داما و فشارسنجی توده گرانتوئیدی مميز و مفهوم زمين ساخته ماگمایي آن

اسم نظری نیا، محسن مرتضوی، محسن آرونی، محمد بوستی

1-گروه زمین شناسی، دانشکده علوم، دانشگاه هرمزگان، بندرعباس
2-گروه زمین شناسی، دانشکده علوم، دانشگاه شهید بهشتی، تهران

چکیده: توده گرانتوئیدی مميز در استان کرمان قرار دارد و از نظر ساختاری به عنوان جنوبشرقی کمان ماگمایی اروپیدخت رخخمن یافته است. براساس بررسی‌های سنگ‌نامه‌ای، این توده از چهار واحدهای نسبتاً، دیرویت، گراندوریت و موتویگرایت تشکیل شده است. این سنگ‌ها بیشتر از کاتی‌های پلاژیوکالز (آندزین)، فلدسپار قلیایی (ارتوکالز)، کوارتز، امفیپول (گیکنیپرولنده)، بیوتیت و کلینوپروکسین تشکیل شده‌اند. بررسی شیمی دو کاتی پلاژیوکالز و امفیپول نشان می‌دهد که ترکیب پلاژیوکالز با An41-43 نیم‌سنگدرکار و پلاژیوکالز-هورنیت به شکل‌گیری احتمالی این سنگ‌ها به‌عنوان 1.7 کیلویولت و دمای 700 تا 800 درجه سانتی‌گراد گراد توده تقویتی است. شیمی کاتی‌های پلاژیوکالز و امفیپول یافته‌اند که این توده گرانتوئیدی احتمال قلیایی بوده و در هر 8 کیلومتری سطح زمین تشکیل شده است.

واژه‌های کلیدی: دما-فشارسنجی، شیمی کاتی، گرانتوئیدی، مميز، بهره‌ارومیه دختر، کرمان

مقدمه
روش یک‌پوزش پس از پیش‌نمونه‌سازی و انتخاب نمونه‌های مناسب، تعداد 100 مقطع نازک سنگی تهیه و ساخت که از بین آن‌ها، نمونه‌های سنگی با کمترین دگرگویی برای تهیه مقطع صافی و بررسی شیمی‌کی شکل‌ها انتخاب شد. به همین‌سانی، منظر شناخت و بررسی دقیق کاتی‌ها و مشخص نمودن ترکیب...

دوریت: دبیری ارکان‌های اصلی پلاژیکولاژ (۵۴-۴۰ درصد حجم)، فلسپسیر پتاسیم (۱۰۹ درصد حجم) و کوارتز (۱۷ درصد حجم) با یافته‌دانای تشکیل شده است. کانی‌های مافیک این سنگ‌ها هورنبلند (۳۱ درصد حجم)، پیتونیت (۶ درصد حجم) و کلینتوپورسن (۴ درصد حجم) هستند. اسفین و آیاپت از جمله کانی‌های فرعي هستند. بلوارهای پلاژیکولاژ به صورت نیمه شکلی در تخته‌های و دارای مکان جنریخت و منطقه‌بندی هستند (شکل ۱). هسته‌های پتاسیم از پلاژیکولاژ به سری‌سیت تبدیل شده است. فلسپسیر پتاسیم (أتورتول) در میان کانی‌های دیگر دیده می‌شود. مکان کارسلساد پیتونیت و نیز بافت خال خال از عوارض موجود در فلسپسیرهای پتاسیم است. پیتونیت بیشتر رنگ سبز قهوه‌ای دارد و به صورت تخته‌ای و شکل‌دار هستند.

تونالیت: تونالیت از کانی‌های پلاژیکولاژ (۴۶-۶۷ درصد حجم)، کوارتز (۱۱۸ درصد حجم)، فلسپسیر پتاسیم (۲۶ درصد حجم)، هورنبلند (۲۱ درصد حجم)، پیتونیت (۱۰۴ درصد حجم)، کلینتوپورسن (۳۱ درصد حجم) و کانی‌های فرعي کادر (حدود ۵ درصد حجم) با یافته‌دانای نیمه‌شکلی و غیرهمسان دانه (شکل ۲) شکل‌داده است. کانی‌های فرعي شامل آیاپت، آیاپت و اسفین هستند. کوارتز، پتاسیم و سنگ‌های تانه‌ای موجود در این سنگ‌ها هستند.

