خاستگاه الیوین در سنگ‌های ادراریفیک منطقه‌ی ملاطیل و نقش الیوین در سیر شکل گیری ماکما

امیر ایزیعیری ۱، فاطمه سروجیان۲

۱- گروه زمین‌شناسی، دانشگاه پیام نور، ایران
۲- گروه زمین‌شناسی، دانشگاه علوم دانشگاه کرمانشاه، سنندج، ایران

(دریافت مقاله: ۹۹/۱۱/۱۷، نسخه نهایی: ۹۹/۴/۷۳)

چکیده: سنگ‌های ادراریفیکی بنابراین نوار سنندج-سیرجان واقع در استان لرستان، در زوراسیک مباینی و در محیط قوس قاره-ای تشکیل شده‌اند. در مجاورت آنها سنگ‌های ادراریفیکی با کلیه‌های الیوین، اوتوبیروکس، کلینیتریوتورکس و امیتوبیروکس دارند. الیوین‌ها در مقاطع میکروکوگی کم شده‌اند و دارای خندق خردگی هستند. این بافت‌گی آنت که الیوین‌ها به دو دست خاص یکی دانشگاه ماکما به صورت خلیف سیر می‌سازند. این رویداد علاوه بر اینکه آنت گیرسانه ماکما الیوین‌ها نشان می‌دهد که با یک پیوند اولویت #Ma#Mg# می‌توان این بافت‌گی را تاپی کرد. بافت‌گی #Mg# ماکما چیه تیلوریک‌هستی است که کاملاً غیرعادی است. برای توجیه افزایش #Mg# ماکما چیه تیلوریک‌هستی، با #Mg# احتمال بررسی شده است. ۱- با یک بودن گرفتگذگی کسیون و تبلور زود هگنام گسک‌های آهن-۲ حضور الیوین تیلوریک‌هستی. با توجه به مدل‌های الیوینی اینجا، شیمی‌اتیک و روند افزایش #Mg# چیه تیلوریک‌هستی.

واژه‌های کلیدی: ادراریفیکی؛ زئوپیتاسیون؛ الیوین؛ گهره و تبلور بازی؛ سنندج-سیرجان

مقدمه

الیوین از جمله کالی‌هایی است که نشان می‌دهد در شکل گیری ماکما داشته‌اند. آنها در سنگ‌های ادراریفیکی و بالو از شیمی‌اتیک و روند افزایش #Mg# ماکما با #Mg# بررسی می‌شود. سنگ‌های ادراریفیکی نشان می‌دهد که با یک پیوند اولویت #Ma#Mg# می‌توان این بافت‌گی را تاپی کرد. بافت‌گی #Mg# ماکما چیه تیلوریک‌هستی است که کاملاً غیرعادی است. برای توجیه افزایش #Mg# ماکما چیه تیلوریک‌هستی، با #Mg# احتمال بررسی شده است. ۱- با یک بودن گرفتگذگی کسیون و تبلور زود هگنام گسک‌های آهن-۲ حضور الیوین تیلوریک‌هستی. با توجه به مدل‌های الیوینی اینجا، شیمی‌اتیک و روند افزایش #Mg# چیه تیلوریک‌هستی.

گرفته و به‌صورت زئوپیتاسیون با ماکما گردنگردش می‌شود. سنگ‌های ماکما با زئوپیتاسیون الیوین با به‌چیدگی‌های خاصه‌های مرحله‌ای از یک پیوند اولویت #Mg# شیمی‌اتیک به نیازهای وابسته به شیمی‌اتیک و روند افزایش #Mg# ماکما اطلاعاتی می‌دهند. شیمی‌اتیک ماکما با آنکه ماکما خود در شیمی‌اتیک در الیوین تغییر کرده و بررسی آن را با مشکل مواجه می‌کند. الیوین با شکل‌های مختلف قارچ شیمی‌اتیک ماکما را تحت تاثیر قرار می‌دهد. با توجه به اینکه در فاصله‌های ماکما الیوین خالی زد پس می‌شود، تا به‌این‌جا فاصله‌ها به کاربرد برای الیوین تغییر کرده و بررسی آن را با مشکل مواجه می‌کند.

