بررسی کانی شناسی، ویژگی‌های گرماپی و خاستگاه کانی‌های رسی پلایای شهربابک

فاطمه رحیمی، عباس مرادیان، حمید احمدی پور

گروه زمین شناسی، دانشگاه علوم، دانشگاه شهید باهنر، کرمان

چکیده: ساختاری رسمی شهربابک از نظر زمین‌شناسی، در جنوب شرق منطقه‌سنجید - سیرجان قرار گرفته است. بر اساس بررسی‌های کانی‌شناسی و میکروسکوپ الکترون روبشی (SEM) فازهای کانی گرماپی اصلی سواحل بای‌کند بی‌شمارند. کانی‌شناسی، ابله، کوآترز، کلرید و زیسپ، براساس داده‌های زمین‌شناسی میزان متوسط گرماپی آلومینیوم 18.93 درصد، میزان متوسط کسید سپیلیسم 39.52 درصد و میزان میانگین 0.1884 L.O.I درصد است. بر پایه تشخیص گرماپی جداگانه، واکنش‌های گرماپی نمونه‌ها در دو رشته کیسین، واقنشاهی گرماز در دو رشته گرماز در دو رشته ترکیبی 1140 تا 1190 درجه سانتی‌گراد رخ می‌دهد. خاستگاه اصلی کانی‌های رسی منطقه‌ی مورد بررسی، رسپی‌بوده و از فرسپی و هوازدگی نتیجه‌ی عظیم گرانی‌تودنی جنوب شرقی کراپ‌ها است. کاربردهای قواوان کانی‌های رسی در صنایع مختلف، از ضرورت‌های این پژوهش است.

واژه‌های کلیدی: کانی‌های رسی، کانی‌شناسی ویژگی‌های گرماپی، سواحل رسی، شهربابک

مقدمه

کانی‌های رسی وابسته به گروه فیلوسیلکات‌ها [1] و از مهم‌ترین کانی‌های مصرفی در صنایع مختلف هستند. هدف از این پژوهش شناسایی کانی‌های مختلف ساختاری رسی شهربابک دستیابی به ویژگی‌های گرماپی کانی‌های رسی منطقه‌ی مورد بررسی و رسپی‌بوده این گروه کانی‌هایی است. نظر زمین‌شناسی، ناهماهنگی‌های شهربابک را می‌توان به دو بخش کوستنی و دشت تغییر گرفته [2] ساختار رسی شهربابک، در جنوب شرقی کراپ‌ها، در شرایط یک وسعت ترکیبی هر اینکه نشانه حاصل کیستور رمبو نواری گرفته است و منطقه‌ی مورد بررسی در دو بخش کوستنی و دشت تغییر گرفته کرده [3] در منطقه‌ی ساختاری سیرجان- سیرجان [4] و بین طولی خرماهای 23.3، 28.3 و 29.3 گراف گرفته است (شکل 1). یک دیگر نشانه زنی‌شناسی (1) دیده می‌شود منطقه‌ی مورد بررسی دارای دو بخش ساختاری رسی است و

f.riahi91@sci.uk.ac.ir
جدول ۱: نتایج آنالیز XRF نمونه های منطقه‌ی مورد بررسی.