شکل ۲ (الف) منطقه‌بندی تونالیت در پلاژیکولاژ سنگ‌های دوریتی منطقه (ب) یافته دانای در تونالیتی‌های مرزه‌ای (ب) رخ پتاسیم شدن در سنگ‌های گراندورپورسی ناحیه‌های است. (ب) یافته‌دانای منطقه پتاسیم (التوتول)راه پتاسیم = Kfs = Hbl = Qz = Bio = کوارتز، بیونیت، هورنبلند، برگنه فیزیکی از جمله پتاسیم و گره‌های XPL شدن.
موتزورگانیته: پلاژیوکلازها (22 درصد حجمی) به صورت تخته‌ای، نیمه شکلی یا تپه‌ای هستند. بلورهای کوارتز (24 درصد حجمی) نیز با اندازه‌ای ریز تا متوسط در تنومه‌ها حضور دارند و گاه هم‌زمان با ریزه‌های را نشان می‌دهند (شکل 2 ت). بلورهای فلدسپار یا مس (۳۶ درصد حجمی) در فضای بین بلورهای دیگر رشد کردهاند و گاه میکروکارلسباد نشان می‌دهند. این‌ها اصلی آن دانه‌ای است. کاتانیهای مافیک بیشتر شامل بیوئیت و هوئرلند هستند که گاهی آثاری از کارینیت شدن در آنها دیده می‌شود. کاتانیهای فرعی موتزورگانیته‌ها اسفین، و زیرکن و کانی‌های کدر هستند.

بحث و بررسی
شیمی کاتان‌ها
بیوئیت: بر اساس مقدار کاتیونی Fe, Fe+Mg و Al میکاها به

![Diagram](https://example.com/diagram.png)

شکل 2 ردی به‌دلیل میکاها بایستی ممکن براساس ترکیب شیمیایی آنها (الف) با استفاده از تنومه‌ها و (ب) رده‌ای اتوباینگ

(ب) بیوئیت‌ها به سه گروه بیوئیت‌های اولیه (A), بیوئیت‌های ناتوپی (B) و بیوئیت‌های ناتوپی با زریل تیلوس (C) می‌باشد.
جدول 1: نتایج تجزیه رز کاک الکترونی بینه‌های توده گرانیتونیدی معمار و مفهوم زمین‌ساختی ماکمایی آن

<table>
<thead>
<tr>
<th>شماره ساخته</th>
<th>MA11</th>
<th>MA12</th>
<th>MA13</th>
<th>MA14</th>
<th>MA15</th>
<th>MA16</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>36.2</td>
<td>36.6</td>
<td>36.2</td>
<td>36.6</td>
<td>36.6</td>
<td>36.6</td>
</tr>
<tr>
<td>TiO₂</td>
<td>5.3</td>
<td>5.3</td>
<td>5.3</td>
<td>5.3</td>
<td>5.3</td>
<td>5.3</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>13.65</td>
<td>13.65</td>
<td>13.65</td>
<td>13.65</td>
<td>13.65</td>
<td>13.65</td>
</tr>
<tr>
<td>FeO</td>
<td>18.94</td>
<td>18.94</td>
<td>18.94</td>
<td>18.94</td>
<td>18.94</td>
<td>18.94</td>
</tr>
<tr>
<td>MnO</td>
<td>0.71</td>
<td>0.71</td>
<td>0.71</td>
<td>0.71</td>
<td>0.71</td>
<td>0.71</td>
</tr>
<tr>
<td>MgO</td>
<td>13.28</td>
<td>13.28</td>
<td>13.28</td>
<td>13.28</td>
<td>13.28</td>
<td>13.28</td>
</tr>
<tr>
<td>CaO</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
</tr>
<tr>
<td>مجموع</td>
<td>95.74</td>
<td>95.74</td>
<td>95.74</td>
<td>95.74</td>
<td>95.74</td>
<td>95.74</td>
</tr>
<tr>
<td>Si</td>
<td>5.49</td>
<td>5.49</td>
<td>5.49</td>
<td>5.49</td>
<td>5.49</td>
<td>5.49</td>
</tr>
<tr>
<td>Al iv</td>
<td>2.88</td>
<td>2.88</td>
<td>2.88</td>
<td>2.88</td>
<td>2.88</td>
<td>2.88</td>
</tr>
<tr>
<td>Al vi</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Ti</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Fe</td>
<td>2.29</td>
<td>2.29</td>
<td>2.29</td>
<td>2.29</td>
<td>2.29</td>
<td>2.29</td>
</tr>
<tr>
<td>Mn</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Mg</td>
<td>0.76</td>
<td>0.76</td>
<td>0.76</td>
<td>0.76</td>
<td>0.76</td>
<td>0.76</td>
</tr>
<tr>
<td>Ca</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Na</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>K</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>FeFe+Mg</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
</tr>
</tbody>
</table>