amires@pmu.ac.ir

*نویسنده: منصور، تلفن: ۹۱۲۶۶۴۷۳۳۳۸، نمایشگاه هوایی، پست الکترونیکی:
زمین شناسی عمومی

از نظر تقسیمات زمین‌شناسی، منطقه‌ی مورد بررسی در بخش مرکزی نوار سنگنج-سرزجان قرار گرفته است (شکل 1). این نوار با طولی در حدود 1520 کیلومتر و به‌طور تقیی 2000 کیلومتر یکی از مهم‌ترین به‌پیشنهاد ساختاری ایران زمین به شمار می‌آید.

این نوار از مجموعه‌ی سنگ‌های دیگرگون و شدید تغییر شکل ایفایی شده که مجموعه‌ی پلوتونیک متعنی‌ساختی در آن تزریق شده‌اند. فعالیت‌های دیگرگون و پلوتونیکی که در پایداری سنگ‌های سنگ‌های دیگرگون، نوآموزی شده‌اند به‌صورت توزیع‌های مستطیلی با میان‌گرایی در بخش‌های جنوبی و غربی مناطق. سنگ‌های دیگرگون از جنس سیلیست و فیلیت و در بخش‌های ناحیه، به‌مانند سنگ‌های دیگرگون و پلوتونیکی می‌باشند.

مقایسه شیمیایی سنگ‌های دیگرگون و پلوتونیک در تولیدهای مجار، نشان می‌دهد که این دو نوع سنگ با یکدیگر ارتباط زنده‌دار یاری‌های ذکر/کمی طی نوار تقریبی در بخش‌های جنوبی و غربی مناطق شکل‌گیری‌های دیگرگون در همین راهنمایی می‌باشد. سنگ‌های دیگرگون، فعالیت‌های سنگ‌های دیگرگون و پلوتونیکی که در پایداری سنگ‌های دیگرگون، نوآموزی شده‌اند به‌صورت توزیع‌های مستطیلی با میان‌گرایی در بخش‌های جنوبی و غربی مناطق. سنگ‌های دیگرگون از جنس سیلیست و فیلیت و در بخش‌های ناحیه، به‌مانند سنگ‌های دیگرگون و پلوتونیکی می‌باشند.

مقایسه شیمیایی سنگ‌های دیگرگون و پلوتونیک در تولیدهای مجار، نشان می‌دهد که این دو نوع سنگ با یکدیگر ارتباط زنده‌دار یاری‌های ذکر/کمی طی نوار تقریبی در بخش‌های جنوبی و غربی مناطق شکل‌گیری‌های دیگرگون در همین راهنمایی می‌باشد. سنگ‌های دیگرگون، فعالیت‌های سنگ‌های دیگرگون و پلوتونیکی که در پایداری سنگ‌های دیگرگون، نوآموزی شده‌اند به‌صورت توزیع‌های مستطیلی با میان‌گرایی در بخش‌های جنوبی و غربی مناطق. سنگ‌های دیگرگون از جنس سیلیست و فیلیت و در بخش‌های ناحیه، به‌مانند سنگ‌های دیگرگون و پلوتونیکی می‌باشند.
شکل ۱: نقشه‌ی زمین‌شناسی ایران که موقعیت منطقه‌ی مورد بررسی، در آن مشخص شده است، نقشه‌ی زمین‌شناسی توده‌ی آذرین ملاط‌لاب که موقعیت سنگ‌های الترامافیک و ارتباط آن‌ها با گرانیتون‌های دیده می‌شود.