<table>
<thead>
<tr>
<th>ماده</th>
<th>Gk-1</th>
<th>Gk-4</th>
<th>Gk-5</th>
<th>Gk-6</th>
<th>Gk-7</th>
<th>Gk-11</th>
<th>Gk-12</th>
<th>Gk-21</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>43.58</td>
<td>39.4</td>
<td>39.2</td>
<td>38.4</td>
<td>30.9</td>
<td>41.6</td>
<td>40.3</td>
<td>39.53</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>15.75</td>
<td>13.96</td>
<td>12.71</td>
<td>12.49</td>
<td>12.76</td>
<td>14.53</td>
<td>12.32</td>
<td>13.93</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>3.38</td>
<td>3.28</td>
<td>3.26</td>
<td>3.25</td>
<td>3.24</td>
<td>5.26</td>
<td>4.91</td>
<td>5.25</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.9</td>
<td>1.7</td>
<td>0.8</td>
<td>0.8</td>
<td>0.54</td>
<td>0.88</td>
<td>0.79</td>
<td>0.73</td>
</tr>
<tr>
<td>CaO</td>
<td>7.93</td>
<td>11.79</td>
<td>9.92</td>
<td>11.32</td>
<td>11.29</td>
<td>11.78</td>
<td>10.49</td>
<td>10.08</td>
</tr>
<tr>
<td>MgO</td>
<td>4.71</td>
<td>4.68</td>
<td>4.33</td>
<td>4.63</td>
<td>5.47</td>
<td>4.51</td>
<td>4.05</td>
<td>4.56</td>
</tr>
<tr>
<td>K₂O</td>
<td>2.84</td>
<td>2.21</td>
<td>2.15</td>
<td>2.02</td>
<td>2.24</td>
<td>2.27</td>
<td>2.19</td>
<td>2.21</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.74</td>
<td>1.18</td>
<td>1.32</td>
<td>1.34</td>
<td>1.31</td>
<td>1.31</td>
<td>1.33</td>
<td>1.34</td>
</tr>
<tr>
<td>SO₃</td>
<td>0.18</td>
<td>0.18</td>
<td>0.15</td>
<td>0.13</td>
<td>0.12</td>
<td>0.09</td>
<td>0.08</td>
<td>0.09</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.57</td>
<td>0.7</td>
<td>0.51</td>
<td>0.51</td>
<td>0.51</td>
<td>0.55</td>
<td>0.51</td>
<td>0.51</td>
</tr>
<tr>
<td>Cl</td>
<td>0.08</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MnO</td>
<td>0.16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L.O.I</td>
<td>18.37</td>
<td>18.67</td>
<td>20.32</td>
<td>20.48</td>
<td>19.18</td>
<td>18.61</td>
<td>17.53</td>
<td>18.84</td>
</tr>
</tbody>
</table>

کانی‌های رسی منطقه‌ی مورد بررسی، تعداد ۵ نمونه مورد تعداد نمونه برای آنالیز ICP-MS به شرکت زراعت ماهان فرسنده شدند (جدول ۱). برای بررسی ویژگی‌های گریمی

عکس ۱ نقشه زمین شناسی منطقه‌ی مورد بررسی اقتباس از [۳] (با اندازه تغییرات).
زمنی شناسی منطقه
سواحل رسی منطقه‌ی مورد بررسی، با بار طبق بررسی‌های
صحرایی انجام شده، از شمال به جنوب‌ها ی بهینه‌ی ماند
زبیس، کلیسیت و هالیت، از جنوب به شمال‌ها سبک درگه
شده آندالوزیت، کریستین، هورنفلس و سمت غرب و جنوب
غرینه به باشکنی گراینبوئیدج شک محدود می‌شوند.
سنگ مادر کاهی‌ای به منطقه‌ی مورد بررسی بیشتر بیان
گراینبوئیدج شک مهکه شش‌گهای کوارتز‌دیورتی
کوارتز‌مونوزدورنیت، مونوزگرانیت، گراندویریت و تونالیت
[8] و توده‌ی گراینبوئیدج تنوک به در زیر سوق‌ای رسی قرار دارن،
است. از نظر زمین ساختی تشكیل گراینبوئیدج شک مهکه به
شبیه نسبتاً زیاد فوران‌های ایزونوسی به زیر صفحه
ایران مرکزی است، به طوری که ذوب پوسته‌ای اقیانوسی فرو
و تشکیل ماه‌گی بازالتی منجر به ذوب آتاسه‌ی رسوب‌های
پلیتی با تایبیتی در لبه فعال قاره‌ای شد، و مشارکت منجر به
تشکیل این توده‌ی گراینبوئیدج شده اند [8]. ترک‌های گل
پدیده‌ای جنس‌گیر در سطح پلاورای رسی منطقه‌ی مورد بررسی
است. است.

Thermo (Analysis DTA-TGA) قرار گرفتند که نتیجه
تحریکي گرما- گراني سنگی (TGA)، منحني تغيير وزن بر
حس دما و منحني‌هاي تحریکي گراني جدایشي
(DTA) با افزایش دما تغييرات گرمايي در زموئه دیده شد که با قله‌هاي
گرماگري و گرمازي از نمونه ظاهر مي شودن (شکل 2). برای اولين
بار در قرن ۱۸ ميلادي، كاربرد منحني‌هاي گرمايي برای
تشناسی رسها توسط [9] توضيح داده شد. روش‌های تحریکي
گرمايي برای اندیزي گري پولیکا گرامو نتدي رسي مفید
است [5] نمونه‌های منطقه مورد بررسی با تحریکي گرمايي
جدایي (TA) و تحریکي گرمايي گرامي سنگي (TGA)
به- به طور همزمان، از دمای محيط تا ۱۲۰۰ درجه سانتی‌گراد در
هوای معمولی و با نرخ گراميي ۲۰۰ C/min به وسيله
دسگاه گرمايي‌های مرکز تحقیقات فراوري مواد معدني ايران
NETZSCH مدل SAT 409 PC/PG مدل
بررسی شدند. نمونه‌های به کار رفته در این آزمایش بهصورت
پودر در کوره‌های با جنس اکسيد آلومينيوم و با وزن ميانيت
50-60 ميلي گرم مورد ارزیابي قرار گرفتند.

شکل ۲ منحني‌های همزمان DTA-TGA نمونه‌ي رسی منطقه‌ی مورد بررسی
جدول ۲ نتایج آنالیز ICP-MS نمونه‌های منطقه‌های مورد بررسی (کلیه عناصر بر حسب ppm تستند).

<table>
<thead>
<tr>
<th>Sample (ppm)</th>
<th>gk-3</th>
<th>gk-9</th>
<th>gk-14</th>
<th>gk-17</th>
<th>gk-19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Al</td>
<td>1047</td>
<td>766</td>
<td>726</td>
<td>726</td>
<td>726</td>
</tr>
<tr>
<td>As</td>
<td>15</td>
<td>14.6</td>
<td>15.9</td>
<td>9.1</td>
<td>16.4</td>
</tr>
<tr>
<td>Ba</td>
<td>323</td>
<td>232</td>
<td>239</td>
<td>211</td>
<td>175</td>
</tr>
<tr>
<td>Be</td>
<td>1.9</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>Ca</td>
<td>89.83</td>
<td>89.83</td>
<td>8878</td>
<td>8785</td>
<td>8891</td>
</tr>
<tr>
<td>Ce</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Co</td>
<td>18</td>
<td>16.7</td>
<td>19.1</td>
<td>12.2</td>
<td>12.3</td>
</tr>
<tr>
<td>Cs</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>Dy</td>
<td>2.2</td>
<td>2.3</td>
<td>2.9</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>Er</td>
<td>2.7</td>
<td>2.99</td>
<td>3.16</td>
<td>3.16</td>
<td>3.16</td>
</tr>
<tr>
<td>Eu</td>
<td>0.6</td>
<td>0.96</td>
<td>1.6</td>
<td>1.9</td>
<td>0.83</td>
</tr>
<tr>
<td>Fe</td>
<td>0.1</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Sr</td>
<td>49.8</td>
<td>49.8</td>
<td>49.8</td>
<td>49.8</td>
<td>49.8</td>
</tr>
<tr>
<td>S</td>
<td>8.27</td>
<td>8.27</td>
<td>8.27</td>
<td>8.27</td>
<td>8.27</td>
</tr>
<tr>
<td>Ti</td>
<td>53.3</td>
<td>53.3</td>
<td>53.3</td>
<td>53.3</td>
<td>53.3</td>
</tr>
<tr>
<td>Ti</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
</tr>
<tr>
<td>Tm</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>U</td>
<td>0.8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Y</td>
<td>98</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>W</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Y</td>
<td>14.6</td>
<td>15.6</td>
<td>17</td>
<td>13.1</td>
<td>13.3</td>
</tr>
<tr>
<td>Yb</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Gd</td>
<td>3.47</td>
<td>3.47</td>
<td>3.47</td>
<td>3.47</td>
<td>3.47</td>
</tr>
<tr>
<td>Hf</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>K</td>
<td>218.5</td>
<td>218.5</td>
<td>218.5</td>
<td>218.5</td>
<td>218.5</td>
</tr>
<tr>
<td>La</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Li</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Mg</td>
<td>157.3</td>
<td>157.3</td>
<td>157.3</td>
<td>157.3</td>
<td>157.3</td>
</tr>
<tr>
<td>Mn</td>
<td>8.5</td>
<td>8.5</td>
<td>8.5</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>Mo</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Na</td>
<td>94.58</td>
<td>94.58</td>
<td>94.58</td>
<td>94.58</td>
<td>94.58</td>
</tr>
<tr>
<td>Nb</td>
<td>1.19</td>
<td>1.19</td>
<td>1.19</td>
<td>1.19</td>
<td>1.19</td>
</tr>
<tr>
<td>Ni</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>Pb</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Rb</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
</tbody>
</table>

دقیق و بررسی

بحث و بررسی

کانی‌شناسی رس‌های منطقه‌های مورد بررسی و ریخت‌شناسی آن‌ها به عنوان یکی از بهترین روش‌ها برای شناسایی و فهم‌دهنده کاملاً بررسی شد. بررسی‌های کانی‌شناسی و سنجش‌های در مورد رس‌ها در سال ۱۹۷۰-۱۹۹۰، زمانی که میکروسکوپ‌های الکترونی به تدریج به پذیرش آمدند، شروع شد (۱۹-۹). بنا بر بررسی‌های میکروسکوپ الکترونی و

دانشمندانی که ریخت‌شناسی آن‌ها را به عنوان یکی از بهترین روش‌ها برای شناسایی و فهم‌دهنده کانی‌شناسی و سنجش‌های در مورد رس‌ها در سال ۱۹۷۰-۱۹۹۰، زمانی که میکروسکوپ‌های الکترونی به تدریج به پذیرش آمدند، شروع شد (۱۹-۹).
انالیزهای XRD نشان دهنده روی نمونه‌های برداشت شده، کانال‌های اصلی در منطقه‌ی مورد بررسی عبارتند از هالوژت، کاولونیت، کوارتز، انترست، مونتمورونیت و کانال‌های فریک کلینوکلر، کلسبت، روتیل، زیپس، آنالوژت و کردنیت (جدول ۳) در یکی از نمونه‌ها کانال بیروب نیز گزارش شده است که به وجود سنگ‌های داگرگون در پیرامون سواحل رسی دلاله دارد. در شکل (۳) و (۴) تصاویر میکروسکوپ الکترونی اورده شده‌اند. شکل (۳) نمونه شماره ۷ Gk-21 با زیرگ نمایی میکروپتروپ و بحث، شکل (۴) نمونه شماره ۳ Gk-21 با زیرگ میکروپتروپ و بحث نشان می‌دهد. در این نمونه، کانال ایلت در اندازه ۵۰۰۰ میکروپتروپ و بحث، شکل دیده می‌شود. کانال هالوژت نیز در اندازه‌ای کمتر از یک میکروپتروپ در سطح نمونه بحث نکشیده بازی‌شده پراکنده امس. در شکل (۵) نمونه شماره ۲۱ Gk-21 نمایی ۱۰۰۰۰ کانال ایلت بحث نمایی شکل‌داده و صفحات تشکیل شده و در اندازه ۲۳ میکروپتروپ دیده می‌شود. کانال کوارتز نیز بحث نمایی شکل در اندازه ۱۰ میکروپتروپ دیده می‌شود.

![شکل ۳](image_url)

شکل ۳ - تصویر میکروسکوپ الکترونی روبشی SEM و نمونه ۷ Gk-21 منطقه‌ی مورد بررسی ب در به‌آنانالیز وابسته به مونتمورونیت و هالوژت نمونه ۷ Gk-21 منطقه‌ی مورد بررسی (ایلت) منطقه‌ی مورد بررسی (ایلت) M= هالوژت.
است [17]. دانستن دمای واکنش‌های گرماکر و گرمایی کانی‌های رسمی کاربرد آن‌ها را در صنایع مختلف نشان می‌دهد.

جدول ۲: نتایج آنالیز XRD

<table>
<thead>
<tr>
<th>کانی‌های موجود</th>
<th>نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>هالوتیتر</td>
<td>۱</td>
</tr>
<tr>
<td>کوارتز، آلپینت</td>
<td>۲</td>
</tr>
<tr>
<td>کوارتز، آلپینت، کلینوکر</td>
<td>۳</td>
</tr>
<tr>
<td>کوارتز، آلپینت، مونیتروپیت</td>
<td>۴</td>
</tr>
<tr>
<td>کوارتز، آلپینت</td>
<td>۵</td>
</tr>
<tr>
<td>کوارتز</td>
<td>۶</td>
</tr>
<tr>
<td>کوارتز، آلپینت</td>
<td>۷</td>
</tr>
<tr>
<td>کوارتز، آلپینت، کلینوکر</td>
<td>۸</td>
</tr>
<tr>
<td>کوارتز، آلپینت، کوارتز، روترل</td>
<td>۹</td>
</tr>
<tr>
<td>کوارتز، آلپینت، کوارتز</td>
<td>۱۰</td>
</tr>
</tbody>
</table>

شکل ۴: تصویر میکروسکوپ الکترونی روبشی SEM

[تصویر SEM جایگذاری شده]

نمونه‌های شماره ۲، ۳، ۴ نیز هم‌اندیش نمونه‌ی شماره ۱ دو قله اصلی (با انگکی تفاوت دمایی) را نشان می‌دهد. مقدار کاهش وزنی آب در نمونه‌های منطقه‌ی مورد بررسی یافته‌ای ندارد. بودن هالوزیت در ترکیب اصلی سواحل گم معمولاً است و طبقی از ۱۲% تا ۱۰ درصد وزنی را نشان می‌دهد و این مقدار کاهش وزن در نمونه‌های نوعی کانولینت نزدیک به ۱۲ درصد وزنی کوارتز و آلپینت، کوارتز یافت شده است. XRD

Gk-SEM

[تصویر XRD جایگذاری شده]
جدول 5 ضریب همبستگی بین عنصر اصلی نمونه‌های منطقه‌ی مورد بررسی

<table>
<thead>
<tr>
<th>عنصر</th>
<th>ضریب همبستگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>0.01</td>
<td>0.03</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Al</td>
<td>0.01</td>
<td>0.03</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Fe</td>
<td>0.01</td>
<td>0.03</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Ca</td>
<td>0.01</td>
<td>0.03</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Mg</td>
<td>0.01</td>
<td>0.03</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>K</td>
<td>0.01</td>
<td>0.03</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Na</td>
<td>0.01</td>
<td>0.03</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Cl</td>
<td>0.01</td>
<td>0.03</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>S</td>
<td>0.01</td>
<td>0.03</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

گرانيتی اطراف سواحل گم عمق (که خاستگاه پیشتر تشکیل کالوینینان اید) به راحتی شسته شده و به‌طور شیب در بودن منطقه به سمت سواحل، فلدستیفارها هرased به آب‌های سطحی به ریک سفید (شیر مانده) درآمده و طی حمل ذرات خسته‌ها در منطقه‌های نزدیک به سطح زمین است که در اثر فعالیت‌های بیهوشی، شیمیایی و پیوسته گردش‌های باعث شده است که متغیر به‌طور افزایش در منطقه‌ها می‌شود. برای دستیابی به خاستگاه که خاستگاه بررسی را با لایه‌های زیراشفته در سواحل، در شرق و شمال شرقی سواحل، با لایه‌های زیراشفته در اطراف سواحل، هوازدگی توده‌ای گرانيتی قدیمی‌تر که زیر سواحل را قرار دارد نیز در تشکیل کامل‌های رسي منطقه‌ی مورد بررسی عوامل برجام و نابرجا به هم نش
خاستگاه عناصر مختلف در سواحل رشی منطقه، آنالیز فاکتوری (Principal Component) به‌وسیله مولفه‌ای اصلی (Varimax) جرختی (چند متغیری آماری است و برای تحلیل تغییرات بین داده‌ها از آن استفاده می‌شود. برای تنظیم منطقه‌های سواحلی مورد بررسی، جدول 6 آنالیز فاکتوری و تعداد آنالیزهای موتور در توزیع عناصر موجود در سواحل منطقه‌های مورد بررسی.

<table>
<thead>
<tr>
<th>Component</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>.99</td>
<td>.07</td>
<td>.26</td>
<td>.23</td>
</tr>
<tr>
<td>Al</td>
<td>.83</td>
<td>.42</td>
<td>.23</td>
<td>.36</td>
</tr>
<tr>
<td>As</td>
<td>.28</td>
<td>.91</td>
<td>.04</td>
<td>.13</td>
</tr>
<tr>
<td>Ba</td>
<td>.93</td>
<td>.02</td>
<td>.33</td>
<td>.09</td>
</tr>
<tr>
<td>Be</td>
<td>.47</td>
<td>.06</td>
<td>.37</td>
<td>.19</td>
</tr>
<tr>
<td>Ca</td>
<td>.88</td>
<td>.18</td>
<td>.47</td>
<td>.22</td>
</tr>
<tr>
<td>Ce</td>
<td>.91</td>
<td>.07</td>
<td>.77</td>
<td>.18</td>
</tr>
<tr>
<td>Co</td>
<td>.90</td>
<td>.02</td>
<td>.24</td>
<td>.23</td>
</tr>
<tr>
<td>Cs</td>
<td>.89</td>
<td>.04</td>
<td>.28</td>
<td>.33</td>
</tr>
<tr>
<td>Dy</td>
<td>.92</td>
<td>.14</td>
<td>.06</td>
<td>.09</td>
</tr>
<tr>
<td>Er</td>
<td>.99</td>
<td>.07</td>
<td>.34</td>
<td>.28</td>
</tr>
<tr>
<td>Eu</td>
<td>.89</td>
<td>.18</td>
<td>.28</td>
<td>.34</td>
</tr>
<tr>
<td>Fe</td>
<td>.91</td>
<td>.08</td>
<td>.18</td>
<td>.09</td>
</tr>
<tr>
<td>Sr</td>
<td>.35</td>
<td>.99</td>
<td>.55</td>
<td>.19</td>
</tr>
<tr>
<td>Ti</td>
<td>.95</td>
<td>.01</td>
<td>.04</td>
<td>.19</td>
</tr>
<tr>
<td>Tl</td>
<td>.99</td>
<td>.14</td>
<td>.17</td>
<td>.28</td>
</tr>
<tr>
<td>U</td>
<td>.99</td>
<td>.02</td>
<td>.09</td>
<td>.09</td>
</tr>
<tr>
<td>V</td>
<td>.39</td>
<td>.15</td>
<td>.32</td>
<td>.32</td>
</tr>
<tr>
<td>W</td>
<td>.89</td>
<td>.05</td>
<td>.12</td>
<td>.08</td>
</tr>
<tr>
<td>Y</td>
<td>.88</td>
<td>.10</td>
<td>.22</td>
<td>.22</td>
</tr>
<tr>
<td>Yb</td>
<td>.91</td>
<td>.05</td>
<td>.24</td>
<td>.34</td>
</tr>
<tr>
<td>Gd</td>
<td>.89</td>
<td>.27</td>
<td>.43</td>
<td>.27</td>
</tr>
<tr>
<td>Hf</td>
<td>.96</td>
<td>.02</td>
<td>.22</td>
<td>.07</td>
</tr>
<tr>
<td>K</td>
<td>.81</td>
<td>.43</td>
<td>.06</td>
<td>.15</td>
</tr>
<tr>
<td>La</td>
<td>.89</td>
<td>.77</td>
<td>.04</td>
<td>.22</td>
</tr>
<tr>
<td>Li</td>
<td>.88</td>
<td>.26</td>
<td>.15</td>
<td>.36</td>
</tr>
<tr>
<td>Mg</td>
<td>.88</td>
<td>.80</td>
<td>.13</td>
<td>.38</td>
</tr>
<tr>
<td>Mn</td>
<td>.88</td>
<td>.08</td>
<td>.25</td>
<td>.37</td>
</tr>
<tr>
<td>Mo</td>
<td>.88</td>
<td>.19</td>
<td>.22</td>
<td>.34</td>
</tr>
<tr>
<td>Na</td>
<td>.33</td>
<td>.18</td>
<td>.16</td>
<td>.08</td>
</tr>
<tr>
<td>Nb</td>
<td>.88</td>
<td>.13</td>
<td>.18</td>
<td>.42</td>
</tr>
<tr>
<td>Ni</td>
<td>.88</td>
<td>.09</td>
<td>.23</td>
<td>.19</td>
</tr>
<tr>
<td>Pb</td>
<td>.88</td>
<td>.23</td>
<td>.38</td>
<td>.19</td>
</tr>
<tr>
<td>Rb</td>
<td>.88</td>
<td>.10</td>
<td>.18</td>
<td>.34</td>
</tr>
<tr>
<td>S</td>
<td>.88</td>
<td>.10</td>
<td>.18</td>
<td>.57</td>
</tr>
</tbody>
</table>
اکسیدهای اصلی نشان می‌دهد که در سواحل رسی منطقه ای
مورد بررسی، اکسید نیکلی‌سیم تغییراتی از ۷۵-۸۰ درصد رنگ و
مقدار L.O.I. ۴۰-۵۰ درصد وزنی و
درصد نیتروژن می‌باشد.

این مقدار Ca عصر
کانه‌های اولیه منظومه با دیگر عناصر اصل و مواد در
ارتباط با ترکیب تیترهای شما سواحل (کلکسیت،
دوالتیت، زیسی) باعث می‌شود که متغیر Na
آنترهای نشان دهنده خاستگاه باشد.

بیشتر از موارد اصلی در این فاکتور سوم قوی‌تر است و خاستگاه احتمالی آن در دیورامی نمک و
واحدهای تیتانیوم هالیت در بالا دست سواحل است.

عناصر در Ca، Sr، U، W
تغییر سنتی‌های اسپیدی منطقه (گرووگون) باشد.

مکانیکی مشابه S نیز در این موارد به‌صورت گذار برای جهت شیب و
و تغییرهای سنتی‌های خاستگاه در بالا دست سواحل است.

عناصر در Ca، Sr، U، W
تغییر سنتی‌های اسپیدی منطقه (گرووگون) باشد.

خاک‌های روی بخش خاک‌های صنعتی به شمار رفت و

با بررسی‌ها میکروسکوپ الکترونی و بررسی‌های میلی
پرتو X، کانه‌های موجود در سواحل رسی شرایک شامل
حالیت، کاتالیزیت، ایلیت، کلریت، کوارتز، مونتروینیت،
آندولانت، کریستالت و زئیت است. بررسی‌های شیمیایی

Hoseini Z., Mosazade S., Momen Por L.,
"Introducing Tourism Attractions and Their Role in Development of the Shahr-EBabak City", Advances in Environmental Biology 8 (2014) 1636-1642.

[2] الطیبی-غ.، روی‌سازی/ ایران، سازمان زمین شناسی و
[4] Wendlandt W.W., Gallagher P.K., Chapter-1 in

Xi Y., Martens M., He H., Frost R.L.,
"Thermogravimetric analysis of organoclays intercalated with the surfactant octa decyltrime

[20] Риахи م. "پژوهش‌های اقتصادی کاولن در منطقه شهربابک، پایان نامه کارشناسی ارشد، دانشگاه شهید بهشتی کرمان (1393) 100 ص.

[8] جمشیدی ف.، بررسی پتروگرافی، زوئسیمی و پتروژنژیک بانویت کریستالولوژیک شهرماک، پایان نامه کارشناسی ارشد دانشگاه شهید بهشتی کرمان (1382) 14 ص.