آمیفیلوی: آمیفیلویها شکل دار تا نیمه شکل دار هستند که برای
ردمیندی آنها و تنی سایر محسوبات از جمله فشار سنجی و
داساسی تجزیه شدیدن که نتایج آنها در جدول 2 وارد شده
امیفیلوی های توده گرانیتونیدی معمار و در گستره گریندگی
باید اکسیژن قرار می‌گیرد (شکل ۴ ت).

برای تجزیه شده جزو گروه آمیفیلوی‌های کلسیمی هستند و در
زیر گروه‌های ارزش‌دار و داده نمود می‌باشد. مصرف این
لامپاوی‌ها می‌تواند در اثر نیاز به مصرف این
Si
اهجی نتیجه همگونی با کلسیم ناکام‌های ساختی هستند و در
سیلس دارند. در حالی که آمیفیلویها با سیلس بیش از
۱/۶ برای فرآیند زیر خط تراکم شکل شده‌اند.
بتا رابینت با توجه به مقادیر سیلسی، نمونه‌های مورد بررسی در
گستره آمیفیلوی‌های برداشته از تولید ماکم قرار گرفته و از
انواع برآمده از فرآیند اکسیدی جنی شده‌اند (شکل ۴ پ). درصد
وزنی اکسیده‌های TiO₂ و Al₂O₃ در مکنزی‌پورولانها پایین

[DOI: 10.29252/ijcm.27.1.123]
جدول ۲ نتایج تجزیه ریز کاوا الکترونی امفتی‌های برسی شده به همراه محاسبه فرمول ساختاری بر اساس ۲۳ آم اکسیژن

<table>
<thead>
<tr>
<th>شماره سومه</th>
<th>MA1</th>
<th>MA2</th>
<th>MA3</th>
<th>MA4</th>
<th>MA5</th>
<th>MA6</th>
<th>MA7</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>47.3</td>
<td>49.7</td>
<td>48.2</td>
<td>48.4</td>
<td>48.7</td>
<td>48.6</td>
<td>48.5</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.83</td>
<td>0.85</td>
<td>0.86</td>
<td>1.27</td>
<td>1.27</td>
<td>1.55</td>
<td>1.55</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>6.12</td>
<td>5.84</td>
<td>5.13</td>
<td>5.82</td>
<td>5.17</td>
<td>6.0</td>
<td>5.76</td>
</tr>
<tr>
<td>FeO⁺</td>
<td>17.84</td>
<td>17.84</td>
<td>18.01</td>
<td>13.89</td>
<td>12.17</td>
<td>12.07</td>
<td>12.07</td>
</tr>
<tr>
<td>MgO</td>
<td>11.72</td>
<td>11.72</td>
<td>11.62</td>
<td>11.60</td>
<td>12.03</td>
<td>12.00</td>
<td>12.00</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.06</td>
<td>1.11</td>
<td>1.33</td>
<td>1.40</td>
<td>1.46</td>
<td>1.42</td>
<td>1.42</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.63</td>
<td>0.44</td>
<td>0.45</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>مجموع</td>
<td>98.90</td>
<td>98.55</td>
<td>98.29</td>
<td>98.11</td>
<td>97.93</td>
<td>98.21</td>
<td>98.21</td>
</tr>
<tr>
<td>Si</td>
<td>7.15</td>
<td>7.18</td>
<td>7.07</td>
<td>7.03</td>
<td>6.91</td>
<td>7.08</td>
<td>7.08</td>
</tr>
<tr>
<td>Ti</td>
<td>0.19</td>
<td>0.20</td>
<td>0.15</td>
<td>0.09</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>Al</td>
<td>0.34</td>
<td>0.48</td>
<td>0.49</td>
<td>0.84</td>
<td>0.92</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>Fe</td>
<td>3.24</td>
<td>3.13</td>
<td>2.30</td>
<td>1.54</td>
<td>1.71</td>
<td>1.58</td>
<td>1.58</td>
</tr>
<tr>
<td>Mn</td>
<td>0.45</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
</tr>
<tr>
<td>Mg</td>
<td>3.23</td>
<td>3.19</td>
<td>3.16</td>
<td>3.09</td>
<td>3.16</td>
<td>3.12</td>
<td>3.12</td>
</tr>
<tr>
<td>Ca</td>
<td>1.19</td>
<td>1.17</td>
<td>1.48</td>
<td>1.48</td>
<td>1.48</td>
<td>1.48</td>
<td>1.48</td>
</tr>
<tr>
<td>Na</td>
<td>0.30</td>
<td>0.29</td>
<td>0.31</td>
<td>0.32</td>
<td>0.33</td>
<td>0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>K</td>
<td>0.11</td>
<td>0.12</td>
<td>0.12</td>
<td>0.11</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>(Ca+Na)₂</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.21</td>
<td>0.22</td>
<td>0.22</td>
<td>0.30</td>
<td>0.16</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Mg,Mg+Fe²⁺</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
</tr>
</tbody>
</table>

شکل ۴ (الف) نمودار تقسیم بندی کلی امفتی‌ها (ب) گسترده ترکیبی امفتی‌های موجود در پاتولیت ممزگ بر نمودار رده بندی امفتی‌ها [۷] (ب) جداسازی امفتی‌های برایه از فرایند آدرین و امفتی‌های شکل گرفته از دگرگونی به روش شاری [۸] (ت) نمودار Fe(Fe²⁺+Mg) به سیلیز و菊گاه امفتی‌های مورد بررسی بر آن [۱۲]
جدول 3 تأثیر تجزیه ریز کاپیتروکلاژهای توده گرانیتون‌های میمو و مفهوم زمین‌ساختی ماکمایی آن

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>MA11</th>
<th>MA12</th>
<th>MA13</th>
<th>MA14</th>
<th>MA15</th>
<th>MA16</th>
<th>MA17</th>
<th>MA18</th>
<th>MA19</th>
<th>MA20</th>
<th>MA21</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>58.2</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.5</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>24.3</td>
</tr>
<tr>
<td>FeO</td>
<td>2.4</td>
</tr>
<tr>
<td>MnO</td>
<td>0.1</td>
</tr>
<tr>
<td>MgO</td>
<td>0.2</td>
</tr>
<tr>
<td>CaO</td>
<td>7.8</td>
</tr>
<tr>
<td>Na₂O</td>
<td>4.3</td>
</tr>
<tr>
<td>K₂O</td>
<td>3.0</td>
</tr>
<tr>
<td>Si</td>
<td>2.5</td>
</tr>
<tr>
<td>Al</td>
<td>1.8</td>
</tr>
<tr>
<td>Ti</td>
<td>0.1</td>
</tr>
<tr>
<td>Fe</td>
<td>0.2</td>
</tr>
<tr>
<td>Na</td>
<td>1.1</td>
</tr>
<tr>
<td>K</td>
<td>0.6</td>
</tr>
<tr>
<td>Ca</td>
<td>0.5</td>
</tr>
<tr>
<td>Na</td>
<td>1.0</td>
</tr>
<tr>
<td>K</td>
<td>0.5</td>
</tr>
<tr>
<td>Or</td>
<td>3.2</td>
</tr>
<tr>
<td>Ab</td>
<td>3.2</td>
</tr>
<tr>
<td>An</td>
<td>33.1</td>
</tr>
</tbody>
</table>

شکل ۵ (الف) رشدندی پلاژیوکلاژهای باتولیت میمو و موئیگرانتیت‌های باتولیت میمو.

