Volume 27, Issue 1 (4-2019)                   www.ijcm.ir 2019, 27(1): 167-178 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mazhari S A. The different composition of trace elements in clinopyroxenes of alkaline and calc- alkaline magmas: a case study of Piranshahr pluton, NW of Iran. www.ijcm.ir. 2019; 27 (1) :167-178
URL: http://ijcm.ir/article-1-1233-en.html
Abstract:   (263 Views)
The clinopyroxene composition of two types of alkaline and calc-alkaline gabbros at Piranshahr pluton was investigated in this study. The major oxides variations are similar in all clinopyroxenes of two types of gabbros and are classified as diopside- augite; but trace element compositions are very different in these two groups. The clinopyroxenes of alkaline gabbros are rich in high field strength elements (HFSE) and rare earth elements (ΣREE= 34- 64 ppm) and have high 87Sr/86Sr ratios. In other side, the clinopyroxenes in calc-alkaline samples have high Sr, Rb and Ba and elevated 87Sr/86Sr; but are depleted in HFSE and rare earth elements (ΣREE= 9.4- 21.6 ppm). Calculation of equilibrated melts from trace elements composition of clinopyroxenes using partition coefficients between clinopyroxene and the basaltic melt show that they are formed by different sources which is consistent with whole-rock geochemical data of gabbros.
Full-Text [PDF 119 kb]   (111 Downloads)    
Type of Study: Research | Subject: Special
Received: 2019/03/16 | Accepted: 2019/03/16 | Published: 2019/03/16

References
1. [1] Hou T., Zhang Z.C., Keiding J.K., Veksler I.V., "Petrogenesis of the ultrapotassicFanshan intrusion in the North China Craton: implications for lithospheric mantle metasomatism and the origin of apatite ores', Journal of Petrology 5 (2015) 893–918. [DOI:10.1093/petrology/egv021]
2. [2] Liang Y., Deng J., Liu X., Wang Q., Qin C., Li Y., Yang Y., Zhou M., Jiang J., "Major and trace element, and Sr isotope compositions of clinopyroxene phenocrysts in mafic dykes on Jiaodong Peninsula, southeastern North China Craton: Insights into magma mixing and source metasomatism", Lithos 302–303 (2018) 480–495. [DOI:10.1016/j.lithos.2018.01.031]
3. [3] Ovung T.N., Ray J., Ghosh B., Koeberl C., Topa D., Paul M., "Clinopyroxene composition of volcanics from the Manipur Ophiolite, Northeastern India: implications to geodynamic setting", International Journal of Earth Sciences (2017) DOI 10.1007/s00531-017-1529-y. [DOI:10.1007/s00531-017-1529-y]
4. [4] Leterrier J., Maury RC., Thonon P., Girard D., Marchal M., "Clinopyroxene composition as a method of identification of the magmatic affinities of Paleo-volcanic series", Earth and Planetary Science Letters 59 (1982) 139–154. [DOI:10.1016/0012-821X(82)90122-4]
5. [5] Jacamon F., Larsen R.B., "Trace element evolution of quartz in the charnockitic Kleivan granite, SW-Norway: The Ge/Ti ratio of quartz as an index of igneous differentiation", Lithos 107 (2009) 281–291. [DOI:10.1016/j.lithos.2008.10.016]
6. [6] Mazhari S.A., Ghalamghash J., Mazloumi Bajestani A.R., Hajalilou B., "Application of trace elements composition in quartz for Naqadeh granitoids petrogenesis interpretation, NW Sanandaj-Sirjan Zone", Iranian Journal of Crystallography and Mineralogy 20 (2012) 505- 514.
7. [7] Nisbet E.G., Pearce J.A., "Clinopyroxene composition in mafic lavas from different tectonic settings", Contribution to Mineralogy and Petrology 63 (1977) 149–160. [DOI:10.1007/BF00398776]
8. [8] Jankovics M.É., Taracsák Z., Dobosi G., Embey-Isztin A., Batki A., Harangi S., Hauzenberger C.A., "Clinopyroxene with diverse origins in alkaline basalts from the western Pannonian Basin: implications from trace element characteristics", Lithos 262 (2016) 120–134. [DOI:10.1016/j.lithos.2016.06.030]
9. [9] Ronick R., Renno A.D., "Clinopyroxene from basaltic rocks of the Erzgebirge-Krusne hory Mts.-implications for modelling the magmatic plumbing system", Journal of Geosciences 55 (2010) 231–249.
10. [10] Mazhari S. A., Bea F., Amini S., et al., "The Eocene Bimodal Piranshahr Massif of the Sanandaj-Sirjan Zone, NW Iran: A Marker of the End of the Collision in the Zagros Orogen", Journal of the Geological Society, 166 (2009) 53–69. [DOI:10.1144/0016-76492008-022]
11. [11] Bea F., Mazhari A., Montero P., Amini S., Ghalamghash J., "Zircon dating, Sr and Nd isotopes, and element geochemistry of the Khalifan pluton, NW Iran: evidence for Variscan magmatism in a supposedly Cimmerian superterrane", Journal of Asian Earth Sciences 40 (2011) 172–179. [DOI:10.1016/j.jseaes.2010.08.005]
12. [12] Mazhari S.A., Amini S., Ghalamghash J., Bea F., "Petrogenesis of granitic unit of naqadeh complex, Sanandaj-Sirjan zone, NW Iran", Arabian Journal of Geosciences 4 (2011) 1207–1214. [DOI:10.1007/s12517-010-0142-1]
13. [13] Yajam S., Montero P., Scarrow J.H., Ghalamghash J., Razavai S.M.H., Bea F., "The spatial and compositional evolution of the Late Jurassic Ghorveh-Dehgolan plutons of the Zagros Orogen, Iran: SHRIMP zircon U-Pb and Sr and Nd isotope evidence", Geologica Acta 13 (2015) 25-43.
14. [14] Azizi H., Hadad S., Stern R.J., Asahara Y., "Age, geochemistry, and emplacement of the ~40-Ma Baneh granite–appinite complex in a transpressional tectonic regime, Zagros suture zone, northwest Iran", International Geology Review 4 (2018) 2- 29 doi.org/10.1080/00206814.2017.1422394 [DOI:10.1080/00206814.2017.1422394]
15. [15] Alavi M., "Tectonic of the Zagros orogenic belt of Iran: new data and interpretations", Tectonophysics 229 (1994) 211–238. [DOI:10.1016/0040-1951(94)90030-2]
16. [16] Mazhari S.A., "Petrogenesis of Naqadeh- Sardasht plutons", PhD Thesis, Tarbiat Moallem University (2008) 320p.
17. [17] Morimoto N., "Nomenclature of pyroxenes", Canadian Mineralogist 27 (1989) 143-156.
18. [18] Sun S.S., McDonough W.F., "Chemical and isotopic systematics of the oceanic basalts: implications for mantle composition and processes: In: Saunder, A.D., Norry, M.J. (Eds), Magmatism in the Oceanic Basalts", Geological Society of London. London 42 (1989) 313-345. [DOI:10.1144/GSL.SP.1989.042.01.19]
19. [19] Litvinovsky B.A., Tsygankov A.A., Jahn B.M., Katzir Y., Be'eri-Shlevin Y., "Origin and evolution of overlapping calc-alkaline and alkaline magmas: The Late Palaeozoic post-collisional igneous province of Transbaikalia (Russia)", Lithos 3-4 (2011) 845- 874. [DOI:10.1016/j.lithos.2011.04.007]
20. [20] Andrić N., Vogt K., Matenco L., Cvetković C., et al, "Variability of orogenic magmatism during Mediterranean-style continental collisions: A numerical modelling approach", Gondwana Research 56 (2018) 119-134. [DOI:10.1016/j.gr.2017.12.007]
21. [21] Molina J.F., Scarrow J.H., Montero P.G., Bea F., "High-Ti amphibole as a petrogenetic indicator of magma chemistry: evidence for mildly alkalic-hybrid melts during evolution of Variscan basic–ultrabasic magmatism of Central Iberia", Contribution to Mineralogy and Petrology 158 (2009) 69-98. [DOI:10.1007/s00410-008-0371-4]
22. [22] Driouch Y., Béziat D., Grégoire M., Laguenini F. et al, "Clinopyroxene trace element compositions of cumulate mafic rocks and basalts from the Hercynian Moroccan Central Meseta: Petrogenetic implications", Journal of African Earth Sciences 56 (2010) 97–106. [DOI:10.1016/j.jafrearsci.2009.05.007]
23. [23] Kim N.K., Choi S.H., "Petrogenesis of Late Triassic ultramafic rocks from the Andong Ultramafic Complex, South Korea", Lithos 264 (2016) 28–40. [DOI:10.1016/j.lithos.2016.07.042]
24. [24] Tatsumi Y., Eggins S.M., "Subduction Zone Magmatism: Frontiers in Earth Sciences. Blackwell Science", Cambridge, Mass, USA (1995) 211 p.
25. [25] Dalton H.B., Scott J.M., Liu J., Waight T.E., et al, "Diffusion-zoned pyroxenes in an isotopically heterogeneous mantle lithosphere beneath the Dunedin Volcanic Group, New Zealand, and their implications for intraplate alkaline magma sources", Lithosphere 9 (2017) 463-475. [DOI:10.1130/L631.1]
26. [26] Arzamastsev A.A., Arzamastsev L.V., Bea F., Montero P., "Trace Elements in Minerals as Indicators of the Evolution of Alkaline Ultrabasic Dike Series: LA-ICP-MS Data for the Magmatic Provinces of Northeastern Fennoscandia and Germany", Petrology 17 (2009) 46-72. [DOI:10.1134/S0869591109010032]

Add your comments about this article : Your username or Email:
CAPTCHA

© 2019 All Rights Reserved | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb