بررسی کانی شناسی، ویژگی‌های گرمایی و خاستگاه کانی‌های رسی پلایای شهربایک

فاطمه ریاحی، عباس مرادیان، حمید احمدی پور

گروه زمین شناسی، دانشگاه علوم دانشگاه شهید باهنر، کرمان

چکیده: ساحلی رسی شهربایک از نظر زمین شناسی، در جنوب شرق منطقه سندج-سیرجان قرار گرفته است. بر اساس بررسی‌های کانی شناسی و میکروسکوپ الکترون روبشی (SEM) فازهای کانی شناسی اصلی سواحل باد شده عبارتند از هالوزیت، کالوئیت، اپلیت، گونترز، کلسینت و زیپس. براساس داده‌های زمین شناسی، میزان متوسط آمکسید آلومینیوم 13.89 درصد، میزان متوسط اکسید سیلیسیم 39.53 درصد و میزان میانگین L.O.I 188.4 درصد است. بر پایه تجزیه گرمایی جدایی‌نامه، واکنش‌های گرمایی نمونه‌ها در دو تقسیم 80-200 درجه سانتی گراد و واکنش‌های گرمایا در دو تقسیم 110-120 درجه سانتی گراد رخ می‌دهد. خاستگاه اصلی کانی‌های رسی منطقهی مورد بررسی، رسپی، بوده و از ترسیما و هزارگچ توده عظیم گرنیت‌تندی جنوب شهرستان شهبایک احجام شده‌اند. کاربردهای فراوان کانی‌های رسی در صنایع مختلف، از ضرورت‌های این پژوهش است.

واژه‌های کلیدی: کانی‌های رسی، کانی شناسی، ویژگی‌های گرمایی، سواحل رسی، شهبایک.

مقدمه

کانی‌های رسی واسته به گروه فیلوسیلیکات‌ها [1] و از مهم‌ترین کانی‌های مصرفی در صنایع مختلفی هستند. هدف از این پژوهش شناسایی کانی‌های مختلف ساحلی رسی شهبایک، است. واکنش‌های گرمایی کانی‌های رسی منطقه‌های مورد بررسی و رسی خاسگاه این گروه کانی‌های مصرفی است. نظر زمین شناسی نشانگر قاره‌های شهبایک را می‌توان به دو بخش کوهستانی و ساحلی تقسیم کرد [2] ساحل رسی شهبایک، در جنوب شهرستان، در دشتی با وسعت تقریبی هکتار پانزده هزار کیلومتر مربع قرار گرفت و منطقه‌های مورد بررسی در دو بخش ساحلی نشان می‌شود.

روش بررسی

برای بررسی کانی‌های منطقه‌های مورد بررسی، از عمق‌های مختلف (50-150 سانتی‌متر) بالای رییس نمونه برداری صورت گرفت. در پی سپس برای تعیین کانی‌شناسی، تعداد 10 نمونه از آن، برای بررسی ریخت‌شناسی، ساختاری و تهیه تصاویر توپوگرافیک کانی‌های منطقه، 2 نمونه برای بررسی L.E.O (مدل 1400) ساخت شرکت LEO و میکروسکوپ الکترونی (SEM) فازهای کانی‌های منطقه‌ای گونه‌ای (جدول 1) به مترک حافزی به فراوری مواد مدفن ایران فرستاده شدند.

f.riahi91@sci.uk.ac.ir

*نویسندگی مسئول، تلفن: 09141991948، نمایر: 22403414242424، پست الکترونیکی: f.riahi91@sci.uk.ac.ir
جدول 1 نتایج آنالیز XRF نمونه‌های منطقه‌ی مورد بررسی.

<table>
<thead>
<tr>
<th>میانگین</th>
<th>تركیب</th>
<th>Gk-1</th>
<th>Gk-4</th>
<th>Gk-5</th>
<th>Gk-6</th>
<th>Gk-7</th>
<th>Gk-11</th>
<th>Gk-12</th>
<th>Gk-21</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td></td>
<td>32.68</td>
<td>32.68</td>
<td>32.68</td>
<td>32.68</td>
<td>32.68</td>
<td>32.68</td>
<td>32.68</td>
<td>32.68</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td></td>
<td>15.75</td>
<td>15.75</td>
<td>15.75</td>
<td>15.75</td>
<td>15.75</td>
<td>15.75</td>
<td>15.75</td>
<td>15.75</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td></td>
<td>6.36</td>
<td>6.36</td>
<td>6.36</td>
<td>6.36</td>
<td>6.36</td>
<td>6.36</td>
<td>6.36</td>
<td>6.36</td>
</tr>
<tr>
<td>TiO₂</td>
<td></td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
</tr>
<tr>
<td>CaO</td>
<td></td>
<td>7.93</td>
<td>7.93</td>
<td>7.93</td>
<td>7.93</td>
<td>7.93</td>
<td>7.93</td>
<td>7.93</td>
<td>7.93</td>
</tr>
<tr>
<td>MgO</td>
<td></td>
<td>4.71</td>
<td>4.71</td>
<td>4.71</td>
<td>4.71</td>
<td>4.71</td>
<td>4.71</td>
<td>4.71</td>
<td>4.71</td>
</tr>
<tr>
<td>K₂O</td>
<td></td>
<td>2.31</td>
<td>2.31</td>
<td>2.31</td>
<td>2.31</td>
<td>2.31</td>
<td>2.31</td>
<td>2.31</td>
<td>2.31</td>
</tr>
<tr>
<td>Na₂O</td>
<td></td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
</tr>
<tr>
<td>SO₃</td>
<td></td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>P₂O₅</td>
<td></td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>SrO</td>
<td></td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Cl</td>
<td></td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>MnO</td>
<td></td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
</tr>
</tbody>
</table>

کانی‌های رسی منطقه‌ی مورد بررسی، تعداد 5 نمونه مورد تعداد 5 نمونه برای آنالیز ICP-MS به شرکت زرآما مهان فرستاده شدند (جدول 2). برای بررسی ویژگی‌های گرامایی تجزیه گرمایی‌های جداشی (Differential Thermal) انجام شد.
زمین‌شناسی منطقه
سواحل رست منطقهی مورد بررسی، بنابر طبق بررسی‌های صحراوی انجام شده، از شمال به واحدهای تبخیری مانند زیبی، کلیسیت و هالیت، از جنوب به واحدهای سنگی درگون شده آنالوژی، کردوگیت، هورنفلس و سنت گرب و جنوب غربی به باتولیت گرانیتونیدی چاه خشک محدود می‌شوند. سنگ‌های کانی‌های رسی منطقه‌ی مورد بررسی بیشتری باتولیت گرانیتونیدی چاه خشک که شامل سنگ‌های کوارتز دیرویت، کوارتزمنزدورپیت، مونزوگرانیت، گرانی دوریت و تونالیت [8] و توده‌ی گرانیتی قدیمیتر تر که در زیر سواحل رست قرار دارد. این سنگ‌های کانی‌های رسی منطقه‌ی مورد بررسی بیشتری باتولیت گرانیتونیدی چاه خشک وابسته به توده‌ی گرانیتی قدیمیتر تر که در زیر سواحل رست قرار دارد، محمدی ابتدا، به طوری که ذوب یوسته اقیانوسی، فروپا و تشکیل مکانی پزشکی‌بازالی، منجر به ذوب آناکسی، رسوب‌های پلی‌نتی با یپاپلئی که در فعال قاره‌ای شد و نهایت منجر به تشکیل این توده‌ی گرانیتونیدی چندان [8] ترک‌های گل‌پدیده‌ای چشمگیر در سطح پلاگیت رست منطقه‌ی مورد بررسی است.

شکل 2: منحنی‌های همبستگی DTA-TGA

در مورد تجربیات گراینگی، استفاده از ترک‌های گل، همبستگی و تور فلات فلک بلافاصله در این منطقه مورد بررسی قرار گرفته.
جدول ۲ نتایج آنالیز ICP-MS نمونه‌های منطقه‌ای مورد بررسی (کلیه عناصر بر حسب ppm هستند).

<table>
<thead>
<tr>
<th>Sample(ppm)</th>
<th>gk-3</th>
<th>gk-9</th>
<th>gk-14</th>
<th>gk-17</th>
<th>gk-19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Al</td>
<td>7.44</td>
<td>6.73</td>
<td>7.32</td>
<td>6.79</td>
<td>5.36</td>
</tr>
<tr>
<td>As</td>
<td>1.5</td>
<td>14.6</td>
<td>15.9</td>
<td>9.7</td>
<td>17.4</td>
</tr>
<tr>
<td>Ba</td>
<td>3.93</td>
<td>33.1</td>
<td>31.2</td>
<td>32.5</td>
<td></td>
</tr>
<tr>
<td>Be</td>
<td>0.2</td>
<td>3.7</td>
<td>1.7</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>6.98</td>
<td>8.99</td>
<td>6.94</td>
<td>8.89</td>
<td></td>
</tr>
<tr>
<td>Ce</td>
<td>4.2</td>
<td>4.8</td>
<td>5.5</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>0.13</td>
<td>0.16</td>
<td>0.17</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>Cs</td>
<td>7.1</td>
<td>7.6</td>
<td>7.7</td>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>3.37</td>
<td>3.65</td>
<td>3.83</td>
<td>3.76</td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td>0.71</td>
<td>0.99</td>
<td>1.16</td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>0.97</td>
<td>0.96</td>
<td>1.05</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>3.10</td>
<td>2.81</td>
<td>2.43</td>
<td>3.10</td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td>49.15</td>
<td>3.34</td>
<td>3.35</td>
<td>3.97</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>8.29</td>
<td>5.17</td>
<td>5.15</td>
<td>7.37</td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>5.33</td>
<td>5.55</td>
<td>5.30</td>
<td>3.78</td>
<td></td>
</tr>
<tr>
<td>Tl</td>
<td>0.24</td>
<td>0.34</td>
<td>0.37</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td>0.33</td>
<td>0.25</td>
<td>0.26</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>3.3</td>
<td>4.1</td>
<td>4.5</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>9.8</td>
<td>9.7</td>
<td>10.3</td>
<td>8.1</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>14.6</td>
<td>15.8</td>
<td>17</td>
<td>13.1</td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>3.7</td>
<td>3.9</td>
<td>4.7</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>Hf</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>31.85</td>
<td>4.07</td>
<td>4.08</td>
<td>19.69</td>
<td></td>
</tr>
<tr>
<td>La</td>
<td>3.0</td>
<td>1.9</td>
<td>1.7</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td>0.7</td>
<td>0.75</td>
<td>0.8</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>16.74</td>
<td>15.87</td>
<td>17.64</td>
<td>12.74</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>8.85</td>
<td>8.78</td>
<td>9.47</td>
<td>9.47</td>
<td></td>
</tr>
<tr>
<td>Mo</td>
<td>1.2</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>9.5</td>
<td>9.28</td>
<td>9.43</td>
<td>11.91</td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td>1.1</td>
<td>1.1</td>
<td>1.3</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>0.76</td>
<td>0.79</td>
<td>0.8</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>0.65</td>
<td>0.79</td>
<td>0.95</td>
<td>0.7</td>
<td></td>
</tr>
</tbody>
</table>

بحث و بررسی
کاتي شناسی رس های منطقه‌ای مورد بررسی و ریخت‌شناسی آنها
به عنوان ردیب بودن و نهان بودن کاتی‌های رسی بررسی آنها با میکروسکوپ‌های نوری مشکل است، از این رو برای شناسایی دقیق و بررسی ریخت‌شناسی آنها از میکروسکوپ‌های الکترونی و پراش پرتو X استفاده شد. بررسی‌های کاتی شناسی و سنگ‌شناسی در مورد رس‌های سال ۱۹۷۰ تا ۱۹۷۵ و میکروسکوپ‌های الکترونی به‌طوری‌یک درجه به‌رفتاده بود. شروع شد (۹-۱۲). بنابراین بررسی‌های میکروسکوپ الکترونی و
تجزیه گرمایی کاتی های منطقه‌ای مورد بررسی TGA
مقدار کاهش وزنی آب در حالت (2) از روی نمودارهای
واسته به کاتی های منطقه‌ای مورد بررسی، که اساس آن بر
اندازه‌گیری وزن نمونه هنگام گرمایش استوار است؛ بسط
می‌آید. شناخته شده‌ترین روش تجزیه گرمایی، تجزیهی
جدایی ترتیبی (DTA) است. روش تجزیه گرمایی
جدایی‌برای روش ایده‌آل برای تغییرات ترمومیتی
(گرمایی) در برای همکاران با اینهمه‌ای
XRDR

دستگاه تجزیه گرمایی جدایی برای کلیه کاتی‌ها و مواد
معدلی کاربرد دارد [14،15]. نتایج تجزیه گرمایی در حالت
(3) امید ان. نمونه شماره 1 در دمای 776 درجه
سانتی‌گراد قله گرمایی نشان می‌دهد که به دست دادن
عامل هیدروکسیلی است [16] و در دمای بالاتر (1142 درجه سانتی‌گراد) قله گرمایی واکنش به تغییرات
جدید، نظر استبیل است [16].

آلانیم است. انجام شده روی نمونه‌های برداشت شده،
کاتی‌های اصلی در منطقه‌ای مورد بررسی عبارتند از هالوزیت،
کاتولیت، کوارتز، اینتربرین ولک در کاتی‌های خاکی،
کلوت‌ها، الستیت، راتئیت، اینتربرین و کادمیت
(جدول 3) در یکی از نمونه‌ها کالی بروف نیز گزارش شده
است که به وجود سنگ‌های دگرگون در پرآمون سواحل رس
دالات در دارد. در شکل (2) و (4) تصویر بی‌پلیکس کانوک
الکترونی Gk-7 با پرژ کمیاب

5000 را نشان می‌دهد. در این نمونه، کاتی ایبلیت در اندازه 3
میکرومتر و بسیاری بی‌شک و میکرومتر در اندازه 2
میکرمتر و بسیاری بی‌شک می‌شوند. کاتی هالوزیت نیز در
اندازه‌ای کمتر از یک میکرومتر در سطح نمونه بسیار کشیده
برکنده آب دارد. در شکل (3) نمونه شماره 21
نامی 1000 کاتی ایبلیت بسیار شکل و صفحات
تقریباً کشیده و در اندازه 3 میکرومتر دیده می‌شود. کاتی
کوارتز نیز بسیار بی‌شک در اندازه 1–2 میکرومتر دیده

شکل 2- تصویر بی‌پلیکس کانوک الکترونی روشن SEM نمونه Gk-7
واسته به میکرومتری و EDS

شکل 3- تصویر بی‌پلیکس کانوک الکترونی روشن SEM نمونه Gk-7
واسته به میکرومتری و EDS

می‌شود.
است [17]. دانستن دمای واکنش‌های گرمایش و گرمایی
کانی‌های رسی کاربرد آن‌ها را در صنایع مختلف نشان می‌دهد.

خاصت‌ها کانی‌های منطقه‌ای مورد بررسی
در جدول (5) ضریب همبستگی عناصر اصلی نمونه‌های
منطقه‌ای مورد بررسی ارده شدهاند. ضریب همبستگی بالای
مثبت بین سیلیس و آلومینیوم می‌تواند به مقدار
زیاد برویت و تجزیه آن در تکینگ رسم باشد ضریب
همبستگی بالای مثبت بین سیلیس و آلومینیوم می‌تواند به
XRDC علت تکینگ کانولون‌ها و وجود اندولورزیت (که در آنالیز
نیز وجود داشت) در سواحل رسی باشد. ضریب همبستگی
tقربان باه مثبتی که بین منیزیم با سیلیس و آلومینیوم
XRDC می‌تواند دیده وجود کربنیریت در بررسی‌های
یز بود باشد. بنابراین جدول (5) پاساژ با دو عنصر سیلیس و
آلومینیوم به علت تکینگ کانی‌ایلیت ضریب همبستگی بالای
مثبتی دارد.

