Volume 27, Issue 1 (4-2019)                   www.ijcm.ir 2019, 27(1): 179-190 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hashemi M, Davoudian D A, Shabanian B N, Azizi H. Petrographical study of paragneisses in Northeast of Golpayegan: migmatization and evidences of retrograde metamorphism. www.ijcm.ir. 2019; 27 (1) :179-190
URL: http://ijcm.ir/article-1-1234-en.html
Abstract:   (176 Views)
The studied area, as Ykeh-Chah unit, is a part of Golpayegan magmatic and metamorphic complex in Sanandaj-Sirjan structural zone. The unit consists of mylonitized and high- grade metamorphic rocks, including biotite-gneiss, biotite-garnet-gneiss, amphibolite and orthogneiss. The biotite gneiss and the biotite garnet gneiss have partly been migmatitized. They show various structures such as stromatic, ptygmatic, folded, ophthalmitic, net like, and patchy. Leucosomes are as in-situ and vein leucosomes. According to the leucosome type and some preserved igneous microstructures in leucosome, partial melting of metasedimentary units have been the dominant process in the generation of the migmatites. The most reliable microstructural criterion, as the evidences of partial melting in the migmatites, are simple twinning in K-feldspar, corroded biotite, plagioclase with zoning, melt presence, symplectic replacement aggregates in leucosome and mesosome, muscovitization some of the minerals. Due to the presence of leucosome and migmatization process, the rocks have been undergone the prograde metamorphism at the increasing temperatures until the partial melting, and finally experienced retrograde metamorphism during cooling. Evidence of the retrograde metamorphism in the rocks include the emplacement of rutile by titanite and ilmenite, symplectite texture (quartz + muscovite), myrmekite texture (quartz + plagioclase), atoll garnet, alteration of garnet to quartz and chlorite.
Full-Text [PDF 127 kb]   (81 Downloads)    
Type of Study: Research | Subject: Special
Received: 2019/03/16 | Accepted: 2019/03/16 | Published: 2019/03/16

1. [1] Allen T. T., "Migmatite Systematics and Geology Carter Dome - Wild River Region, White Mountains, New Hampshire", Ph. D. Thesis, Dartmouth College (1992).
2. [2] Sawyer E. W., "Identifying parts of Migmatites in the Field. In Sawyer E.W and Brown M (eds) Working with Migmatites", Mineralogical Association of Canada, Short Course; 38 (2008) 29–36.
3. [3] Johannes W., "The significance of experimental studies for the formation of migmatites. In Migmatites", Springer US (1985) 36-85. [DOI:10.1007/978-1-4613-2347-1_2]
4. [4] Ashworth J.R., " Migmatites", Blackie,Glasgow (1985) 302pp. [DOI:10.1007/978-1-4613-2347-1]
5. [5] McLellan E.L., "Contrasting textures in metamorphic and anatectic migmatites: an example from the Scottish Caledonides", Journal of Metamorphic Geology 1.3 (1983), pp.241-262. [DOI:10.1111/j.1525-1314.1983.tb00274.x]
6. [6] Hyndman D.W., "Petrology of igneous and metamorphic rocks", McGraw-Hill (1985).
7. [7] Barbey P., Macaudiere J., Nzenti J.P., "High-pressure dehydration melting of metapelites: evidence from the migmatites of Yaounde (Cameroon) ". Journal of Petrology 31(1990) 401-427. [DOI:10.1093/petrology/31.2.401]
8. [8] Neogi S., Dasgupta S., Fukuoka M., 1998. "High P–T polymetamorphism, dehydration melting, and generation of migmatites and granites in the Higher Himalayan Crystalline Complex, Sikkim, India", Journal of Petrology 39.1(1998) 61-99. [DOI:10.1093/petroj/39.1.61]
9. [9] Sawyer E. W., "Criteria for the recognition of partial melting", Physics and Chemistry of the Earth 24 (1999), 269-279. [DOI:10.1016/S1464-1895(99)00029-0]
10. [10] Sheikholeslami M, R., Zamani-Pedram M., Haftlang R., Hosseini H., "Geological map of Mahalat area. Scale 1:100,000", Geological Survey of Iran (2008b).
11. [11] Mohajjel M., Fergusson C.L., Sahandi M.R., "Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan zone, western Iran". Journal of Asian Earth Sciences, 21.4 (2003) 397-412. [DOI:10.1016/S1367-9120(02)00035-4]
12. [12] Davoudian A.R., Genser J., Neubauer F., Shabanian N., " 40Ar/39Ar mineral ages of eclogites from North Shahrekord in the Sanandaj-Sirjan zone, Iran: Implications for the tectonic evolution of Zagros orogeny", Gondwana Research 37 (2016). 216- 240. [DOI:10.1016/j.gr.2016.05.013]
13. [13] Thiele O., Alavi M., Assefi R., Hushmand-Zadeh A., Seyed-Emami K., Zahedi M., "Explanatory text of the Golpaygan Quadrangle Map, 1:250000" Geol. Survey of Iran (1968).
14. [14] Hassanzadeh J., Stockli D.F., Horton B.K., Axen G.J., Stockli L.D., Grove M., Schmitt A.K., Walker J.D., "U-Pb zircon geochronology of late Neoproterozoic–Early Cambrian granitoids in Iran: implications for paleogeography, magmatism, and exhumation history of Iranian basement, Tectonophysics 451 (2008) 71-96. [DOI:10.1016/j.tecto.2007.11.062]
15. [15] Rashidnejad -Omran N., Emami M. H., Sabzehei M., Rastad E., Bellon H., Pique, A., "Lithostragraphie et histoire Paléozoïque à Paléocène des complexes métamorphiques de la Région de Muteh, zone de Sanandaj-Sirjan (Iran Méridional) ", Comptes rendus Géoscience 334 (2002) 1185-1191. [DOI:10.1016/S1631-0713(02)01861-8]
16. [16] Moritz R., Ghazban F., Singer B. S., "Eocene gold ore formation at Muteh, Sanandaj–Sirjan tectonic zone, western Iran: a result of late stage extension and exhumation of metamorphic basement rocks within the Zagros orogen", Economic Geology 101.8 (2006) 1497–1524. [DOI:10.2113/gsecongeo.101.8.1497]
17. [17] Moosavi E., Mohajjell M., Rashidnejad-Omran N., "Systematic changes in orientation of linear mylonitic fabrics: An example of strain partitioning during transpressional deformation in North Golpaygan, Sanandaj-Sirjan zone, Iran"Journal of Asian Earth Sciences 94 (2014) 55-67. [DOI:10.1016/j.jseaes.2014.07.003]
18. [18] Zeh A., Okrusch M., Bratz H., "Post peak re-equilibartion in a mafic gneiss from the KTB Main hole: implication for the metamorphic evolution", Geological Rundschau 86 (1997) 222- 234. [DOI:10.1007/PL00014656]
19. [19] Passchier C. W., and Trouw R. A. J., "Micro tectonics", Springer, Berlin, Heidelberg, New York 2005.
20. [20] da Silva M. A., "Petrogenesis of a variscan migmatite complex (NW Portugal): petrography, geochemistry and fluids", (Doctoral dissertation, Universidade do Portugal (2014)).
21. [21] Mukherjee S., Mulchrone K. F., "Ductile shear zones: from micro-to macro-scales", John Wiley & Sons (2015). [DOI:10.1002/9781118844953]
22. [22] Vernon R. H., "A Practical Guide to Rock Microstructure",Cambridge University Press.UK (2004). [DOI:10.1017/CBO9780511807206]
23. [23] Hibelot T., "Relationships between metamorphism and deformation in the Nordmannvik nappe, south of Lyngseidet: a focus on high grade relics", Master's Thesis in Geology (2013) GEO-3900.
24. [24] Ashworth J.R., McLellan E.L., "Textures In Migmatites" Springer, Boston, MA(1985) 180-203. [DOI:10.1007/978-1-4613-2347-1_5]
25. [25] Anenburg M., Katzir Y., "Muscovite dehydration melting in Si-rich metapelites: microstructural evidence from trondhjemitic migmatites, Roded, Southern Israel", Mineralogy and Petrology, 108(1), pp.137-152. [DOI:10.1007/s00710-013-0289-z]
26. [26] Vernon R.H., "Microstructures of melt-bearing regional metamorphic rocks", Geological Society of America Memoirs 207 (2011) 1-11. [DOI:10.1130/2011.1207(01)]
27. [27] Obata M., Yoshimura V., Nagakawa K., Odawara S., Osanai Y., "Crustal anatexis and melt migrations in the Higo metamorphic terrance, west-central Kyushu, Kumamoto, Japan", Lithos, 32 (1994) 135-147. [DOI:10.1016/0024-4937(94)90026-4]
28. [28] Whitney D.L., Irving A.J., "Origin of K-poor leucosomes in a metasedimentary migmatite complex by ultrametamorphism, synmetamorphic magmatism and subsolidus processes", Lithos 32 (1994) 173-192. [DOI:10.1016/0024-4937(94)90038-8]
29. [29] Mohajjel M., "Golpaygan QuadrangleMap of Iran No 1:1000000", Geological Survey of Iran (1992).
30. [30] Enami M., Liou J. G., Mattinson C. G., "Epidote minerals in high P/T metamorphic terranes: Subduction zone and high-to ultrahigh-pressure metamorphism", Reviews in mineralogy and geochemistry 56.1 (2004) 347-398. [DOI:10.2138/gsrmg.56.1.347]
31. [31] Peterman E.M., Grove M., "Growth conditions of symplectic muscovite+ quartz: Implications for quantifying retrograde metamorphism in exhumed magmatic arcs", Geology 38 (2010) 1071-1074. [DOI:10.1130/G31449.1]
32. [32] Barker A.J., "Introduction to metamorphic textures (second edition)", Cheltenham, UK, Stanley Thornes (1999) 264 p.
33. [33] Ashworth J.R., Chambers A.D., "Symplectic reaction in olivine and the controls of intergrowth spacing in symplectites". Journal of Petrology 41(2000) 285-304. [DOI:10.1093/petrology/41.2.285]
34. [34] Brown M., "Retrograde processes in migmatites and granulites revisited", Journal of Metamorphic Geology, 20(2002) 25-40. [DOI:10.1046/j.0263-4929.2001.00362.x]
35. [35] Guernina S., Sawyer E.W., "Large-scale melt-depletion in granulite terranes: an example from the Archean Ashuanipi Subprovince of Quebec. Journal of Metamorphic Geology 21.2 (2003) 181-201. [DOI:10.1046/j.1525-1314.2003.00436.x]
36. [36] Caggianelli A., Del Moro A., Paglionico A., Piccarreta G., Pinarelli L., Rottura A., "Lower crustal granite genesis connected with chemical fractionation in the continental crust of Calabria (Southern Italy)", European Journal of Mineralogy, 3(1991) 159-180. [DOI:10.1127/ejm/3/1/0159]
37. [37] Nyman N. W., Pattison D. R. M., Ghent E. D., "Melt exraction during formation of K- feldspar + sillimanite migmatites, west of Revelstoke. British Columbia". Journal of Petrology 36.2 (1995) 351-372. [DOI:10.1093/petrology/36.2.351]
38. [38] Waters, D.J., "The significance of prograde and retrograde quartz-bearing intergrowth microstructures in partially melted granulite-facies rocks", Lithos 56 (2001) 97-110. [DOI:10.1016/S0024-4937(00)00061-X]
39. [39] Smellie J. A. T., "Formation of atoll garnet from the aureole of the Ardara Plateau Co. Donegal, Ireland", Mineralogical magazine (1974) 878-888. [DOI:10.1180/minmag.1974.039.308.07]
40. [40] Casco A.G., Roldán R. L ., "Disequilibrium induced by fast decompression in St-Bt-Grt-Ky-Sil- And metapelites from the Betic Belt, Southern Spain", Journal of Petrology 37 (1996) 1207-1239. [DOI:10.1093/petrology/37.5.1207]
41. [41] Menegon L., Pennacchioni G., Stünitz H., "Nucleation and growth of myrmekite during ductile shear deformation in metagranites", Journal of Metamorphic Geology 24 (2006) 553-568 . [DOI:10.1111/j.1525-1314.2006.00654.x]
42. [42] Vernon R. H., "Questions about myrmekite in deformed rocks", Journal of Structural Geology 13 (1991b) 979–85. [DOI:10.1016/0191-8141(91)90050-S]
43. [43] Altenberger U., Wilhelm S., "Ductile deformation of K-feldspar in dry eclogite facies shear zones in the Bergen Arcs, Norway. Tectonophysics 320 (2000)107–121. [DOI:10.1016/S0040-1951(00)00048-2]
44. [44] Hibbard M. J., "Petrography to petrogenesis", Prentice Hall (1985), New Jersey.

Add your comments about this article : Your username or Email:

© 2019 All Rights Reserved | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb