در نمودار TAS, خط خمیده سنگ‌های فیلبیا را از نیمه فیلبیا جدا می‌کند [19]. ب. موقعیت سنگ‌های ان‌ش السابقی منطقه‌ی شوراب در نمودار (Zr/TiO₂) در مقیاس (Nb/Y) [20].

شکل 11. ألف، موقعیت سنگ‌های آذرین شوراب در نمودارهای الف، β, κ, γ, η, κO, κF در برایر و SiO₂ از [21], β, κ, κO در نمودارهای شاخه شاخه از.[22]

عناصر نادر خاکی سنگ‌های آذرین شوراب هم روندی مواری نشان می‌دهند. گی شش‌گانه خاکی HREE نسبت به LREE مثال نشان می‌دهد. هم‌شیوعی شش‌گانه HREE در این سنگ‌های مشاهده می‌شود. نسبت LREE/HREE در این سنگ‌ها زیاد است و به‌جای تقریباً منفی در Yb دیده می‌شود. با توجه به فراوانی و در سنگ‌های منطقه‌ی مورد بررسی، ان‌ش نسبت می‌روید که بر PL هنگاری مثبت در Eu از دیده شود، ولی هیچ یک از نمونه‌ها به‌جای HREE از نمودارشده با کناره‌ی [23] استفاده شده (شکل 12، پ). برای بررسی الگوی تغییرات عناصر کمیاب سنگ‌های آذرین منطقه‌ی شوراب از نمودار پهلوشنده گی که غنی استفاده شده [24]. در این نمودار روند کلی تغییرات فراوانی Sr, Š, K, Rb, Cs, غنی پهلوشنده فراوانی مواد، عناصر LIL، عناصر هنگاری Ti و Nb شکل اشکال نشان می‌دهند و عناصر HREE منفی دارند (شکل 12، پ). برای بررسی الگوی تغییرات عناصر خاکی کمیاب سنگ‌های آذرین شوراب از نمودار پهلوشنده با کناره‌ی [22] استفاده شده (شکل 12، پ). الگوی پراکندگی
مقایسه ویژگی‌های زنوشیمیایی سنگ‌های آذرین منطقه‌ای شوراب با آدایک‌ها
واژه آدایک برای گروهی از سنگ‌های نفوذی و آتشنشانی بیشتری شده است که دارای سیلیس متوسط تا بالا و نسبت بالا باشد. این سنگ‌ها از ذوب پوسته اقیانوسی فرورونده برای نگه‌داشتن آتشنشانی ویژه‌ای که در آدن نوقشته شوراب به‌طور متوسط درصد هزار دارند که از مقدار سیلیس موجود در آدایک‌ها بیشتر است.

میانگین ان سنگ‌ها حدود ۱۳۳۶ ppm Yb برایل NaTaO _۳ نسبت ضئیع و در این سنگ‌ها Eu به ترتیب ۵۴ و ۷/۳۸ ppm پیدا می‌کند. در این سنگ‌ها Yb نسبت NaTaO _۳ در حدود ۵۷ و میانگین نسبت NaTaO _۳ در سنگ‌های آذرین مور به‌طور عمومی از آدایک‌ها بیشتر است.

جدول ۲ مقایسه خصوصیات زنوشیمیایی سنگ‌های آذرین شوراب با آدایک‌ها [۲۹،۳۸]

<table>
<thead>
<tr>
<th>میانگین در سنگ‌های شوراب</th>
<th>خصوصیات زنوشیمیایی آدایک‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>High SiO _۲ > ۵۵۶ ppm Wt</td>
<td></td>
</tr>
<tr>
<td>High Al_2O _۳ > ۱۰۵ ppm Wt</td>
<td></td>
</tr>
<tr>
<td>Low MgO, < ۳% Wt</td>
<td></td>
</tr>
<tr>
<td>High Na_2O, > ۳% Wt</td>
<td></td>
</tr>
<tr>
<td>High Sr, > ۹۰ ppm</td>
<td></td>
</tr>
<tr>
<td>Low Y, < ۱ ppm</td>
<td></td>
</tr>
<tr>
<td>High Sr/Y, > ۹۰</td>
<td></td>
</tr>
<tr>
<td>Low Yb, < ۱ ppm</td>
<td></td>
</tr>
<tr>
<td>High La/Yb, > ۱۵</td>
<td></td>
</tr>
<tr>
<td>Ta = ۵۰ ppm, Nb < ۷۸۵ ppm</td>
<td>Low HFSE(Nb, Ta)</td>
</tr>
<tr>
<td>Eu</td>
<td>No Eu anomaly</td>
</tr>
</tbody>
</table>

شکل ۲. الگوی عناصر کمیاب به‌نگارش‌های با گوشته اولیه [۲۴]. ب، الگوی عناصر خاکی کمیاب سنگ‌های آذرین شوراب [۲۷].
نگاهی به نمونه‌های سنجش‌های سانگ‌های آدنین سطحی شوراب در نمودار [19] (Hf-Rb/30-3Ta) می‌تواند نشاندهند که با استفاده از عناصر از خاصیت‌هایی است که در نمودار مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود.

به‌نظر می‌رسد که این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌شود. در نمودار این عناصر با گروه Hf و عنصر میانه‌ای با گروه Cs مشاهده می‌ش kd
برداشت

براساس ویژگی‌های طوزوپیلیا به‌نظر می‌رسد که سنگ‌های آذرین منطقه‌ای شوراب به سری ماگمایی آهک-قیپانی وایه‌است. سنگ‌های آذرین از تولیدات آذرین ساخته شده‌اند. سنگ‌های آذرین در منطقه جنوب غربی ایران (که از اینجا به‌رونهایگاه اینجا) کارشکاران ارتش، دانشگاه شهید بهشتی تهران (۱۳۸۹) خاکی خ. پرتوپلییا ساخته‌ای از اینجا تولید شده که آزاد اسلامی واحد خروزگان (۱۳۸۹) ۱۷ صفحه.

مراجع

[۱] وجدتی دانشمند ف. خلقتی ح. نقوش زمین سناشی، میدان‌های فرآیندهای آذرین منطقه‌ای SiO₂ در شوراب در این نمونه در گستره‌های سنگ‌های آذرین ناشی از ذوب بخشی پوسته‌ای شیمی شده قرار می‌گیرد (شکل ۱۴).

[۳] زرین کوب م. ح. چنگ س. ل. طبیعتی م. م. محمدی س. س. سنگ‌های زیرکن-ایرانی سیستم کربناتی و طزروپیلیا توده‌های فنولی کم‌معنی جدول‌های اختیاری برجسته (کوب(خ. ب. م. ردیعه) جدول، در مجله بلورشناسی و کانی شناسی ایران، سال هجدهم، شماره ۳، یازدهم(۱۳۶۹ ص ۳۷۳-۸۴۸).