تا ۱۱۵۰ درجه سانتی‌گراد پاپیدارند [۱۷-۱۹]. به طور کلی روش‌های مینوئی و جوش دارد که اساس آن‌ها ترکیب شیمیایی یک یا دو یا چند کانی به‌این‌ست. در این پژوهش از دو روش بر یکه مقدار Al در هورتبلند و بر یکه زود هورتبلند- فیسیولوژیک هستند و در گستره وسیعی از فشارها از ۱ تا ۴۳ کیلو بال و در دماهای ۴۰۰۰.
پلاژیوکلاز استفاده شده است. که در ادامه شرح هر یک از روشهای به همراه نتایج دما- فشار سنگی آورده شده و سپس با استفاده از این نتایج، گرمی و غمینگی و عمق نفوذ و چاپگری نتواند تعمیم می‌شود.

فشارسنگی بر پایه مقدار AI در هورنی‌لند: از آنجاکه مقدار Fe(Fe+Mg) برای آمفیبولهای مورد بررسی 0.45 تا 0.65 در گسترده‌ای صفر تا 0.6 (گرین‌زلانگ اکسپلون ول) است که برای فشارسنگی مناسب هستند، از این کانال برای فشارسنگی AI استفاده می‌شود. نسبت AIVI اساس مقدار AI استفاده می‌شود. [19] محاسبه مقدار AI اساس سنگی فشار با استفاده از ترکیب آمفیبول است.

[1] AItotal 20-22 [2] AItotal نسبت به AItotal بر اساس پارامتر Fe(Fe+Mg) آمفیبولهای توده کریتوئیدی ممزگ در گستردگی نشان دهنده شده‌است. (شکل 4) و نتایج فشار سنگی با استفاده از روشهای مختلف (جدول 4) [24].

مانیگنگی فشار را 1/14 کیلوبار برآورد می‌کند.

![Shale Compaction Graph](image)

شکل 6 نمودار نسبت AI (در واحد فرمولی) بر عدد آهن [23] که به دلیل تشکیل هورنی‌لند‌ها در گستردگی فشاری بین 1 تا 3 کیلوبار است.

<table>
<thead>
<tr>
<th>جدول 4 محاسبه دما و فشار قبولی‌های با تولید میزان به روش‌های مختلف</th>
<th>روشهای</th>
<th>AI قبولی (کیلوم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>بر اساس مقدار آمفیبول در هورنی‌لند</td>
<td>[22]</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>[23]</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>[24]</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>[25]</td>
<td>0.81</td>
</tr>
</tbody>
</table>

دما (سانتی‌گراد)	[22]	655.67
	[23]	767.48
	[24]	790.41

| بر پایه زوج کانی هورنی‌لند و پلاژیوکلاز هم‌زمینست | [25] | 0.59 |

[DOI: 10.29252/ijcm.27.1.123]
تعیین محوطه زمین‌ساختی

ترکیب بروینت در سنگ‌های گرانیتوئیدی تابع ترکیب مادگی می‌باشد. گروه‌بندی اکسی‌ژن [۳۷] در میان مدل‌های [۳۸] و خاستگاه‌گرایی‌های [۳۹] است و براساس ترکیب شیمیایی بروینت‌ها می‌توان موقعیت زمین‌ساختی تابع مورد بررسی را تعیین کرد. ترکیب بروینت‌ها در نمونه Al۲O۳ Fe۲O۳ MgO که بیشتر از تمایز سه‌گانه مادگی قرار می‌گیرد (شکل ۷ الف). عبدالرحمن [۳۹] عویچه دارد که مقدار Fe۲O۳ اوله در مادگی، عامل اصلی است که در نمونه Fe۲O۳ MgO بروینت‌های آذرین تأثیر به سروده‌ای دارد. به طوری که در MgO نمونه‌های مختلف آزمایش‌های کلیایی‌های مادگی در مواد شیمیایی دارد (شکل ۷ ب). با استفاده از ترکیب آمفیوبول‌ها که با توجه به بررسی قطعات بیگانه سنگ‌های گوشته‌ای مخصوص شدند [۳۰]، می‌توان محوطه زمین‌ساختی مادگی‌ای سنگ‌های آذرین را تعیین کرد.

![Diagram](image-url)

شکل ۷ تعیین مادگی مادگی‌ای با ترکیب شیمیایی بروینت‌های بازی‌آمیز میزان در نمونه (القز) Fe۲O۳ نسبت به Fe۲O۳ Al۲O۳ نسبت به Al۲O۳ MgO نسبت به MgO (ب) Fe۲O۳ در نمونه مادگی‌ای گوشته‌ای که آمیفیوبول‌های آن منطقه مورد بررسی در سه‌گانه مادگی واپسین به محوطه بازی‌آمیز (مادگی) Fe۲O۳ Al۲O۳ MgO که بیانگر ترکیب مادگی‌ای گوشته‌ای با مواد پوست‌هایی در تشکیل هورنبلد‌های [۳۱].
عمق جاگزینی توده گراتونتیدی مزار

با توجه به نتایج فشارسنجی بر اساس مقدار Almin نمودار می‌توان عمق جاگزینی سنگ‌های آذرین نفوذی را نمایندگی کرد. مجموعه کانی‌های هر مزار در کنار مذاب و فاز سیال، نیاز به بررسی‌های بلندی و همکارش [15] در تمامی نتایج در دام انگشتی به دو نگاهی به تعادل می‌رسد. پس از انجام و سردر شدن ماگما سبب دستیابی به وضعیتی با کانی‌های نام برده کننده شده و سپس به طور کامل مسئول می‌شود. در این صورت، ترکیب هر مزار بازتابی از عمق تشعشعی این کانی است که در آن عمق، ماگما منجمد و یا جاگزینی شده است [15]. بنابراین فشارسنجی گراتونتیدی مزار در فضای معدالی با گراتونتهای کم عمق جاگزینی شده است. عدم وجود دایک‌های شامی، نیروی رخساره‌ای طبیعی دلایل در این مایش می‌باشد و نیز تبادل های فشارسنجی همه‌ها شاهدی بر این موضوع هستند که عمق تبادل گراتونتهای نبوده مورد بررسی بیش از 8 کیلومتر نبوده است.

برداشت

توهد گراتونتیدی مزار که در بخش جنوب‌شرقی کمان ماگمایی رومه‌کشته رخساره‌ای تشکیل و داری که شامل از جهت واحد سنگ – می‌باشد. شناختی، دوریت، تونلیت، گراتونتی‌ورت و موله‌گرانتی است. این واحد‌های بر سری سنگ‌های ایکی کلی‌یا گراتونتی‌های نوع I تعریف می‌گردد. تجزیه‌های نقطه‌ای انجام شده که این سنگ‌ها باید با نام‌های گروه دایک‌های پلازیت‌زالکسیا بیانگر این است که ترکیب بیشتر از نوبهایی در واحد اتفاق و آمیگروی می‌باشد. می‌باشد. گراتونتی‌های واحدهای سنگی در توده گراتونتیدی مزار از نوع آدنده هستند. تغییرات ترکیب در دام‌هایی توزیع گولاتک‌های پلازیت‌زالکسیا بسیار کمتر بوده و تغییر در مقدار باعث آب‌زایی توده‌ها افت ناگهانی شده در زمان تبادل یا آلایش ماگمایی است. میانگین فشار محاسبه شده به روش‌های مختلف بر اساس مقدار Almin موجود در هر شده [15] کلیوپاترا در آن تابع 8 کیلومتری پیوسته است. دمای‌سنجی به روش هرمنین- پلازیت‌زالکسیا گرایش‌های و بیشترین دمای به تعادل رسیدن این دو زوج کانی را به

[19] Stein E., Dietl E., 'Hornblende thermobarometry of granitoids from the Central Odenwald (Germany) and their implication for the geotectonic development of the Odenwald'. Mineralogy and Petrology 72(2001) 185-207.

[28] Abbot R. N., Clarke, D. B., 'Hypothetical liquidus relationships in the subsystem Al$_2$O$_3$-FeO-MgO projected from quartz, alkali feldspar and plagioclase for (H$_2$O)<1'. Canadian Mineralogist 17(1979)549-560.

