بررسی شواهد ساختاری و دمافشارسنجی سنگهای دگرگونی شمال اسدآباد
(بهنگ سنندجی - سیرجان)

بهنگ حسینی،* احمد رضا حمیدی

دانشگاه پایتخت‌گرده و همکارهای علمی زمین‌شناسی، تهران

چکیده: نقش الکمال‌گذاری در شمال اسدآباد همان از مناطقی است که واحدهای سنگی پالژوسنیک پهنه سنندجی - سیرجان در آن رخ‌نمی‌دهد. این تاثیر بالای مجموعه تنوع الکمال‌گذاری در زیربخش‌ها و سطح‌های روسی است. توده‌های نفوذی محلی و مافیک با سن زوراسیک پسین-کرتاسه پیشین در مرکز این نقش الکمال‌گذاری باعث تشکیل جای گرفتن در سطح توده‌های نفوذی می‌شوند. در همه این تقسیم‌بندی‌ها و مناطق الکمال‌گذاری در سطح توده‌های نفوذی باکتریالی به روش بیونیت-گارتند و فشارسنجی به روش پلاژوکلار-فشارسنجی و همچنین روش دمافشارسنجی و امپایوژن-سکوکوئس واقع‌گزاری و کراتوز-پلاژوکلار-کراتوز-توده‌های نفوذی در خوشه‌های مشخصی در مختصات ناحیه کلان‌مغناطیسی و منطقه‌ای نمایان می‌نمایند. در این کروماتیک الکمال‌گذاری در سطح توده‌های نفوذی روسی باکتریالی به روش بیونیت-گارتند و یک ناحیه خصوصی در منطقه کلان‌مغناطیسی ناحیه گزارش نمی‌شود.

واژه‌های کلیدی: دمافشارسنجی، فشارسنجی، دگرگونی ناحیه‌ای، ناحیه الکمال‌گذاری، پهنه سنندجی - سیرجان

*بهنگ حسینی - دانشگاه پایتخت‌گرده و همکارهای علمی زمین‌شناسی، تهران
زمین شناسی منطقه
منطقه مورد بررسی با عرض جغرافیایی ۴۵°۴۰ تا ۶۰°۰۰ شمال و طول جغرافیایی ۴۸°۰۸ تا ۴۹°۳۰ شرقی در شمال اسد آباد و شمال شرق سنجر و در بخش شمال غربی پهنه سنجر-سیرجان واقع است (شکل ۱). این منطقه در نقشه ۱۱۰۰۰۰ توسرکان و ۳۸۰۰۰۰۰ قرار دارد.
ساختار گلی این ناحیه به صورت یک تاق شکل با روند شمال شرقی-جنوب غربی و بر خلاف روند گلی پهنه سنجر-سیرجان است. سنگ‌های این تاق‌شکل را می‌توان در ۳ گروه مجرا چای داد (۳). گروه یک از جمعه‌های دارای سنگ‌های توده‌ای نفوذ کردن، و خوشه نیز مانند از فرآیندهای زمین‌ساختی منطقه شده‌اند (شکل ۲). برگارگی تازه‌ترین در آنها به وجود آمده که برمه‌مری دگرگونی ایستا اثر گفتگوی است.
و احتمالاً سنگ‌های سنگ‌پنجه‌ای از آنها که رخداده‌اند دگرگونی و درگیر شکل‌گیری متعدد پهنه سنجر-سیرجان را در خود تبدیل کرده‌اند، از اهمیت و پژوهش بررسی رخداده‌اند. گذشته این پدیده برخورد هستند. احتمالاً سنگ‌های وابسته به پالتوژنیک بیشتر توسط احتمال مربوط به میرزوزنیک پوشیده شده‌اند. با این حال، در جنوب ناحیه پهنه سنجر-سیرجان، این واحدهای سنگ‌های سنگ‌پنجه‌ای پنج‌تا هزار سوی زمین‌ساختی ظاهر شده‌اند. تاق‌شکل الافلاکی در قسمت شمال غربی پهنه سنجر-سیرجان یکی از بهترین مناطق است که این واحدهای سنگ‌پنجه‌ای پالتوژنیک در آن رخخور ندارند. در این پدیده فازه‌ای درگیرگاه و همچنین شرایط احتمالاً درگرگونی ناحیه‌ای اعمال شده بر سنگ‌های این منطقه بررسی می‌شود.

شکل ۱: چاپ‌گاه منطقه مورد بررسی در نقشه ایران.
سنگ‌های مجموعه آلمافلاک، قبیل‌ترین واحدهای قابل مشاهده در منطقه را تشکیل می‌دهند. این مجموعه به طور عمده شامل آتش‌نشان‌ها و آثار منسوب به هرمزگان می‌باشد و بازی دگرگونی شده است که در تنابن با واحدهای مزموم، مرمرهای آهکی سیلیکاتی و منتبلیت (رسی دگرگونه) قرار می‌گرفته اند. کانی‌زایی‌ای آهن در این مجموعه باعث تشکیل معدن آهن باعیضه شده است که از آن استخراج می‌شود. در بخش‌های بالایی، ریستایی پر از کوارتز به همراه کانی‌پتی و سنگ‌های این مجموعه تشکیل می‌شود. این ریستایی نمونه‌های مختلفی از منطقه را تشکیل می‌دهد.

مجموعه چنارشیک در بخش‌های خارجی ناحیه گچ‌بیابان‌های Alamflakes و به ویژه در بخش‌های جنوب غربی آن گسترش دارد و سنی جوانتر نسبت به مجموعه المافلاک در این مجموعه دگرگونی به پیش‌تر نسبت به سن‌های دیگر می‌باشد.

درگونی مجموعه دگرگونی به پیش‌تر نسبت به سن‌های دیگر می‌باشد و...
جکوگنی توزیع آنها در سنگ‌ها و همچنین تغییرات آنها در
بخش‌های مختلف منطقه بررسی شد و در برخی مناطق اقیانوس
به روش‌های مختلف می‌توانستیم شرایط
الکترونیکی دما و فشار در گروه‌های انیا مورد شرایط
منطقه و گروه‌های میکرو‌شیب‌های جدار خاص بررسی
شدند. برای این منظور از سنگ‌های که در فاصله دو تا
سه ساله از نوعی عدم قرار گرفته‌اند، نمونه‌برداری شد. بر اساس
بررسی‌های سنتگنگاری، دقیقاً در این منطقه کانی‌ها در
تعادل با یکدیگر که طی در گروه‌های انیا منطقه تشکیل
شدند استفاده گردید. در منطقه آنها، کانی‌های آمیانس،
پتُوزکاراژ، گروپ و مسکوپت و در این منطقه
کانی‌های گروپ، پتُوزکاراژ و پتُوزکاراژ نمی‌شود
شیمیایی شدن. شیمی عناصر اصلی این کانی‌ها به روش
برای درآمدهای الکترونیکی شرایط
میانگین کشور ایران با شرایط
و فشار در گروه‌های انیا مورد بررسی از
برنامه‌های GPT و ptmafic
اسفنجه است. این
شکل را به صورت می‌پذیرد. بر اساس سن‌سنجی
Rb-Sr
این سنگ‌های دارای سن ۱۴۴ میلیون سال و
وبرنده
به زوراکسک پسین هستند. در
سنگ‌های دگرگونه منطقه نفوذ کرده‌اند که احتمالاً واکنش به
این نفوذ هستند. (۲) منابع‌شناسی - منابع‌شناسی
نفوذ نفوذی اصلی و بزرگ در منطقه مورد بررسی را شامل
می‌شوند که با رنگ‌پوشی در بخش مرکزی نواحی آملاقل
قرار دارد (شکل ۲) و نا‌حید دستگوی‌های زیمین
ساختگی و دگرگشایی شده است. این نفوذی عامل اصلی
بالام‌دگی کلی این منطقه است. برگوارگی اصلی موجود در
سنگ‌های دگرگونه منطقه به صورت مشخص از این نفوذی
نفوذی متأثر شده و پیرامون نفوذی چرخیده است. بر این
اساس، سن جایگزینی این نفوذی نفوذی را با یک جوان‌تر از سن
عمل نیروهای زمینی‌ساختگی عامل ایجاد برگوارگی اصلی منطقه
دانست. از طرف دیگر، وجود ذرات‌های بالا زنگ‌های
منابع‌شناسی اشاره به جوان‌تر بودن این نفوذی
از سن نفوذی باید دارد (۲). بر اساس سن‌سنجی اوآرینام
سرب، نمونه‌های اصلی و برای این نفوذی
این نفوذی به دست آمده است (۱۰).[1]

روش انجام پژوهش
طبق زنجیر مرحله بی‌پایان صحرا، ساختگی‌های اصلی

شکل ۳ تصویری از این منطقه آملاقل و نفوذی نفوذی مناسب‌سازی گیت‌اکترژسینتیت در مرکز نواحی.
چنین‌ها اصلی پرپژاژ چنین‌ها تا چنین‌های با بال‌هایی تقریباً موازایه هستند که به طور گسترده‌تر در سنجگاه‌های منطقه نوسعه و انبی و چن‌خوردن برج‌گزاری S1 شهادت شکل‌های 4 الف و ب. شاهدین این چن‌خوردنگاه‌ها در مرزها و میکانیسم‌های نمایش دهنده تغییرات این سنجگاه‌ها بالای نفوذ به اشکال سخت و رودخانه گنبیدی شده منطقه است. این نفوذ در طول سنتور دارای سه درجه می‌باشد. بنابراین ساختاری این ناحیه را در کنار خود دارد، از طرف دیگر، با توجه به این که شاهدین مربوط به دَرگَرَنگ مجاوری ناشی از چن‌گزاری این اصلاحات نیز متان از زمین ساخته، برخی تا چنین‌ها اصلاحات این گونه بررسی پس از چن‌گزاری نفوذ شده، همچنان فعال بوده است. بنابراین، برخی از چن‌خوردنگاه‌ها S2 تا چنین‌های زمینی باعث چن‌خوردنگاه‌ها چنین‌ها که بدون ایجاد احتمالی در آن جهت گزارش درآشADOR کالی‌هایی قدیمی شده است.

ساختار اصلاحات چن‌خوردنگاه‌ها S2. در مقیاس میکروسکوپی، این چن‌خوردنگاه‌ها اغلب با چهار پایه
سنجشگری متایازیت‌ها

در نمونه دستی بازی‌های دگرگونی بازیگری سنجشگری متایازیت‌ها.

سنجش چهار نشان می‌دهد که باید با ارزیابی میکا، کسترش برگزاری مناسب به شدت بیشتر.

در این سنجش‌ها شده است. با افزایش میکا، کسترش برگزاری مناسب به شدت بیشتر.

بنابراین با ارزیابی میکا، کسترش برگزاری مناسب به شدت بیشتر.

copy.txt
شکل 5 تصادف میکروسکوپی از سنگ‌های منابزتی مورد بررسی (در نور XPL).

شکل 6 تصاویر میکروسکوپی از سنگ‌های منابزتی مورد بررسی (در نور XPL).

شیمی کانی‌ها
منابزت‌ها
گارنت: بلورهای گارنت از گروه گارنت‌های غنی از آلیاژ‌های FeO در گستره ۲۱.۲۶ تا ۴۶.۲۰ درصد یافت گردید. نسبت FeO در این کانی‌ها حدود ۰.۱ است (جدول ۱). در این FeMg کانی‌ها، مقدار آلیاژ‌های ژرف ۵۶.۸۷ تا ۶۲.۳۷ درصد پیوست در گستره ۹۰.۶۴ تا ۱۰۵.۲۴ میلی‌متر در گستره.
درصد تغییر می‌کند. این کانی‌ها از گروه آمفیبولی یا کلسیمی هستند و با توجه به شکل 7، ت، این کانی‌های آمفیبول در جایگاه فرمول‌ریزی‌کننده می‌گیرند و با توجه به مقادیر بسیار بالای آلومینیم می‌توانند این آلومینیوم‌زدایی را در آلومینیوم‌ریزی فرمول‌ریزی‌کننده دانست.

متاپلیت‌ها

گارنت: کانی‌های گارنت ترکیب با نسبت بنتواختی دارند و از Fe:Mg می‌تواند شکل 7 و 7.4 ت، و نسبت در گارنت‌های موجود در متاپلیت‌ها در مقایسه با گارنت‌های موجود در متاپلیت‌ها بیشتر و در گستره 14/2 تا 14/5 (جدول 1) در این کانی مقدار می‌گیرند. مقادیر گروپ؛ در گستره 7/5 تا 7/7، مقادیر پیوسته در گستره 7/2 تا 7/5 (جدول 1) در این کانی مقدار می‌گیرند. مقادیر اساسی در گستره 7/3 تا 7/5 و نسبت کانی‌های آلومینین در گستره 7/1 تا 7/17 درصد است. میانگین ترکیب این بلوره‌ها به صورت Alm75.5 Pyp5.5 Sps14.2 Grs4.4 است و تفاوت ترکیب چندانی بین مرکز و لبه بلوره دیده نمی‌شود.

جدول 1. عناصر اصلی بلوره‌های گارنت و مقدار کاتیونی و فرمول محاسبه شده با استاندارد 12 آمکسین

<table>
<thead>
<tr>
<th>ماده</th>
<th>Fe</th>
<th>Al</th>
<th>Mg</th>
<th>Mn</th>
<th>Ca</th>
<th>Na</th>
<th>K</th>
<th>SiO2</th>
<th>Al2O3</th>
<th>Fe2O3</th>
<th>MgO</th>
<th>MnO</th>
<th>Si</th>
<th>Al2O3</th>
<th>Cr</th>
<th>Fe2O3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alm</td>
<td>0</td>
</tr>
<tr>
<td>Pyp</td>
<td>0</td>
</tr>
<tr>
<td>Sps</td>
<td>0</td>
</tr>
<tr>
<td>Grs</td>
<td>0</td>
</tr>
<tr>
<td>Gross</td>
<td>0</td>
</tr>
<tr>
<td>Pyrope</td>
<td>0</td>
</tr>
<tr>
<td>Spess</td>
<td>0</td>
</tr>
<tr>
<td>Xca</td>
<td>0</td>
</tr>
<tr>
<td>Xfe</td>
<td>0</td>
</tr>
<tr>
<td>XMg</td>
<td>0</td>
</tr>
<tr>
<td>Fe_Mg</td>
<td>0</td>
</tr>
</tbody>
</table>
شکل 7. جاگاه بلورهای گازنت در نمونه‌های آلماندن-گروسولار-پیسروپ-اسپارتن [141]. ب) جاگاه کانی‌های بلژیولیت در نمونه‌های آلونت-آلپت-ارتروز [132]. ت) جاگاه ترکیب شیمیایی بلورهای مبکی در نمونه‌های سفید در نمونه‌های سیلیز [134]. ت) بلورهای مفید در نمونه‌های بیزیت در نمونه‌های گریز [131].
جدول ۲ عناصر اصلی، مقادیر کاتیونی و فرمول محاسبه شده برای بلورهای پلازموکلاژ بر اساس 8 اتم اکسیژن.

<table>
<thead>
<tr>
<th>عناصر</th>
<th>نماد</th>
<th>مقدار (میلی‌گرمی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeO</td>
<td>Fe</td>
<td>1.43</td>
</tr>
<tr>
<td>SiO₂</td>
<td>Si</td>
<td>1.52</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>Al</td>
<td>0.99</td>
</tr>
<tr>
<td>CaO</td>
<td>Ca</td>
<td>0.57</td>
</tr>
<tr>
<td>K₂O</td>
<td>K</td>
<td>0.40</td>
</tr>
<tr>
<td>Na₂O</td>
<td>Na</td>
<td>0.05</td>
</tr>
<tr>
<td>TiO₂</td>
<td>Ti</td>
<td>0.01</td>
</tr>
<tr>
<td>MgO</td>
<td>Mg</td>
<td>0.01</td>
</tr>
<tr>
<td>MgO</td>
<td>Mg</td>
<td>0.01</td>
</tr>
<tr>
<td>K₂O</td>
<td>K</td>
<td>0.40</td>
</tr>
<tr>
<td>Na₂O</td>
<td>Na</td>
<td>0.05</td>
</tr>
<tr>
<td>مجموع</td>
<td></td>
<td>0.98</td>
</tr>
</tbody>
</table>

جدول ۳ عناصر اصلی بلورهای مسکوکلاژ و مقادیر کاتیونی محاسبه شده بر اساس ۲۲ اتم اکسیژن.

<table>
<thead>
<tr>
<th>عناصر</th>
<th>نماد</th>
<th>مقدار (میلی‌گرمی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeO</td>
<td>Fe</td>
<td>1.43</td>
</tr>
<tr>
<td>SiO₂</td>
<td>Si</td>
<td>1.52</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>Al</td>
<td>0.99</td>
</tr>
<tr>
<td>CaO</td>
<td>Ca</td>
<td>0.57</td>
</tr>
<tr>
<td>K₂O</td>
<td>K</td>
<td>0.40</td>
</tr>
<tr>
<td>Na₂O</td>
<td>Na</td>
<td>0.05</td>
</tr>
<tr>
<td>TiO₂</td>
<td>Ti</td>
<td>0.01</td>
</tr>
<tr>
<td>MgO</td>
<td>Mg</td>
<td>0.01</td>
</tr>
<tr>
<td>MgO</td>
<td>Mg</td>
<td>0.01</td>
</tr>
<tr>
<td>K₂O</td>
<td>K</td>
<td>0.40</td>
</tr>
<tr>
<td>Na₂O</td>
<td>Na</td>
<td>0.05</td>
</tr>
<tr>
<td>مجموع</td>
<td></td>
<td>0.98</td>
</tr>
</tbody>
</table>
پلاژیوکلاز: پلاژیوکلاز در این نمونه‌ها دارای ترکیب تقیبی \(\text{AI}^{VI} \text{SiO}_2 \) در گستره 1.67 ± 0.17 است.

| شرایط دما و فشار درگونی | می‌توان برای بیشینه شرایط دما و فشار حاکم بر پهن‌های درگونی روش‌های ترمودینامیکی استفاده کرد. در همه‌گونه روش‌های مختلف برای محاسبه شرایط دما، فشار سنتی‌های درگونی موجود شده است. این روش‌ها بر اساس شیمی کاتیوی است که در تعادل با هم طی اعمال درگونی بر سنتی‌های دگرگونی شده‌اند. این روش‌ها بر اساس مفاهیم در بررسی شرایط دما-فشار سنتی‌های درگونی انتخاب کامیابی است که به مه در تعادل هستند. بر اساس بررسی‌های سنتی-نگاری، دقت شکل کانه‌های هم‌پیوست و در تعادل با هم طی درگونی ناحیه‌ای منطقه تشکیل شده است. استفاده از روش‌های مناسب جهت بررسی شرایط دما و فشار درگونی انتخاب شده است.

<table>
<thead>
<tr>
<th>جدول 4</th>
<th>عناصر اصلی بلورهای آمپیولو و مقدار کاتونی می‌باشد شده بر اساس 24 ترم اکسیزن.</th>
</tr>
</thead>
<tbody>
<tr>
<td>نمونه</td>
<td>B22</td>
</tr>
<tr>
<td>سیلیس</td>
<td>38/86</td>
</tr>
<tr>
<td>سیلیس</td>
<td>21/10</td>
</tr>
<tr>
<td>آلیمین</td>
<td>11/23</td>
</tr>
<tr>
<td>فیش</td>
<td>18/1</td>
</tr>
<tr>
<td>مگنز</td>
<td>36/5</td>
</tr>
<tr>
<td>کلس</td>
<td>94/9</td>
</tr>
<tr>
<td>مین</td>
<td>9/03</td>
</tr>
<tr>
<td>تیان</td>
<td>24/1</td>
</tr>
<tr>
<td>نیتر</td>
<td>1/3</td>
</tr>
<tr>
<td>سیلیس</td>
<td>1/52</td>
</tr>
<tr>
<td>آهن</td>
<td>1/5</td>
</tr>
<tr>
<td>میکسان</td>
<td>0/4</td>
</tr>
<tr>
<td>کلس</td>
<td>0/19</td>
</tr>
<tr>
<td>مجموع</td>
<td>15/52</td>
</tr>
</tbody>
</table>

کاتون: پلاژیوکلاز در این نمونه‌ها دارای ترکیب تقیبی \(\text{AI}^{VI} \text{SiO}_2 \) در گستره 1.67 ± 0.17 است.
<table>
<thead>
<tr>
<th>عنصر</th>
<th>B11</th>
<th>B11</th>
<th>B11</th>
<th>B18</th>
<th>B18</th>
</tr>
</thead>
<tbody>
<tr>
<td>نمونه</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>SiO₂</td>
<td>34.60</td>
<td>35.30</td>
<td>34.67</td>
<td>35.01</td>
<td>34.77</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>2.44</td>
<td>2.43</td>
<td>2.48</td>
<td>2.46</td>
<td>2.47</td>
</tr>
<tr>
<td>CaO</td>
<td>1.14</td>
<td>1.18</td>
<td>1.13</td>
<td>1.13</td>
<td>1.16</td>
</tr>
<tr>
<td>FeO</td>
<td>31.33</td>
<td>30.66</td>
<td>30.91</td>
<td>21.20</td>
<td>21.26</td>
</tr>
<tr>
<td>MgO</td>
<td>7.53</td>
<td>7.95</td>
<td>7.93</td>
<td>7.97</td>
<td>7.94</td>
</tr>
<tr>
<td>K₂O</td>
<td>9.70</td>
<td>9.74</td>
<td>9.42</td>
<td>9.39</td>
<td>9.43</td>
</tr>
<tr>
<td>MnO</td>
<td>0.11</td>
<td>0.19</td>
<td>0.14</td>
<td>0.13</td>
<td>0.12</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.18</td>
<td>1.64</td>
<td>1.60</td>
<td>1.49</td>
<td>1.48</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.17</td>
<td>0.15</td>
<td>0.17</td>
<td>0.19</td>
<td>0.18</td>
</tr>
<tr>
<td>مجموع</td>
<td>96.40</td>
<td>95.30</td>
<td>94.54</td>
<td>96.19</td>
<td>96.26</td>
</tr>
<tr>
<td>Si</td>
<td>55.55</td>
<td>55.55</td>
<td>55.55</td>
<td>55.55</td>
<td>55.35</td>
</tr>
<tr>
<td>Al⁴⁺</td>
<td>4.45</td>
<td>4.45</td>
<td>4.45</td>
<td>4.45</td>
<td>4.45</td>
</tr>
<tr>
<td>Al³⁺</td>
<td>4.11</td>
<td>4.34</td>
<td>4.20</td>
<td>4.20</td>
<td>4.20</td>
</tr>
<tr>
<td>Ti</td>
<td>0.21</td>
<td>0.20</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>3.85</td>
<td>3.17</td>
<td>3.49</td>
<td>3.49</td>
<td>3.49</td>
</tr>
<tr>
<td>Mn</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td>Mg</td>
<td>1.84</td>
<td>1.84</td>
<td>1.84</td>
<td>1.84</td>
<td>1.84</td>
</tr>
<tr>
<td>Ca</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>Na</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
</tr>
<tr>
<td>K</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
</tr>
<tr>
<td>Fe Fe₂Mg</td>
<td>0.59</td>
<td>0.59</td>
<td>0.59</td>
<td>0.59</td>
<td>0.59</td>
</tr>
</tbody>
</table>

منابع‌ها

تشکیل گستره تورل‌های غاری با ترکیب غی 2.5 آلمند از اینگونه سنگ‌ها با سنتی‌ماند ماکمیا بازی‌بانکر از است که درجه دگرگویی دست کم 10 تخته‌های آمیوبولیت به رفته است. همچنین ترکیب تورل‌های آمیوبولیت که از نوع اولیه با مقداز بالای انت و الومینیوم هستند نیز در تالید این درجه‌ی دگرگویی است. با بررسی مجموعه کاته‌های در تعالیل با هم در این سنگ‌ها از روش دماسنجی آمیوبولیت، پلاژیوکلاز جهت بررسی شرایط دما دگرگویی و از روش فشارسنجی آمیوبولیت، پلاژیوکلاز-گارنت-کوارتز برای تعیین فشار دگرگویی استفاده شد.

دماسنجی پلاژیوکلاز-آمیوبولیت یک روش مناسب برای برای سنگ‌های مناسب‌تری مورد بررسی نتیجه می‌شود.
جدول 6 نتایج دما و فشار در سنگهای متنازليتي.

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Temperature T°C (1)</th>
<th>Pressure Kbar (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grt</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Amph</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Pl</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Grt</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Amph</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Pl</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Grt</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Amph</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Pl</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Average</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

مورد بررسی می‌توان پیشنهاد داد. این نوع فشارسنگی بر اساس واسنگی ارائه شده در مرجع [17] در جدول ۶ ارائه شده است. این نوع فشار سنگهای متنازليتي مورد بررسی نتیجه‌برد.

منابع‌ها
دماسلک نابلانگر - بیوتون می‌تواند تریب نوع دماسلک برای سنگهای متنازليتي است. در این واسنگی معرفی می‌شود. برای خلاصه کردن سنگهای دماسلک در دسترس دریافت می‌شود. در این نوع فشارسنگی دماسلکی تریب نوع دماسلک این نوع فشارسنگی دماسلکی تریب نوع دماسلک این نوع فشارسنگی دماسلکی تریب نوع دماسلک این نوع فشارسنگی دماسلکی تریب نوع دماسلک

\[\text{Grt} + \text{Fe-Act} = \text{Grs} + \text{Alm} + \text{Fe-Ts} + \text{Qtz} \]

(3) روابط دماسلکی مخلوطی پیشنهاد می‌شود.

\[\text{An} + \text{Ab} + \text{Fe-Act} = \text{Grs} + \text{Alm} + \text{Fe-Pr} + \text{Qtz} \]

(4) روابط دماسلکی مخلوطی پیشنهاد می‌شود.

\[\text{An} + \text{Fe-Act} = \text{Grs} + \text{Alm} + \text{Fe-Ts} + \text{Qtz} \]

(5) روابط دماسلکی مخلوطی پیشنهاد می‌شود.

\[\text{An} + \text{Tr} + \text{Fe-Act} = \text{Grs} + \text{Ppr} + \text{Pr} + \text{Qtz} \]

(6) روابط دماسلکی مخلوطی پیشنهاد می‌شود.
جدول 7 تناوب دما و فشار در سنگ‌های متالیتی

<table>
<thead>
<tr>
<th>معدن</th>
<th>طیف دما Kbar</th>
<th>ضرایب فشار °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grt-Bt</td>
<td>470</td>
<td>475</td>
</tr>
<tr>
<td>Grt-Mus</td>
<td>465</td>
<td>471</td>
</tr>
<tr>
<td>Grt-Plg-Bt-Mus-Qz</td>
<td>470</td>
<td>471</td>
</tr>
<tr>
<td>Grt-Plg-Mus-Qz</td>
<td>470</td>
<td>471</td>
</tr>
</tbody>
</table>

Pyrope + Grossular + Muscovite + Quartz = Anortite + Mg-Celadonite (1)
Almandine + Grossular + Muscovite + Quartz = Anortite + Fe-Celadonite (1)

در اینجا با توجه به ترکیب بلورهای گیت در سنگ‌های مورد بررسی که از انواع غنی از آهن هستند، از رابطه واکنش (1) استفاده شده که بر اساس آن فشار و دما در سنگ‌های متالیتی در 18 تا 28 کیلوبار محاسبه شده (جدول 7).

برای یافتن فشار براساس شواهد صحرا، بررسی ساختارهای رابطه و محاسبات دما-فشار دگرگونی تحلیل زیر را می‌توان برای منطقه مورد بررسی پیشنهاد داد:

1- بیشتر تولید آنشفخشی اسیدی ناپذیر باید در همراه با سنگ‌های رسوبی بینکار رخ داده‌های آنشفخشی که در بالا ذکر شده است.

2- برگزاری سی ی سی در مهلک از دگرگونی ناحیه ایجاد شده است. بررسی شیمی‌های محاسبات داماسی-

فشارسنجی بانگر با است که درجه دگرگونی ناحیه‌های منطقه

تا خواسته‌های می‌پیش رفته است (شکل 8). سنگ‌های

منطقه‌ای مجموعه مtereالیسنگهای در دمای مجموعه رسوبی دگرگون

شده‌چناری در سر رفت. شرایط دما و فشار به‌اتری را

نشان می‌دهند.

از داماسی گیت-مسکوئیت به اساس تبادل آهن-

منیزیم بین دو این کلی است نیز می‌توان برای تعبیه دمای

دگرگونی سنگ‌های متالیتی استفاده کرد. اساس این داماسی

رابطه تعریف بر اساس

Pyrope + Fe-Celadonite = Almandine + Mg-

Celadonite (3)

براساس و استحکام قدره شده در مرحله 19، می‌توان

411 درجه سانتی‌گراد را برای این سنگ‌های به دست می‌آید (جدول 8). در مجموع میانگین دمای 427 درجه سانتی‌گراد بر

اساس داماسی‌های گیت-پلیت و گیت-مسکوئیت برای

سنگ‌های متالیتی مورد بررسی به دست آمد (جدول 7).

با توجه به اینکه در سنگ‌های متالیتی، مجموعه کانی‌های گیت، پلیت و مسکوئیت در فشار تیره‌سازی و از شرایط مناسب

فشار (از پهنگ گیت تا پهنگ سلیمانیت) تشکیل می‌شوند،

بنا بر این استفاده از فشارسنجی‌های گیت-پلیت-مسکوئیت:

پلاژیوکلاز-گیت-پلیت-مسکوئیت (GBMPQ)،

و همچنین فشارسنجی گیت-پلیت-مسکوئیت (GPMPQ)

برای این سنگ‌ها

پیمای مناسب است. اساس فشارسنجی گیت-پلیت-

مسکوئیت-پلاژیوکلاز-کوارتز رابطه واکنشی زیر است:

(3) Mus + Bt + Qz = Grt + Feld + H2O

با استفاده از این روش فشارسنجی، شرایط فشار دگرگونی برای

سنگ‌های مورد بررسی در کسره 24.1 کیلوبار است

(جدول 7).

فشارسنجی گیت-مسکوئیت-پلاژیوکلاز-کوارتز نیز بر

اساس یک ارتباط واکنش زیر انجام می‌شود:

شکل 8: روند درگوگونی سنگهای تاب شکل المافیا بر نمودار رخصته.