شکل ۲: نمایی از سنگ‌های فلیسک رخ‌شده در منطقه ب) نفوذ سنگ‌های گرانیتی درون سنگ‌های گرانیتون‌های گروه‌ی گر انکرواراتی. این ویژگی گویای آنت که گرانیتون‌ها یکی از گرانیتون‌های تریفیک شده‌اند (ب) برخوردزا گراتون‌ها با توانایی و گرانیتون‌های با وجود برزیلیت‌ها ب) از جنس توانایی درون گرانیتون‌های مشخص می‌شود و دلایل بر سبب سکیس و توانایی دارد (ت) تصویر صورتی از مجموعه سنگ‌های الترامافیک که در کنار توانایی‌ها قرار دارند ولی به دلیل آب‌پوش شدن روس‌های از اینجا احاطه شده‌اند، مز آن‌ها با توانایی‌ها کابل مشاهده نیست.
روش بررسی

پس از بررسی و نمونه‌برداری، های صحرایی 15 نمونه از بخش‌های مختلف توده‌ی تریاکیمی برداشتی شدند و پس از تهیه مقاطع نازک میکروسکوپی، نمونه‌ها به میکروسکوپ خنثی مورد بررسی قرار گرفتند. در پایان سه نمونه که کمترین درجه در درستی را داشتند، انتخاب و پس از تهیه مقاطع نازک صلقلی، برای انالیزهای ریزپیماشکل‌کشیده یک‌هدمیان به داشته می‌باشد، ایران، ارسال شدند. در آن ارزیابی‌ها از ابزار برای تعیین فرآیند عناصر اصلی کانی‌ها استفاده شد. لازم به یادآوری است که ویژگی‌های سنتگی‌ها از پرتاب با Jeol 8200 Superprobe در دسگاه‌های با 15 بوده است.

سنگ‌گانگری

سنگ‌های تریاکیمی مالتاپیک به شدت دگرشده هستند. بنابراین بررسی‌های انجام شده بیشتر روز تعداد محدودی از نمونه‌ها صورت گرفته است که کمترین درجه در سلسله‌ی را دارد. از نظر باینی، این سنگ‌ها درست دانه‌ها میان دانه‌های هستند. کانی‌های اصلی تشکیل دهنده‌ی آنها عبارتند از الپین (35-240/5-200 پیوندرکس، 20/5-1/5). کلینیتروپیکس (240-1/5) و آمفیپیکس (1/5-50) است. میکا و پلاژیکالاس نیز به مقادیر بسیار اندک در این سنگ‌ها قابل مشاهده اند. از کلینیتروپیکس‌ها از نوع برونزیت و کلینیتروپیکس‌ها از نوع آوریزه‌ای هستند. برای رسیدن به سنگ‌های داشته‌اند، آنها را می‌توان از الپین

![سنگ‌گانگری]

کلاس آمیپول‌های فسفوریا، بلوهای بسیار درشتی را تشکیل می‌دهند که به سبب جایگزینی از آمیپول‌های سبز پوشیده شدند. آمیپول‌های سبز به صورت پیانی نیز درون آمیپول‌های فسفوریا درده می‌شود.

![کلاس آمیپول‌های فسفوریا]

شکل 3 حضور سه‌چندین از سنگ‌های تریاکیمی منطقه‌ی ملاتاپیک. الپین، بلوهای الپین و از کلینیتروپیکس به صورت میانی به وسیله‌ی یک پرتاب درشت کلینیتروپیکس احاطه شده‌اند. الپین‌ها یک پرتاب درشت که گوهای هضم شدگی آن‌ها است بی‌کی بلوهای الپین به صورت پیانی درون یک پرتاب درشت آمیپول‌های قرار گرفته است. بخشهای جعفری، بلوهای الپین و سپرده‌های شیشه‌ای حالاتی در شکل داشته و اشکال‌های شیب به خوشه در آن ایجاد شده است. شکل ۲ از توزیع NPL XPL و شکل ب در نور تهیه شده.

Ol = olivine; opx = orthopyroxene; cpx = clinopyroxene; amph = amphibole
نتیجهگیری‌های آهن و منیزیم مغناطیسی شگفت‌آوری‌های ماگماکی
با توجه به این که سنگ‌های اترامافیک از انباشت کانی‌های آه
حالت می‌شوند که در مراحل مختلف از ماگما مبستر شده‌اند،
بنابراین شیمیایی سنگ‌کل آن‌ها نمی‌تواند به‌طور
تکیه شیمیایی ماگمای اولیه باشد. به ویژه اگر الیون‌ها از نوع
ژینوکریستی باشد. در چنین شرایطی که شیمی سنگ کل
کارآمدی لازم را ندارد، استفاده از تکیه شیمیایی کانی‌ها
کمک قابل توجهی به تعمیم تکیه شیمیایی ماگمای اولیه
می‌کند زیرا تکیه شیمیایی کانی‌ها مانند، قابل تعمیم
شیمیایی ماگما این کنار باشد. این منطقه‌ای که در آن می‌شود
عناصر اصلی در کانی‌ها مشخص است (جدول 1)، به کمک
ضرایب جدایی که برای عناصر مختلف در کانی‌های غارش
شد، است. می‌توان فراوانی کانی در ماگما با آن
تعادل با کانی‌های ماگما (مانند کانی‌های غارش
شده‌ای که در آن است) به‌طور مداوم در ماگما به
شکل یکسان باشد. با توجه به این منطقه که فراوانی آهن
و منیزیم در ماگما در تعادل با آن‌ها دارد، می‌توان
نتیجه فراوانی آهن و منیزیم ماگما در تعادل با کانی‌های
مختلفی را به این روش محاسبه کرد. رابطه مربوط به‌طور
زیر می‌شود:
\[K_{D,Fe-Mg} = \frac{(Fe/Mg)_{\text{mineral}}}{(Fe/Mg)_{\text{liquid}}} \]

در این رابطه:
ضریب جدایی نسبت Fe/Mg برای کانی مورد نظر \(K_{D,Fe-Mg}\)
(این ضریب می‌توان از طریق مطالعه در‌سته تهیه
گرد) نسبت Fe/Mg را به کانی (این نسبت را می‌توان
با استفاده از نتایج آلترامافیکی را در کانی‌های
c\[Fe/Mg \text{ (mineral)} \]

c\[Fe/Mg \text{ (liquid)} \]

c\[(Fe/Mg)_{\text{mineral}} \]
c\[(Fe/Mg)_{\text{liquid}} \]

c\[K_{D,Fe-Mg} \]

بدین طرح می‌توان نسبت Fe/Mg در تعادل با هر
یک از کانی‌های الیون‌ها، آتروپورتوفیل، کلیوپورتوفیل،
و ژینوکریستی را محاسبه کرد.

مقایسه تکیه‌های الیون‌ها با انواع شناخته شده
ماگماکی و غیر ماگماکی
الیون‌ها ممکن است خاستگاه ماگماکی یا ژینوکریستی داشته
باشند. بنابراین ممکن است بتوان با مقایسه تکیه‌های
شیمیایی الیون‌ها با الیون‌های دیگر، سنگ‌های شنون که این نوع
ماگماکی هستند با ژینوکریستی هستند. اطلاعات
درخصوص خاستگاه الیون‌های مورد بررسی به‌دست آورد.
این مقایسه در جدول 2 دیده می‌شود و تکیه‌های
ماگماکی و غیر ماگماکی الیون‌های سیستم‌های الیون‌های
الیون‌ها ممکن است خاستگاه ماگماکی یا ژینوکریستی داشته
باشند. بنابراین ممکن است بتوان با مقایسه تکیه‌های
شیمیایی الیون‌ها با الیون‌های دیگر، سنگ‌های شنون که این نوع
ماگماکی هستند با ژینوکریستی هستند. اطلاعات
درخصوص خاستگاه الیون‌های مورد بررسی به‌دست آورد.
این مقایسه در جدول 2 دیده می‌شود و تکیه‌های
ماگماکی و غیر ماگماکی الیون‌های سیستم‌های الیون‌های

1- pargasitic
2- edenitic
جدول 1 نتایج آنتالیز ریزپردازش الکترونی کانی‌های الیوتین، ارتوپروروسن، کلینوپروروسن و آمفیبول در سنگه‌هایِ الترمافلیک منطقه‌ی ملاطلاب

<table>
<thead>
<tr>
<th>ماده</th>
<th>سیلیس</th>
<th>تیتانیوم</th>
<th>آلیکسید</th>
<th>فرنتیک</th>
<th>مانگانس</th>
<th>نیکلس</th>
<th>مگنیسیوم</th>
<th>حالت</th>
<th>تاریخ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr2O3</td>
<td>39.9</td>
<td>32.7</td>
<td>32.7</td>
<td>32.7</td>
<td>32.7</td>
<td>32.7</td>
<td>32.7</td>
<td>32.7</td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td>32.7</td>
<td>32.7</td>
<td>32.7</td>
<td>32.7</td>
<td>32.7</td>
<td>32.7</td>
<td>32.7</td>
<td>32.7</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>32.7</td>
<td>32.7</td>
<td>32.7</td>
<td>32.7</td>
<td>32.7</td>
<td>32.7</td>
<td>32.7</td>
<td>32.7</td>
<td></td>
</tr>
<tr>
<td>SiO2</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

جدول 2 مقایسه‌ی ترکیب‌های آنتیبیوی سنگه‌های الترمافلیک ملاطلاب با الیوتین‌های ملاطلابی و زینک‌ورشکسته. زمین‌گرد خاکستری بدن معنی داشته که فراوانی عناصر موجود در الیوتین‌های ملاطلابی با گروه‌های بالا عناصر در الیوتین‌های موردنورسمه‌های فیلوبیوئی قابل توجهی دارد.

<table>
<thead>
<tr>
<th>عنصر</th>
<th>اولوروسن</th>
<th>اولوروسن</th>
<th>الیوتین</th>
<th>الیوتین</th>
<th>الیوتین</th>
<th>الیوتین</th>
<th>الیوتین</th>
<th>الیوتین</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni</td>
<td>2.0-7.0</td>
<td>2.0-7.0</td>
<td>2.0-7.0</td>
<td>2.0-7.0</td>
<td>2.0-7.0</td>
<td>2.0-7.0</td>
<td>2.0-7.0</td>
<td>2.0-7.0</td>
</tr>
<tr>
<td>Mn</td>
<td>7.0-40</td>
<td>7.0-40</td>
<td>7.0-40</td>
<td>7.0-40</td>
<td>7.0-40</td>
<td>7.0-40</td>
<td>7.0-40</td>
<td>7.0-40</td>
</tr>
<tr>
<td>Al</td>
<td>0.2-2.0</td>
<td>0.2-2.0</td>
<td>0.2-2.0</td>
<td>0.2-2.0</td>
<td>0.2-2.0</td>
<td>0.2-2.0</td>
<td>0.2-2.0</td>
<td>0.2-2.0</td>
</tr>
<tr>
<td>Cr</td>
<td>0.2-2.0</td>
<td>0.2-2.0</td>
<td>0.2-2.0</td>
<td>0.2-2.0</td>
<td>0.2-2.0</td>
<td>0.2-2.0</td>
<td>0.2-2.0</td>
<td>0.2-2.0</td>
</tr>
<tr>
<td>Ca</td>
<td>0.1-0.5</td>
<td>0.1-0.5</td>
<td>0.1-0.5</td>
<td>0.1-0.5</td>
<td>0.1-0.5</td>
<td>0.1-0.5</td>
<td>0.1-0.5</td>
<td>0.1-0.5</td>
</tr>
<tr>
<td>Na</td>
<td>0.0-0.5</td>
<td>0.0-0.5</td>
<td>0.0-0.5</td>
<td>0.0-0.5</td>
<td>0.0-0.5</td>
<td>0.0-0.5</td>
<td>0.0-0.5</td>
<td>0.0-0.5</td>
</tr>
<tr>
<td>Ti</td>
<td>0.0-0.5</td>
<td>0.0-0.5</td>
<td>0.0-0.5</td>
<td>0.0-0.5</td>
<td>0.0-0.5</td>
<td>0.0-0.5</td>
<td>0.0-0.5</td>
<td>0.0-0.5</td>
</tr>
</tbody>
</table>

ملاحظه می‌شود نسبت Fe/Mg گرتفه‌تران‌د.
بحث و بررسی

خاستگاه الکان

مقایسه ترکیب شیمیایی الکان‌های مورد بررسی با انواع شناخته‌شده ماده‌های مگنتیوپاتی کمک زیادی به تعیین خاستگاه آن نمی‌کند. زیرا ترکیب شیمیایی آن‌ها به دو جزئی از جایتی است (جدول ۲). بنابراین بازدید از شواهد تکنیکی در این خصوص استفاده کرد.

در شکل ۳ نشان داده شد که نسبت Fe/Mg در گزاره تغییر کرده است. با تغییر ماده Fe/Mn نسبت Fe/Mg گدازه در تغییر تغییر یافته در الکان‌های رونده قرار می‌گیرد که عناصری مادر این دیگر نیز هم در آن بازده قرار دارند. این نتایج دلیل قابل قبول بر این ابعاد که الکان‌های مورد بررسی با سایر کانال‌ها خاستگاه مشترکی داشته و از نوع ماگماتیک هستند. شواهد دیگری نیز وجود دارد که این موضوع را ادعای یک معنی می‌سازد. الکان‌های مورد بررسی دیده نشد. اما اعداد سایر از میدان‌های جغرافیایی هستند که خاستگاه‌گونه‌ای الکان‌ها را نشان دهنده علاقه‌ای با توجه به هیچ یک از این اتفاقها در نمونه‌های مورد بررسی دیده نشد. است. بنابراین این متن با اطلاعات پیشتری الکان‌ها از نوع ماگماتیک در نظر گرفته شد.

بررسی تغییرات اینگونه ترکیب شیمیایی ماگما حین تبلور بخشی

نمودار این شده در شکل ۶. علاوه بر این که خاستگاه مشترک کاتی‌ها را نشان می‌دهد، دلایل بر این دارد که تبلور بخشی کمی اصلی شکل گیری ماگماتیک به دست این بررسی‌های سگ-نتایج نشان می‌دهد که نخست الکان‌های سیستم ارتوبیورات، کلینتروپنوس و نهایتاً آمفیبول بیشتر می‌شود. همچنین با ترکیب تبلور کاتی‌ها از روند خصوص (شکل ۴) استنباط می‌شود. همچنین بررسی اعضا

اعتقاد عمومی بر این است که کاتی‌هایی که از همان آغاز فاربن بیشتر تبلور می‌شوند، تمایل می‌شوند برای جذب مشترک یکی از این نسبت ماگما را نیز تحت تاثیر فلزی می‌دهند به طوری که ماگما Fe/Mg قاعدتاً با استناد به شکل بخشی کاتی‌ها، نسبت Fe/Mg افزایش یابد. عبارات دیگر بایستی با تبلور کاتی‌ها، عدد

شکل ۵ نمایش نسبت‌های Fe/Mg در ماگما در تعادل با کاتی‌های مختلف در سنگ‌های الکامافیک ملاتلام.
5- Assimilation and Fractional Crystallization

Bouvrain and E. Kameyama also noted that magnesium may be released during assimilation and fractional crystallization, leading to the formation of a new phase or mineral. However, the exact mechanism of this process is not fully understood.

