افزایش پایداری سوله‌های خورشیدی با استفاده از لاشه‌های جاذب پروسکایتی CH₃NH₃PbI₃-

مريم عالي داني، مرتضي ایزديفرد.4 محمد باهريم قاضی

نامده: فیزیک، دانشگاه صنعتی شهید رودکی

چکیده: ترکیب CH₃NH₃PbI₃ بر جوهر یکی از معروف ترین و پرکاربردترین ترکیبات بررسی کننده ای است که در محلول‌های خورشیدی بررسی کننده استفاده می‌شود. یکی از راه‌های مقابله با مشکلات ترکیبات CH₃NH₃PbI₃ در شرایط عملی آلیش در این ترکیب است. در این کار، ضمن بررسی ویژگی‌های ساختاری و ترکیب لاشه‌های جاذب CH₃NH₃PbI₃ در ترکیب CH₃NH₃PbI₃ بر مبنای قابلیت انتقال انرژی. گزارش نشان می‌دهد که مشابه ترکیب CH₃NH₃PbBr₃ در برابر حلالیت گاز می‌تواند کنترل کننده در برابر حلالیت گاز می‌تواند کنترل گذاری نشان داده که کمترین میزان انتقال انرژی (21%) مربوط به سوله‌های لاشه‌های جاذب CH₃NH₃PbI₃ می‌باشد.

واژه‌های کلیدی: لاشه‌های جاذب پروسکایتی، لاشه‌های خورشیدی، لاشه‌های جاذب CH₃NH₃PbI₃-

مقدمه

بررسی‌های هالیدی هیبریدی ای- معمولا در جنرال اخیر برای استفاده در ساخت آنتن سوله‌های خورشیدی موضوع پژوهش‌های بسیار فراگرفته‌اند. این مواد ترکیبی با شکل پروسکایتی با فرم نیم‌پرتوسیم ضد AMX ساختار پروسکایتی با فرم نیم‌پرتوسیم ضد AMX هستند که در آن یک یون هالیدی X به یون A و یک یون B به یون M مولکول آلی مانند آمینو NH₂CH₃NH₂ است (شکل 1)1. این مواد ویژگی‌های ترکیبات آلی مانند انعطاف‌پذیری بالا و جایگذاری آن‌ها به همراه ویژگی‌های خوب ترکیبات معمولاً از جمله مواد مولکولی و سختی بالا دارند. مزیت استفاده از این مواد این است که با

mizadifard@shahroodut.ac.ir
این روند از دو مرحله در دو طرف به شکل زیر توصیف می‌شود:

1. نکاتت اولیه
در این مرحله کربنات به عنوان یک نوع از سوخت به پلیمر وارد می‌شود و در دو طرف دو نوع پلیمر ساخته می‌شوند.

2. نکاتت دوم
در این مرحله سولف کربنات به عنوان یک نوع از سوخت به پلیمر وارد می‌شود و در دو طرف دو نوع پلیمر ساخته می‌شوند.
روش بررسی

لایه‌نشانی‌های پروسکایتی پیامدی تهیه شده با برم

تعداد شرکت سرمایه‌داران 442 mg آب‌های ماده سطحی (DMF) با خلول (99.99%) در حالی می‌تواند با سه ساعت بر

همزن‌بندی در دمای 100 گرم در تهیه ملی به دست

آمده با استفاده از صفحه سرسرنگی PTFE (4.5 μm)

شده. این مخلوط با یک زیراخته TiO2 از مخاطت در

روش چرخه‌ای در دو مرحله پیاپی سخت. 2000 و

6000 rpm سازی لایه‌ای نیز با یک صفحه گردنمک، گرفته شده:

240 و با مدت دو دقیقه و سپس در تهیه 100 گرم در

شکسته شده. در ادامه مخلوط مدلر پایدار

(صخша) S2+ (50 mg/ml)

(50 mg/ml)
محلولی از تیتانیوم نترا ایزوپروپیلید (TTIP)، HCl، HNO₃ و اتانول بدون آب (ساخت شرکت مراک بلوم بیش از 99.9%) نهیم، 10-30 rpm شده و به سطع افتاده و ZrOCl₂ FTO لایه‌شماره شد و با لیف‌بندی گلی هر فلوراسیون به طلا پاک شد. سپس لایه‌ها درون یک کوره الکتروگرافی در دمای 150 گردید که در دمای 300 دیه پس از آن، لایه‌ها در محلول پیامده به مدت 40 می‌گردید. P3HT (UV-Vis: Shimadzu 1800 در دمای 70°) در دمای 100 درجه سانتی‌گراد در دمای 500 درجه سانتی‌گراد نگهداری می‌شود و در پردازش باید نسبت ۳ میکروکوب دارد.