جدول 3 نتایج آنالیز
XRDC
<table>
<thead>
<tr>
<th>کانی‌های موجود</th>
<th>نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>هالوزیت، کارترز، ایلیت</td>
<td>1</td>
</tr>
<tr>
<td>هالوزیت، کوارتز، ایلیت، کلیپوکتر</td>
<td>2</td>
</tr>
<tr>
<td>هالوزیت، کوارتز، ایلیت، مونتوریتیت</td>
<td>3</td>
</tr>
<tr>
<td>کوارتز، ایلیت، پیژوپ، بیلیگ‌سوکیت</td>
<td>4</td>
</tr>
<tr>
<td>هالوزیت، کوارتز، ایلیت، رئیس</td>
<td>5</td>
</tr>
<tr>
<td>کوارتز، کوارتز، ایلیت</td>
<td>6</td>
</tr>
<tr>
<td>کوارتز، کوارتز، کوارتز، کوارتز، پیژوپ، بیلیگ‌سوکیت</td>
<td>7</td>
</tr>
<tr>
<td>کوارتز، کوارتز، کوارتز، کوارتز</td>
<td>8</td>
</tr>
<tr>
<td>کوارتز، کوارتز، کوارتز، کوارتز</td>
<td>9</td>
</tr>
<tr>
<td>ایلیت، کوارتز، کوارتز، آلومینیوم</td>
<td>10</td>
</tr>
</tbody>
</table>

نمونه‌های شماره ۵۴۲۲ نیز همانند نمونه‌ی شماره ۱ دو قله
اصلي (ба اندازه نافوت دمایی) را نشان می‌دهد. مقدار کاهش
وزنی آب در نمونه‌ها منطقه‌ای مورد بررسی بعلت دارا بودن
هالوزیت در ترکیب اصلی سواحل کم عمق زاید است و طبقه
ارز ۱۲-۵ درصد وزن را نشان می‌دهد و این مقدار کاهش
وزن در نمونه‌های نوعی کانولیت نزدیک به ۱۴ درصد وزنی

شکل ۴الف- تصویر میکروسکوپ الکترونی وروشی

Gk- منطقه‌ای مورد بررسی ب و پ- بررسی EDS

Gk- منطقه‌ای مورد بررسی B و P- بررسی EDS

کوارتز و ایلیت

Gk- منطقه‌ای مورد بررسی B و P- بررسی EDS

کوارتز و ایلیت

Gk- منطقه‌ای مورد بررسی B و P- بررسی EDS

کوارتز و ایلیت

Gk- منطقه‌ای مورد بررسی B و P- بررسی EDS

کوارتز و ایلیت

Gk- منطقه‌ای مورد بررسی B و P- بررسی EDS

کوارتز و ایلیت

Gk- منطقه‌ای مورد بررسی B و P- بررسی EDS

کوارتز و ایلیت

Gk- منطقه‌ای مورد بررسی B و P- بررسی EDS

کوارتز و ایلیت

Gk- منطقه‌ای مورد بررسی B و P- بررسی EDS

کوارتز و ایلیت

Gk- منطقه‌ای مورد بررسی B و P- بررسی EDS

کوارتز و ایلیت

Gk- منطقه‌ای مورد بررسی B و P- بررسی EDS

کوارتز و ایلیت

Gk- منطقه‌ای مورد بررسی B و P- بررسی EDS

کوارتز و ایلیت

Gk- منطقه‌ای مورد بررسی B و P- بررسی EDS

کوارتز و ایلیت

Gk- منطقه‌ای مورد بررسی B و P- بررسی EDS

کوارتز و ایلیت

Gk- منطقه‌ای مورد بررسی B و P- بررسی EDS

کوارتز و ایلیت
جدول ۴ مشخصات تجزیه گرماپیک نمونه‌های منطقه‌ای مورد بررسی

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>دما پیک های گرماپیک (°C)</th>
<th>دما پیک های گرماگیر (°C)</th>
<th>مقادیر کاهش وزن (٪)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>۱۲۵</td>
<td>۱۲۴</td>
<td>۲۷۷.۷</td>
</tr>
<tr>
<td>۲</td>
<td>۱۲۳</td>
<td>۱۲۲</td>
<td>۷۶۳.۲</td>
</tr>
<tr>
<td>۳</td>
<td>۱۱۴</td>
<td>۱۱۳</td>
<td>۸۲۳.۲</td>
</tr>
<tr>
<td>۴</td>
<td>۱۱۳</td>
<td>۱۱۲</td>
<td>۸۱۰.۷</td>
</tr>
<tr>
<td>۵</td>
<td>۱۱۱</td>
<td>۱۱۰</td>
<td>۷۸۴.۶</td>
</tr>
</tbody>
</table>