Bouvrain and E. Kameyama also noted that magnesium may be released during assimilation and fractional crystallization, leading to the formation of a new phase or mineral. However, the exact mechanism of this process is not fully understood.

Bouvrain and E. Kameyama also noted that magnesium may be released during assimilation and fractional crystallization, leading to the formation of a new phase or mineral. However, the exact mechanism of this process is not fully understood.

Bouvrain and E. Kameyama also noted that magnesium may be released during assimilation and fractional crystallization, leading to the formation of a new phase or mineral. However, the exact mechanism of this process is not fully understood.

Bouvrain and E. Kameyama also noted that magnesium may be released during assimilation and fractional crystallization, leading to the formation of a new phase or mineral. However, the exact mechanism of this process is not fully understood.
در حدود 30ppm است؟ این مدل‌سازی شیمیایی با در نظر گرفتن شرایط زیر انجام شده است:
الف) برای رسیدن به ماکمیا در تعداد با 0.2 ppm، کانی‌های ازتوپیروسکن و کلینوپیروسکن از ماکمیا اولیه ماتور شده‌اند.
ب) ازتوپیروسکن و کلینوپیروسکن به نسبت‌های مساوی از گردانه نمایش داده شده‌اند.
ج) در حین تبلور، این ماده به‌طور بخشی در گردانه هضم شده‌اند.
د) ترکیب شیمیایی این ماده به‌طور کلی بررسی شده در نظر گرفته شده‌اند (جدول 1).

در ضمن، برای آنالیز شیمیایی این ماکمیا در تمام با امفیبول (30ppm) در حدود 33ppm خواهد بود البته به شرطی که نسبت این ماکمیا هضم شده به بی‌کنرکنسن سیلان نمایش دهد.

در یک مدل به‌پیشنهادی دیپاتولوژی [20] مقدار دنکل موجود در ماکمیا نهایی (ماکمیا در تمام با امفیبول) در حدود 0.2 باشد (0.2 = 30ppm). بنابراین، ملاحظه می‌شود که مقدار دنکل موجود در ماکمیا انتخابی که از دو روش متناوب به دست می‌آید (روش 1: استفاده از ضریب جداش امفیبول، (AFC)،) تا حد زیادی به یکدیگر نرمال می‌گردد. در شکل ۶ تغییرات نیکل ماکمیا در مراحل مختلف تبلور با اساس مدل‌سازی دو روش تبلور بخشی شده‌اند در ازتوپیروسکن (AFC) و (FCO) هضم و تبلور بخشی با 0.2 ppm مقدار ماتور نشان می‌دهد که تبلور بخشی در نزدیکی ازتوپیروسکن و کلینوپیروسکن به نسبت‌های مساوی از ماکمیا ماتور شده‌اند.

پانهیل ماتور در همان مراحل دسته‌گذاری تبلور بخشی در نزدیکی ازتوپیروسکن و کلینوپیروسکن به نسبت‌های مساوی از ماکمیا ماتور شده‌اند.

ناهکانه ماتور در همان مراحل داسته‌گذاری تبلور بخشی در نزدیکی ازتوپیروسکن و کلینوپیروسکن به نسبت‌های مساوی از ماکمیا ماتور شده‌اند.

نتیجه‌گیری که در این مدل ازتوپیروسکن با این مقدار 0.2 ppm در این کرانه به‌طور کلی مناسب می‌باشد.

مقدمات:
[1] قاسمی ج.ف، درختی مرمتی، کانی‌شناسی زمین‌شناسی، و تأسیس جامعه ملی‌شناسی کلیه‌نشین‌ها، انتشارات نیکول مادرنی، اانتشارات هنر و معماری، ایران، شماره 2 (۱۳۸۷) ص ۲۴۴-۲۴۲.

6- r = assimilation to crystallization ratio
7- Fractional Crystallization