اطرح اولیه از سلول‌های خورشیدی پروسکانتی مزومتخلف ساخته شده در سه بند و دمای متفاوت است که برای نمونه بررسی داشت.

عرضی یک سلول نوی در شکل ۲ نشان داده شده است. مشخصاتی که در نمونه‌های خودگیری وجود دارد بررسی شدند. (Bruker, AXS) X-ریتوبر (UV-Vis: Shimadzu 1800) و (AFM: VeccoPCResearch) و (FESEM: HITACHI S-4160) می‌تواند بررسی شود.

برپرسی شدن. ویژگی‌های زیادی ویژگی‌های شفافیت پیش‌بینی می‌گردد.

برپرسی شدن. ویژگی‌های زیادی ویژگی‌های شفافیت پیش‌بینی می‌گردد.

شکل ۲ هopoیک تصور SEM نوعی از مقطع عرضی سلول خورشیدی ساخته شده و B- طرح اولیه از سلول خورشیدی پروسکانتی مزومتخلف ساخته شده در این پژوهش.
بحث و بررسی
طرح‌های پراش پرتو X ثابت‌شده برای لایه‌های Pb(ІBr) مربوط به
نمونه‌های S1 و S5 در شکل 2 نشان داده است. در آن‌گونه
شکل‌گیری (111), (200), (220), (222) در نمونه‌های
S2 و S4 و نمونه‌های (100), (311) در نمونه‌های
S1 و S3 و 2S6 و 2S4 استفاده شد. این‌ها باعث
مقدار پراش در لایه‌ها و قله‌های اصلی (110) و
نمونه‌های با فرکنش نیترات شیشه به سمت زاویای پز‌گذر
با جا می‌شود که کریستال‌های کوچک‌تر هم‌خوانی دارند.
S3 س6 - [101]. قله‌های اولین LinCI در گروه
XRD NMONH4 [20]. دانشگاه اولین نمونه‌ها
در فاز D) با
استفاده از رابطه ویلیامسون- هال (1) برآورد شد:

\[n \lambda = 2d \sin \theta \]

در این رابطه بین پهنا در نصف ارتقای پرتو به یکی
زاویه پراش، برای، طول موج پرتوایکس و E \\(\text{کرنش میکروسکوپی}

\[\theta \]

نمونه‌های مولی بریم به دست نیافته است. نمونه‌ها
BABr دارای یک گروه ژئ configuration (100) در گستره
MAPbI3 برای مشاهده بی‌پرتوی جایی این قله، قله‌های دارای علامت (\#) و استار (\#) به ترتیب مربوط به فازهای
PbI2 و PbBr2 مربوط به شکل 2، لایه‌های

\[n \lambda = 2d \sin \theta \]
جدول 1 مشخصات ساختاری به دست آمده از بررسی الکترونی XRD لایه‌های جادب نمودرهای S1

<table>
<thead>
<tr>
<th>نمودرهای</th>
<th>نسبت مولی (I/Br)</th>
<th>اندزه بلوک (nm)</th>
<th>رشته‌شناسی</th>
<th>کربن (Å)</th>
<th>پارامترهای شبکه (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>1.0</td>
<td>69.40</td>
<td>چارگوشه</td>
<td>1.34</td>
<td>a=b=c=8.863, 12.654</td>
</tr>
<tr>
<td>S2</td>
<td>0.1</td>
<td>75.24</td>
<td>مکعبی</td>
<td>1.05</td>
<td>a=b=12.654, c=16.816</td>
</tr>
<tr>
<td>S3</td>
<td>0.1</td>
<td>77.88</td>
<td>مکعبی</td>
<td>1.18</td>
<td>a=b=16.816, c=24.561</td>
</tr>
<tr>
<td>S4</td>
<td>0.1</td>
<td>48.35</td>
<td>چارگوشه</td>
<td>1.07</td>
<td>a=b=24.561, c=32.349</td>
</tr>
<tr>
<td>S5</td>
<td>0.3</td>
<td>55.14</td>
<td>چارگوشه</td>
<td>1.16</td>
<td>a=b=32.349, c=41.841</td>
</tr>
<tr>
<td>S6</td>
<td>0.1</td>
<td>68.23</td>
<td>مکعبی</td>
<td>1.03</td>
<td>a=b=41.841, c=59.234</td>
</tr>
</tbody>
</table>

ساختار رشته‌ای نمودرهای S1 و S6 نشان می‌دهد که افزایش مقدار بر مولی در ترکیب، پارامتر شبکه و اندزه بلوک حجم پاته یک کاهش یافته است. کاهش پارامتر های شبکه را می‌توان به کوچک‌تر بودن شعاع نیوتن پیدا کرد. نسبت داده شده به 2.2 نسبت داده شده در نمودرهای 18 به ترتیب S1 و S6 نشان می‌دهد که در آن آن مربوط برای S1 و S6 می‌باشد. توجه ندارید. نمونه‌های S1 و S6 در حالت آبرسانی بیشترین و کمترین کربن در شبکه بلوک خود هستند. نسبت مولی (I/Br) این تصاویر از بین نمودرهای S1 و S6 در داده شده است. دیده شده که به حضور بین، داده شده در نمودرهای S1 و S6 نسبت داده شده در بنامهای S4، S3 و S2 نسبت مولی (I/Br) دانه‌ای ریزتر و خل و فر در سطح کمتر

\[
\frac{1}{d_{hkl}^2} = \left(\frac{h^2 + k^2}{a^2} \right) + \frac{l^2}{c^2} \\
\frac{1}{d_{hkl}^2} = \left(\frac{h^2 + k^2 + l^2}{a^2} \right) \\
V = a^2 \times c \\
V = a^3
\]

روابط (3) و (5) برای محاسبه پارامترهای شبکه ساختار چارگوشه و روابط (2) و (6) برای محاسبه پارامترهای شبکه ساختار مکعبی استفاده می‌شوند. پارامترهای ساختاری

\[y = 0.00116x + 0.00303 \]
شده و ساختار نا‌تنها با ترکیبی از دانه‌های استر کروی و مکعبی تشکیل می‌دهند. نمونه‌های با نسبت‌های مولی 1:2 به (S4) و (S1) به ترتیب دارای برگ‌تکای گرانش-ترین و کوچکترین ترین اندازه دانه هستند. حالت‌هایی با شکل‌های 4 ال‌ف و ت دیده می‌شود با افزایش بریم به پدیده 10 نسبت مولی (S1 نمونه) 10 افزایش بریم به پدیده 10 نسبت مولی (S1 نمونه) افزایش داده گردید. سپس با افزایش بریم (S4) اندازه دانه‌ها و کمی افزایش یافته است و شاهد در هم فرورفتگی دانه‌های تقریباً مکعبی هستیم. دانه- تنده برای نمونه S6 که تنها شامل بریم است، به طورکلی متقابلاً با نموده یورو از سایر نمونه‌ها به وحضور حفره‌های سطح

شکل 5 تصاویر SEM نشان‌دهنده از سطح نا‌تنها جاذب پروسکاتیفی اف به سطح S1. ب- نمونه S1، ب- نمونه S2، ب- نمونه S3، ب- نمونه S4، و ب- نمونه S5. S- نمونه S6.
شکل ۶ تصاویر AFM به ترتیب از راست به چپ نیمرخ (۱)، دومدی (۲) و سه‌بعدی (۳) ثبت‌شده از سطح لایه‌های جادب پروسکاینی: الف- S۱، ب- S۲، ج- S۶، ت- S۳، ت- S۴.
برای بررسی ویژگی‌های نوری لایه‌ها، طیف جذب (A(4)) آن‌ها نسبت به طول موج فوتون فرودی آن‌ها گزارش گردید. نتایج این اندام‌گیری در شکل 7 افت شانس داده‌شده است مقایسه طیف‌های جذب نشان می‌دهد که نمونه بدون بر می‌گذارد (CH3NH3PbI3) دارای بیشترین میزان جذب و نمونه بدون (CH3NH3PbBr3) S6 بی‌پیشین میزان جذب هستند. هنگامی که شکل 7 دیده می‌شود با افزایش نسبی مقدار بر می‌گذارد، نمونه S1 به حدود 790 nm از طول موج حدود 540 nm در نمونه S6 جابجایی یافت (بی‌پیشین آی). بر اساس گزارش آن‌ها نمونه S6 تست رابطه با نمونه Lایه‌های از این طریق استفاده شده افت و رسیدن اثر (Hv)2 برای افزایش طبیعی مقدار با (V(∞)) سولو خورشیدی گردد [29, 30].

![شکل 7]({% image_url %})

جدول 2 داده‌های برآورد از بررسی تصاویر AFM لایه‌های جاده بر پراکنای مشاهده‌گر پارامترهای فوتونیکی سولو خورشیدی برایه این لایه‌های جاده.

<table>
<thead>
<tr>
<th>نمونه (I:Br)</th>
<th>Eg (eV)</th>
<th>RMS (nm)</th>
<th>PCE (%)</th>
<th>Jsc (mA/cm²)</th>
<th>V(∞) (V)</th>
<th>FF (%)</th>
<th>افت بالا در سلول در مدت 120 روز (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 (1/1)</td>
<td>1.552</td>
<td>2.99</td>
<td>1145</td>
<td>2.57</td>
<td>0.92</td>
<td>44</td>
<td>86</td>
</tr>
<tr>
<td>S2 (1/3)</td>
<td>1.572</td>
<td>2.94</td>
<td>1201</td>
<td>1.852</td>
<td>0.94</td>
<td>58</td>
<td>36</td>
</tr>
<tr>
<td>S3 (1/3)</td>
<td>1.558</td>
<td>2.82</td>
<td>1198</td>
<td>1.99</td>
<td>0.99</td>
<td>64</td>
<td>50</td>
</tr>
<tr>
<td>S4 (1/1)</td>
<td>1.722</td>
<td>1.94</td>
<td>912</td>
<td>1.39</td>
<td>1.03</td>
<td>66</td>
<td>37</td>
</tr>
<tr>
<td>S5 (1/3)</td>
<td>1.410</td>
<td>1.96</td>
<td>745</td>
<td>1.19</td>
<td>1.11</td>
<td>69</td>
<td>27</td>
</tr>
<tr>
<td>S6 (1/3)</td>
<td>2.790</td>
<td>1.450</td>
<td>1132</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
به‌دست آمده نشان می‌دهد که بیشترین V_{IN} (11) و کمترین V_{SC} (8) مقدار به ترتیب مربوط به سلول‌های ساخته‌شده با لاک‌های جابجایی پروسکاتی (با نسبت مولی بر می‌شود 10:1) mA/cm2 (S5 و S1) و (لاک بدون بر می‌شود) است. همچنین بیشترین I_{SC} به ترتیب (191 mA/cm2) مقدار مربوط به سلول‌های ساخته‌شده با نمونه‌های S1 و S5 است.

عمل پوشانده (5) سلول‌ها با استفاده از رابطه زیر به دست آمد [33]

$$PCE(\%) = \frac{V_{max} \times I_{max} \times P_{in}}{S} \times 100$$

(9)

تانسور پروسکاتی سلول‌های خورشیدی ساخته‌شده با استفاده از لاک‌های جابجایی سنتز شده (نمونه‌های S1 و S5) نمودارهای مشخصه جدیدی را درآورد. آنها از افزایش G و V_{OC} در نشان داده‌اند. پارامترهای فتوولتایی به نمونه‌های گردیده [33].

در این رابطه به ترتیب بیشینه ولتاژ و چگالی جریان V_{OC} و I_{SC} جابجایی اندازه‌گیری کرده. سلول است. مقادیر FF به دست آمده در جدول 2 گزارش شده است. با توجه به نتایج به دست آمده، بیشترین (69) و کمترین (58) مقدار مربوط به سلول‌های ساخته‌شده با لاک‌های جابجایی پروسکاتی (دارای بیشترین حالت مولی FF) بر می‌شود و S2 و S1 (با کمترین حالت مولی بر می‌شود) است. علت افزایش در سلول‌های دارای بر می‌شود ممکن است به بیشینه بهتر سطح لاک جابجایی پروسکاتی و چگالی خل می‌شود و فرج و زیری سطح که موجب کاهش مسیرهای اتصال به دست آمده و حفره می‌شود مربوط باشد [34] بارده نتایج افزایش هسته و پارامترهای الکترون و حفره کمتری توپولوژی و چگالی جریان اتصال کو نات (CuO) کاهش می‌یابد. مقایسه نتایج S5، S4، S3، S2، S1

![نگاره](https://s3.amazonaws.com/fmmedia/ijcm/2019/I14-0251.png)

شکل 8: مقایسه نتایج S5، S4، S3، S2، S1
که در این رابطه مقدار اکذیر سلول‌های خورشیدی با استفاده از لایه‌های...

با پایداری سلول شده‌اند. همچنین افزایش مقدار برم در لایه جذب بروساکیتیتا نسبت مولی برم به یک منجر به افزایش پایداری سلول خورشیدی در مدت آزاد شده است. مقدار افت بازده سلول‌ها اندازه‌گیری شده پس از ۱۵۲ روز از ساعت سلول‌ها در جدول شماره ۲ گزارش شده است. بررسی مقایسه نتایج بدست‌آمده نشان می‌دهد که بیشترین بارده (۱۳۴۰٪) مربوط به سلول ساخته شده با لایه S1 (نمونه بدون برم) و کمترین مقدار آن (۶۴٪) نیز مربوط به سلول ساخته شده با لایه S5 (نمونه دارای بیشترین فلت) مولی برم) است. کاهش افزایش قابل توجه چگالی جریان در سلول خورشیدی در برابر سلول بروساکیت با بیشترین کمترین مقدار برم منجر به کاهش افزایش بارده نتیجه اثرات شده است.

در شکل ۹ نمودارهای تغییرات زمانی در مدت ۱۵۲ روز پس از تولید سلول‌ها نشان داده شده FF است. چنان‌که در شکل ۹ الف دیده می‌شود بیشترین (۸۹٪) و کمترین (۵۶٪) مقدار افت بارده به ترتیب مربوط به سلول‌های دربترانه‌های یا بهبود برم به سلول‌های S4 (بدون برم) و S1 (بدون برم) بهبود با برم به (۱۱٪) است. نمودارهای پایداری S4 نشان می‌دهد که به‌طورکلی ایجاد آن را با برم افزایش

![گرایش پایداری سلول‌های خورشیدی با استفاده از لایه‌های...](image-url)
توضیح علی‌صدری سلول خورشیدی ساخته‌شده با استفاده از ایزوئی‌های جاذب الایدید با برم می‌تواند به دلیل مختلف‌الگوی اثرات که در سایه‌ی سلول خورشیدی دربردارنده‌ی
لاهی‌ها جاذب پروسکایت آلیایید با برم ممکن است به
ساختار مراکز و یک‌کانوکس‌ل ایزوئی‌ها جاذب در حضور برم
برم مربوط باشد. با توجه به نتایج پرداخته از بررسی تصویر
حضور و افزایش مقدار برم در لاهاوی
AFM و SEM
بروسکایتی می‌تواند طراحی سطحی مانع این‌ها ایجاد
حرارت و لاهاوی جاذب سلول خورشیدی را افزایش داده
(P3HT)
باشد. بارداری بیشتر فلز مشترک لاهاوی بروسکایت با لاهاوی
متنوع لاهاوی جاذب پروسکایتی با جو پرتابان آن
P3HT
شد و در نتیجه این عامل نیز ممکن است به افزایش پایداری
سلول همک‌مکب ایجاد شود.
از سوی دیگر، افزایش پایداری سلول‌های خورشیدی ممکن
است در اثر جا‌نشانی نواحی کوچکتر Br به جای ایزوئی‌های
برگزیت I در ساختار بی‌پروسکایت آلیایید با برم و در نتیجه
کاهش نسبت شکست و گذار از فاز خاک‌رسی به فاز مفعمی
برخی‌هایی باشد. [20] همچنین برهم کنش فوق‌البین
Br و CH3NH3+ نیز می‌تواند منجر به افزایش پایداری لاهاوی
بروسکایتی شده باشد [24].

برداشت
در این پژوهش، نخست لاهاوی جاذب پروسکایتی خالص
CH3NH3PbI3 نشان داد که با حضور Bm، لاهاوی
AFM تصویر Br در این پژوهش استفاده می‌کرد. CH3NH3PbI3
پی‌پرسکایتی و با برم نسبت‌های مولی برم به

CH$_3$NH$_3$PbI$_{3-x}$Br$_x$ film for efficient perovskite solar cells exceeding 18\%", Scientific Reports 7 (2017) 44603.