جدول ۵ ضریب همبستگی بین عناصر اصلی نمونه‌های منطقه‌ای مورد بررسی

<table>
<thead>
<tr>
<th>S</th>
<th>P</th>
<th>Mn</th>
<th>Mg</th>
<th>Ca</th>
<th>Fe</th>
<th>Al</th>
<th>Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
</tr>
<tr>
<td>Al</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
</tr>
<tr>
<td>Mg</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
</tr>
<tr>
<td>Ca</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
</tr>
<tr>
<td>Fe</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
</tr>
<tr>
<td>Al</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
</tr>
<tr>
<td>Si</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
</tr>
</tbody>
</table>

گرانیت‌های اطراف سواحل کم عمق (که خاستگاه بیشتر تشکیل کالولینت‌ن) به راحتی شسته شده و به‌عنوان شبکه‌های منطقه‌ای سوتارا، فلدسپارها همراه با آنها سطحی به رنگ سفید (شر به رنگ مانند درآمده و طول حرف فلدسباری در ساقه‌ها چندین کیلومتر (۳-۴ کیلومتر) و به مور زمان و تکرار این امر، انواع رس‌ها در سواحل منطقه تشکیل می‌شود. رسول‌ها تشکیل شده‌ند از ارتفاعات پس از تشکیل مخروط افکنی به سمت پایین دست حرکت کرد و تشکیل انواع کلی ریس را در سواحل رسی می‌دهد. لذا به غیر از هوازدگی‌های سواحل، هوازدگی‌های توده گرایی غیر ریسی که زیر سواحل رسی قرار دارد نیز در تشکیل کلی ریس مورد بررسی می‌باشد و نابرجا با هم نقش کلی‌های رسی سواحل کاهش داده شده است. بطری کلی در تشکیل کلی ریس مورد بررسی می‌باشد و نابرجا با هم نقش کلی‌های رسی سواحل کاهش داده شده است. بطری کلی در تشکیل کلی ریس مورد بررسی می‌باشد و نابرجا با هم نقش کلی‌های رسی سواحل کاهش داده شده است. بطری کلی در تشکیل کلی ریس مورد بررسی می‌باشد و نابرجا با هم نقش کلمه‌ها ریسی سواحل کاهش داده شده است. بطری کلی در تشکیل کلی RFD است که در نمونه‌های نامیز XRD نیز شده خود را نشان داده‌که در زمان پارک‌گیری فلدسپارها موجود در توده‌ها...
جدول ۶ آنالیز فاکتوری و تعداد آنالیزهای موتر در توزیع عناصر موجود در سواحل منطقه‌ی مورد بررسی.
اکسیدهای اولیه نیم‌دهد که در سواحل رسی منطقه مورد بررسی، اکسید سیلیسیم تغییراتی از ۴۳-۸۲ درصد و نیم‌دهد و مقدار L.O.I. به‌طور میانگین ۹۶-۶ درصد و نیم‌دهد تغییراتی می‌کند. درجه سانتی‌گراد دمای تقریبی ۷۰۰-۷۱۰ درجه سانتی‌گراد بهره‌مندی کانی‌های رسی و دمای تقریبی و اکسیدهای گرمایش مورد بررسی تغییراتی از ۱۱۰۰-۱۲۰۰ درجه سانتی‌گراد دمای رسی می‌دهد. در رشته منطقه اکسید سیلیسیم حاصل در سواحل و هوازدگی تغییراتی که شناسی اطراف آن به‌خصوص توده‌های نیک و واحدهای تبیک رس هم در اثر هوازدگی انتقال یافته‌اند و دارای خاستگاه نابرجا هستند و همین‌طور برجا نشکل شده‌اند.

قدرتانی
از شرکت تحقیقات و فرآوری مواد معدنی ایران جهت انجام این پژوهش و تجزیه گرمایی کمال تناش و سیاست‌گذاری را دادم.

مراجع


