بررسی ویژگی‌های ساختاری و ایتیکی نانوذرات دی‌کسید تیتانیوم آلایید با کروم تپیه

شده به روش سل زل در دمای‌های بازیخت متفاوت

محبوبه یگانه ۱، فاطمه بهدیعیان باگسیاهی ۲، ملیحه موسوی ۳

فهرست نوشتارهای مرتبط:
1- گروه فیزیک، دانشکده علوم، دانشگاه کرمان، کرمان، ایران
2- گروه فیزیک، دانشکده علوم، دانشگاه اصفهان، اصفهان، ایران

چکیده: گسترش پاسخ نوری فتوکاتالیزورهای برای دی‌کسید تیتانیوم به ناحیه‌هایی باهبر به‌علاوه در تهیه کردن قطعات نیازهای اکسپانسیون‌های جدید طیف الکترون‌مکانیکی نوری ویژه ساختاری است. در این پژوهش به استفاده از نتایج گزارشی جدید نوری بررسی شده است. تیتانیوم به روش سل زل در دمای‌های مختلف به ناحیه معینی در قطعات نیازهای اکسپانسیون‌های جدید نوری که در طی بازیخت به ناحیه می‌تواند به دست آید با همراه مصرف می‌تواند به عنوان گزینه مناسب برای کاربردهای فتوکاتالیزوری پیشنهاد شود.

واژه‌های کلیدی: دی‌کسید تیتانیوم آلایید با کروم; برای پرتو X میکروسکوپ الکترونی تراکسیالی طیف سنجی بازتاب پخشی

مقدمه
نیازهای پیشرفته قطعات نوری برای دی‌کسید تیتانیوم (TiO2) به دلیل ویژگی‌های فیزیکی و شیمیایی آن در کاربردهای فتوکاتالیزوری، نورتابنی، نانوساختاری سلول‌های خورشیدی و غیره، مورد علاقه بسیاری از پژوهشگران قرار گرفته‌اند [1-2]. مشاهده رفتار مغناطیسی دی‌کسید تیتانیوم آلایید به فلزات وسطه به دلیل کوری بالاتر از دمای انتقال، پژوهشگران را به سمت بررسی‌های بهتر نظیری و آزمایش‌گاه فعالیت‌های فتوکاتالیزوری و ویژگی‌های الکترونی دی‌کسید تیتانیوم آلایید با فلزات وسطه داده است [3].

در این مقاله، بررسی‌های رفتار بیولوژیکی و مغناطیسی قطعات نوری دی‌کسید تیتانیوم آلایید با کروم با استفاده از پرتو X میکروسکوپ الکترونی تراکسیالی طیف سنجی بازتاب پخشی انجام شد.

mahboubeh.yeganeh@yahoo.co.uk

* نویسنده مسئول، تلفن: 9155573290، پست الکترونیکی:
می.‌شور، در حالتی که در بی‌پر‌شکلی، دی‌اکسید کربنونی‌آمیز نمک نیکل، [V]. نمک نیکل‌آمیز یکی از اولین آئین‌ال‌اسمه‌های شش‌نوازی که در مورد آن تحقیق شده بود، ممکن است، از این رو، اثرات ویژه‌ای بر روی یک محیط خارج‌شونده و سطح تراکم‌سازی را ایجاد نماید. در این حالت می‌توان گفت که دی‌اکسید کربنونی‌آمیز نمک نیکل، [V] نمک نیکل‌آمیز حاوی یک محیط خارج‌شونده و سطح تراکم‌سازی را ایجاد نماید.

در این بی‌پر‌شکلی، دی‌اکسید کربنونی‌آمیز نمک نیکل، [V] نمک نیکل‌آمیز حاوی یک محیط خارج‌شونده و سطح تراکم‌سازی را ایجاد نماید.

در این بی‌پر‌شکلی، دی‌اکسید کربنونی‌آمیز نمک نیکل، [V] نمک نیکل‌آمیز حاوی یک محیط خارج‌شونده و سطح تراکم‌سازی را ایجاد نماید.
شکل 1: چرخه‌های پترو-کتالیترن با تغییر در انرژی حرارتی از T=400 ^\circ C تا T=800 ^\circ C.

جدول 1: ویژگی‌های ساختاری و فازی نانوذرات دی-اکسید تتانیوم آلی‌اپیده به 1 و 5/5% کروم و با زیست شده در دماهای 400 تا 800 ^\circ C.

<table>
<thead>
<tr>
<th>نسبت مولی (Cr/Ti)%</th>
<th>دماهای پیش‌بینی (°C)</th>
<th>ساختار پیشین</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>400</td>
<td>اناتاز</td>
<td>3.782</td>
<td>3.782</td>
<td>9.082</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>روتل</td>
<td>4.525</td>
<td>4.525</td>
<td>9.525</td>
</tr>
<tr>
<td>5</td>
<td>800</td>
<td>اناتاز</td>
<td>3.799</td>
<td>3.799</td>
<td>9.676</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>روتل</td>
<td>4.589</td>
<td>4.589</td>
<td>9.643</td>
</tr>
<tr>
<td>5</td>
<td>800</td>
<td>روتل</td>
<td>3.533</td>
<td>3.533</td>
<td>3.988</td>
</tr>
</tbody>
</table>

[DOI: 10.29252/ijcm.27.1.221]
می‌گیرد [۹]. در این روش پهن‌شگی‌های حاصل از محدودیت اندوزه و نقص بلوری مستقل از هم در نظر گرفته می‌شوند، بنابراین داریم:

\[\beta_{hkli} = \frac{K\lambda}{D \cos \theta} + 4 \alpha \tan \theta \]

(۲)

در این معادله که با نام معادله تغییر شکل یکنوخت (UDM) شناخته می‌شود، کرنش به صورت یکنوخت فرض شده است. اندازه بلوک از عرض از مبدأ برای خطي مقادیر \(4\sin \theta \) و کرنش به محاسبه \(\beta_{hkli} \cos \theta \) شب خت برای شده، به دست می‌آید. شکل ۲ نمودارهای برای پهن‌شگی‌های با ناحیه درجه ۱ و ۵ درجه درذرات از دمای ۴۰۰ تا ۸۰۰ درجه سانتی‌گراد و تابع اندوزه می‌شود.

\[D = \frac{K\lambda}{\beta_{hkli} \cos \theta} \]

(۱)

محدودیت در اندوزه بلوک ناپذیریت سبب داده می‌شود، در حالتی که در روشن و بلیمیون-حالت برای محاسبه اندازه بلوک‌ها، در اثر پهن‌شگی‌های بالا به دنبال محدود کردن اندازه ذرات و هم پهن‌شگی‌های بالا نقض یابند مورد توجه قرار می‌گیرد.

شکل ۲ نمودارهای برای پهن‌شگی‌های با بلوک ناپذیریت سبب داده می‌شود، در حالت پهن‌شگی‌های ۱/۳ کروم در دمای ۴۰۰،۴۲۰،۴۴۰،۴۵۰،۴۶۰ درجه سانتی‌گراد و تابع اندوزه می‌شود.

\[\beta_{hkli} = 0.00434 + 8.64188 \times 10^{-7} \times x \]

(الف)

\[\alpha = 0.00289 \times x \]

(ب)
جدول 2 اندازه ذرات و کرنش شبکه نانوذرات Cr2TiO4

(Cr/Ti)%	نسبت مولی پخشی	ضایعات درجه حرارت	مدل مش غلظت	مدل ویلیامسون-هال	کرنش (nm)	اندازه بلورک (nm)	اندازه بلورک (nm)
1	1	200	1245	1176	0.239	0.223	0.213
1	1	600	1968	3212	0.212	0.200	0.198
1	1	800	2782	3593	0.284	0.273	0.271
5	1	400	1248	789	0.228	0.207	0.204
5	1	600	1962	1141	0.213	0.202	0.200
5	1	800	2549	3327	0.284	0.273	0.271

از تبدیل ریاضی داده‌های پخشی و مقایسه داده‌های تبدیل یافته برای طول موج‌های متفاوت انجام شد. یکی از مفیدترین تبدیل‌های داده‌های پخشی توسط نظریه کولکتان-اینارنت واقعیت گرفته است. این نظریه هوغامی قابل استفاده است که ابعاد ذرات مورد بررسی قابل مقایسه یا کوچک‌تر از طول موج نور فرودی باشند. در این حالت از پخشی دیگر، مشاهده ذرات پخشی و پخشی (عینی پراکندگی) مجزا نیستند.

در این نظریه فرض می‌شود که یک لایه از مخلوط ذرات با ضخامت در جهت عمود بر سطح مورد نظر گیره شده. مورد نظر در کار گیره، شار پخشی رو به پایین نمی‌توسد بنابراین با یک مقادیر توسط پراکندگی، کاهش می‌یابد که مقادیر k و s خراب کند و پراکندگی به کاهش می‌رسد. در یک محاسبه k و s با باین می‌شود. در حالت جدید نمونه‌ی به‌نتایج ضخیم، ضخامت هیچ تأثیری در مقدار R ندارد. در این حالت معادله کولکتان-اینارنت در طول موج s به صورت زیر در می‌آید:

$$k = \frac{1 - R_s}{2R_0}$$

که با زبان تنقل معادله بررسی نسبت به یک ماده مرجع R_0 (است و $F(R_0)$ تابع کولکتان-اینارنت

$$F(R_0) = \frac{R_{sample}}{R_{spectron}}$$

تغییر یافته نامیده می‌شود.

شیب منفی در شکل‌های 2 ام و 3 ام نیاز به سنتسه دست‌کمی نشان می‌دهد که با افزایش دمای بازیخ و غله فرآیند در نمونه‌ها، کرنش شبکه افراش پایه و مثبت می‌شود که نشان می‌دهد که سنتسه زیر کرنش کشی قرار گرفته است [10, 11].

تغییر تنش در دما نیز آن را تأیید می‌کند. یک‌پیش‌نگار ساخت نانوکرد که با تکنیک XRD نمونه‌ها (شکل 1) رونمایی در فرآیند باشند [12] که نتایج نشان می‌دهد که در سئول نمای در نمونه‌های الکتریکی که این افراش در دمای بازیخ 295°C، تا حدود 80% بوده است [13]. از طرف دیگر با توجه به نتایج در x، در نمونه‌های با تغییر می‌توان به طریق تغییر را در شدت افراش در دمای بالا افزایش دهنده در نیاز به تغییر دارد.

با افزایش ناخالصی کروم اندازه ذرات گسترش می‌یابد. این موضوع نشان می‌دهد که سنتسه بینک شدت ذرات طی بازیخ در این دما با افراش غلظت کروم کاهش می‌یابد. از آن‌جا که در این نمونه‌ها احتمالاً در نمای سطحی، گالب است، در نتیجه حضور کروم اولری از آزاد سطحی و دری ای نیروی بیشتر برای تبدیل آنزیم کربن در دمای بالا کاهش می‌یابد [14].

بررسی ویژگی‌های اپتیکی نانوذرات در کسید تیتانیوم آلیاژه‌ه به کروم با استفاده از تحلیل طیف بازیخ پخشی برآورد.
شکل 2 نماده‌های TEM با 1/2 کروم در براکت شده در الف (ب) 400 °C و با 5/2 کروم در دمای براکت

داده شده است. این قله در طیف‌سنجی Cr2O3 نیز دیده شده است.

طبیع جذبی نمونه‌های مورد بررسی در این پژوهش از نظر افزایش جذب در ناحیه مرمی مشابه طیف جذبی گزارش شده توسط دیگران [18,17] برای نانوذرات اکسید قارچ به آلی‌پریکک که به روش سیل-زد تهیه شده است، با ان تفاوت‌که در این پژوهش، دمای پژوهش متغیر و بالاتر برای سندرم گزارش‌های کار گرفته شده و نتایج افزایش جذب و افزایش گسترش‌های جذب در مقایسه با پژوهش‌های یاد شده مشهور است.

تابع کولولکان دی اکسید کروم آلی‌پریک که به کروم در گلف‌هایی 1 و 2/5 و در دمای براکت 400 °C با استفاده از طیف‌سنجی پیشکی در شکل 4 نمایش داده شده است. تأثیر کروم بر طیف جذبی دی اکسید کروم به صورت افزایش جذب دیده می‌شود. در واقع در کنار قله جذب nm مربوط به 2 TiO2 تا حدود 0، 160 nm جذب از 2000 نیز به طور محسوسی افزایش می‌یابد.

بررسی نتایج طیف جذبی نانوذرات TiO2 آنانالیز آلی‌پریک که به روش جدایگری سندرم شدهاند [7,16,15]. نشان می‌دهد که قله جذاگانهای در ناحیه 0، 600 nm تا 800 دیده می‌شود که به گذار $A_g \rightarrow T_{2g}$ d-d یون‌های کروم نسبت
شکل 4. نتایج کوکلکا - مانک در اکسید تیتانیوم آلپایده با 1 و 5٪ کروم در دماهای بازیخت الف) 400 و ب) 800 ⁰C

دیده شده است که هنگامی که کروم درون شیشه دی اکسید تیتانیوم جای می‌گیرد، جذب در ناحیه ۴۰۰ nm تا ۶۰۰ nm به طور تقریبی افزایش می‌یابد. از آنجا که در این پژوهش، نانوذرات آلپایده به کروم در دماهای بازیخت بالا سنتز
نمودار ناوند ۱/۱۰۰ برابر می‌تواند نیز هم‌پوشانی نیوترون‌های کروم از سطح بدن درون حجم نانوذرات شود. علاوه بر این، هنگامی که اندام نحوه نانوذرات کاهش می‌یابد، نسبت سطح به حجم افزایش می‌یابد که منجر به افزایش نیوترون‌های کروم در حالت زنده می‌شود. با بررسی طیف‌های XRD و تصاویر TEM دریافت که نمونه‌های طیف‌برداری شده در دمای ۸۰۰ درجه سانتی‌گراد در صورت قرار گرفتن TiO۲ اشکال‌ها با صورت آلیش بر ویژگی‌های اینکیک در نتانی‌ها با استفاده از نمازدار تاک، از نرخ تغییرات (F(R)hv)^2 \text{ سمت} \text{ به دست می‌آید که در شکل ۵ نشان داده شده است. نمودار تاک بیشتر نتایج نشان دهنده قدر می‌گیرد که در آن شیب‌های افزایش گذاره‌ای دیگر نیز وجود دارد. هدایت احتمالاً به دلیل مرزهای سیاسی تغییرات نژادی انجام شده، البته افزایش گاز اینکیک در

شکل ۵: نمودار تاک برای محاسبه گاز انتزاعی نیوترون‌های TiO۲ از الاینده باد کروم.
[8] Khorrami G., Mousavi M., "Effect of gelatin on structural properties of piezoelectric (K\textsubscript{0.5}Na\textsubscript{0.5}) NbO\textsubscript{3} nanopowders synthesized by a modified sol-gel route in gelatin media", Iranian Journal of Crystallography and Mineralogy, 25 (2017) 647-654.
[16] Loan R., Long R., "Optical properties of anatase and rutile TiO\textsubscript{2}:Cr3+ powders", VNU...

