نتیجه گیری های سولفیدی

کامران متویلی، مهدی بهزادی

گروه زمین شناسی، دانشگاه علوم زمین، دانشکده شهید بهشتی

چکیده: کانسار روی-سرپ ندوشن در مزر غربی کمربند آتشسفری- نفوذی ارومیه-دختری در ناحیه سیال-گرمایی کانسار روی-سرپ ندوشن با تأکید بر کانسپراگی و

تکوین زمین شیمیایی سیال-گرمایی کانسار روی-سرپ ندوشن با تأکید بر کانسپراگی و تجزیه کانساری سولفیدی

مقدمه

روش بررسی

پس از گردآوری اطلاعات، بررسی دی‌های دورسنجی، بازیابی از منطقه و برداشتن نمونه به همراه سنگ‌ساخته‌های انرژی و برداشتن عوارض وابسته تعداد ۴۰ نمونه را به دو گروه کلاسیک جهت تهیه مقطع نازک و نازک صورت گرفت. نمونه‌ها با توجه به گسترش
پهنه اکسپانسی در بخش‌های سطحی نمونه‌های زیرسطحی برای شناسایی ترکیب کانی شناسی و بافتی مورد بررسی بیشتر قرار گرفتند. تعداد ۱۴۱ نمونه مقطع نارک و ۱۴۴ نمونه مقطع صیفی از ۱۱ گمانه به دقت بررسی سنجش‌گزاری و کانپلاگاتور شدند. افزون بر این، براساس طبقه‌بندی پلاسمای جفت شده (ICP) نمونه‌ها بین نمونه صفری دارای استفلاپتی با بیشترین و اختردگی کالکوپریت و دو نمونه دارای بیشترین مقدار طلا و نقره انتخاب شدند. این نمونه‌ها برای تعیین ترکیب شیمیایی ۷۲ نقطه بر استفلاپتی، بیتینت، گالن، کالکوپریت و XGPT با دستگاه پرتونی X مدل ۷۲۰۰ Horiba کوارتز به روش کوارتز در شرکت کانسیار بینانود به روش بررسی بیشتری شدند.

بحث و بررسی

زمین‌شناسی عمومی

کانسار ندوشان در ۱۰۰ کیلومتری غرب شهر یزد و در ۳۳ کیلومتری جنوب غربی شهرستان ندوشان جای دارد. منطقه مورد بررسی در اصل از واحدهای انتخابی اتوسی به همراه توده‌های نفوذی جوانتر نفوذ کرده در این مجموعه تشکیل شده است.
است و فاقدتهای گوناگون از نظر شیشه‌ای، تغییر پوششی تا تواف آوری را نشان می‌دهد. سیال‌های گرمابی ناشی از نفوذ تواد گرمابی موجب تشکیل رگ‌های دارای گفتاری تبیه (شکل ۲ آلف) شده است. ترکیب سنگها، انواع سنگ‌های و تغییر داسیتی‌ها به وسیله‌های و فلز‌سازی‌های پلاژیوکلاز فراوان‌ترین بلورهای این نمونه‌های به‌هم‌بیننده. بلورهای سازی پتاسیمی، کانه‌های کرم و سفید‌بازین، از حجم هوربلاکن و به مقدار کمتر پروکسی از دیگر کانه‌های مشاهده شده در این واحد سنگی هستند.

از واحدهای رسوبی رخندون یافته در منطقه می‌توان به واحد آهنگ (پیروزی‌آباد) آن که به مواضع گسل تقاطع شمال غربی جنوب شرقی بر واحدهای دیگر راهنمای شده است اشاره کرد. بخش دیگر واحد آهنگ به سو ایستی از منطقه مورد بررسی به صورت رخندونی فسیل‌دار در مرکز کانسپ دیده می‌شود. [آلف] این دو واحد به دلیل واکنش بین‌دیسی بیشتر، در برخی موارد فراوانی‌های دگرگونی و جانشینی را به خوبی به نمایش می‌گذارد.

از مهم‌ترین پدیده‌های ساختاری منطقه می‌توان به گسل راستگرد راستگرد همی‌شانه کرد [آلف] که با طول ۳۵۰ کیلومتر، نشانه‌هایی که آنرا از قلعه می‌کند. این گسل که از ۷۷ کیلومتری شمال شرقی کانسپ عبور می‌کند، در نتیجه گسل‌های فرعی خود نقش پژوهی در زمین‌ساخت منطقه داشته است [آلف]. بررسی نشانه‌های شناسی ۱۰۰۰۰۰/۱ کفته ناقص، تلاقی کاداک‌های نشان از فرآیند گسل و شکستگی با سازوکار تراکنشی دارند که نشانه‌های ساختاری برداشت ماده معدنی در این کانسپ هستند و پیشرو نیز مورد توجه قرار گرفته‌اند [آلف].

سنگ‌شناسی و سنگ‌شناسی واحدهای گستره کانسپ

پیشرو واحدهای رخندون یافته در گستره کانسپ ندوزن، واحدهای آنتاسی‌های اینون خاکستری در تاریک‌کننده گسل درک دیده شده‌اند. بررسی در خلاص‌های فرعی نشان می‌دهد که آنها نقش می‌نماید در گسترش شکستگی‌ها و گسل‌های فرعی و دگرگونی‌های نقدی آمد این واحد در منطقه دارند. این واحد در مقاطع نازک به طور کلی به‌صورت مجزا در

شکل ۲ تصویر میکروسکوپی‌هاین نمونه در منطقه مورد بررسی (رف). توماس گسل‌های به‌صورت پلاژیوکلاز و کانه‌های خودشکل کدر روند‌دار (XPL، ۵X، XPL) سازگاری با بلورهای ریز پلاژیوکلاز و فلزی‌سازی پتاسیم به وکیل و کانژه‌ای (۱۰X، XPL) که از دریافت یا پلاژیوکلاز فلزی‌سازی (۱۰X، XPL) قطعات که دارای نمونه در گسترش ساختارهای انواع را تغییر می‌دهند و در نتیجه گسل‌های پتاسیم (۱۰X، XPL) در بالاترین رنگ‌های به‌صورت آبی و کانه‌های کدر. (Oppq = پلاژیوکلاز، Plag = پلاژیوکلاز، K-Feld = کانه‌های کدر)
را به انواعی از کالی‌های آکسیدی و کربنی‌های جمله سروریت، گلاکتیت، همی‌مروفیت، گوئینت و لیمونیت نشیم‌های خود گونه‌های کالی‌کربنیت در کره اصلی است.

کالی اسفالت‌های کم و بیش دراژه بیماری کالی‌کربنیت در نتیجه واریزی‌نده‌ی از شوک‌های هم‌گرشتهایی به رنگ‌هایی در کالی‌کربنیت [۱۷۱] اغلب در انواع آهن والانتینه [۱۳۱] کالر در زمان تغییر پیوسته دست‌خوشی کالری در بوده است.

بررسی مقاطع صیفی
در بررسی مقاطع میکروسکوپی، کالری سایزی بیشتر به صورت بازی و کالری‌پریبندی دیده شده و در کرتیخی سطح رخ‌ی در کالری‌های شکل پدیدار نمی‌گردد که در کره اصلی است (شکل ۲) [۱۷۱] بررسی مقاطع صیفی نشان داد که کالری اسفالت‌های مقاطع صیفی دارای خاصیت‌های کالری‌پریبندی در سطح و خاصیت‌های کالری‌پریبندی در است. و این امر برای تغییرات محیطی (نیازگذاری) در کالری‌پریبندی در است. و این امر برای تغییرات محیطی (نیازگذاری) در کالری‌پریبندی در است. و این امر برای تغییرات محیطی (نیازگذاری) در کالری‌پریبندی در است. و این امر برای تغییرات محیطی (نیازگذاری) در کالری‌پریبندی در است. و این امر برای تغییرات محیطی (نیازگذاری) در کالری‌پریبندی در است. و این امر برای تغییرات محیطی (نیازگذاری) در کالری‌پریبندی در است. و این امر برای تغییرات محیطی (نیازگذاری) در کالری‌پریبندی در است. و این امر برای تغییرات محیطی (نیازگذاری) در کالری‌پریبندی در است. و این امر برای تغییرات محیطی (نیازگذاری) در کالری‌پریبندی در است. و این امر برای تغییرات محیطی (نیازگذاری) در کالری‌پریبندی در است. و این امر برای تغییرات محیطی (نیازگذاری) در کالری‌پریبندی در است. و این امر برای تغییرات محیطی (نیازگذاری) در کالری‌پریبندی در است. و این امر برای تغییرات محیطی (نیازگذاری) در کالری‌پریبندی در است. و این امر برای تغییرات محیطی (نیازگذاری) در کالری‌پریبندی در است. و این امر برای تغییرات محیطی (نیازگذاری) در کالری‌پریبندی در است. و این امر برای تغییرات محیطی (نیازگذاری) در کالری‌پریبندی در است. و این امر برای تغییرات محیطی (نیازگذاری) در کالری‌پریبندی در است. و این امر برای T.
این امر نشان از نقش سیال‌های گرمایی تأخیری سرب و مس-دار در ایجاد آغشته‌گی سرب در محيط و ایجاد شوک گرمایی، بخشی از واکنش‌های کالکوپیریت در اسفالت‌کلی است که در اینجا نشان‌داده شده است. شوک‌های گرمایی گالن آنها را قطع کرده است، بنابراین در نمونه‌های با میانگین تا حدود 1 میکرون تراکم سیال‌های همبستگی خویجی با مقدار سرب نشان می‌دهد.

[عکس: Fingerprints of Incipient Sphalerite and Pyrite in the Asphaltenics (10X, PPL) and (20X, PPL) and (40X, PPL) and (10X, PPL).]
شکل ۴ نتایج دو نمونه از کانالسپری چند فازی ندوشین: افق دارای کانی های کوارتز، اسپیت زونیت، سروزیت و مالاکیت و ب) دارای کانی های کوارتز، اسپیت زونیت، استفالاریت، مسکویت، کالسپید، ارتوکلاز.

شکل ۵ توالی همیزایی کانالسپری چند فازی ندوشین (مستطیل مقطع نشان دهنده جانشینی در فسیل است). بررسی مقاطع جثی نمونه‌های زیربنا حداکثر ۴۰ متری در همین مساحت بوده است. بررسی انجام شده بر این میانالاریا نشان می‌دهد که بدیه و خودرویی در لبه‌های اسکالیریت (به دلیل مقاومت کمتر در برابر شوک کمرمپی سیاله‌های گرمی) یا در میانه اسکالیریت با رمکه تأخیری مقاطع از جنس گالن به دیده می‌شود. این قوانین ساده تجربی را به دلیل پیچیدگی شرایط تشکیل نمی‌توان به سادگی به اندامه میانالاریا با اندازه ۲ میکرون و بزرگتر تعیین داد.

بررسی مقاطع صافی نمونه‌های با زرفای حدود ۹۳ppm نشان می‌دهد که با افزایش مقدار سرب از ۸۱ppm و ۱۲۴ppm تراکم میانالاریا یک میکروبینی کالیکوبیسنی در مساحت ۴۰۰ میکرون مربع از ۱۱ به ۵ و ۵۰ عدد افزایش می‌یابد. هنگام در نمونه‌های با میانالاریا کمی درشت‌تر، شرایط تقریباً مشابهی برای رأس و میان توان‌های قانونی تناوب مقدار سرب با تعداد میانالاریا را تعمیم داد. در میانه از دیدگاه با مقدار سرب ۷۵ppm و ۲۳۲ppm تراکم شمار میانالاریا به ترتیب
بررسی ریکارکان شناسی اسفارلیت: اسفرائیت بهترین میزان کادمیم، زئولیم، گالیم، ایندیم و منگنز است [24]. بررسی‌های انجام شده بر نمونه‌های اسفرائیت نشان از اهمیت کمتر در نمونه‌های نوع دره می‌سی-پی (حدود 1% و کمتر) نسبت به نمونه‌های هرگاهی و نتایج سولفید (حدود 5%) دارد [25]. نسبت رئوی غیرگر در ورتنیت بیشتر اتم در اسفرائیت کمتر است [26].

نتایج تجزیه اسفرائیت (جدول (1) نشان می‌دهد که افزون بر روی و گوگرد (اجزای اصلی اسفرائیت)، عنصر آهن، کادمیم، منگنز و منکسر در همه نقاط این دیده می‌شوند. نتایج تجزیه نمونه‌های اسفرائیت دو نوع برآهن (بیش از 21%) و کم آهن (کمتر از 17.5%) از تزئینی‌های زئولیمی شیمیایی متفاوت را نشان می‌دهد (شکل 6). در اسفرائیت‌های بی آهن، مقدار س، نتیجه روی بیشتر از نمونه آهن است. گذشته از این، افزون برآهن اسفرائیت‌ها میانگین کادمیم بیشتر اما اکسید منگنز کمتر نسبت به افزون کم آهن دانه‌های هرگاهی مس بیشتر با مقدار آهن بالاتر (تا 4.8%) زئولیم رخداد بیماری کالکوبریت و نشان دهنده نقش سیال‌های گرمایی سیستم‌های

جدول ۱ نتیجه تجزیه چند نقطه بر اسفرائیت به روش XPMA

<table>
<thead>
<tr>
<th>Element</th>
<th>CoO</th>
<th>Fe</th>
<th>MnO₂</th>
<th>Pb</th>
<th>CdO</th>
<th>Cu</th>
<th>Zn</th>
<th>S</th>
<th>اسفرائیت</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.71</td>
<td>0.12</td>
<td>0.2</td>
<td>0.3</td>
<td>0.15</td>
<td>0.12</td>
<td>0.1</td>
<td>0.16</td>
<td>1.16-0.16</td>
</tr>
<tr>
<td></td>
<td>0.59</td>
<td>0.24</td>
<td>0.22</td>
<td>0.23</td>
<td>0.21</td>
<td>0.17</td>
<td>0.1</td>
<td>0.15</td>
<td>0.15-0.15</td>
</tr>
<tr>
<td></td>
<td>0.42</td>
<td>0.16</td>
<td>0.18</td>
<td>0.26</td>
<td>0.19</td>
<td>0.17</td>
<td>0.1</td>
<td>0.14</td>
<td>0.14-0.14</td>
</tr>
<tr>
<td></td>
<td>0.22</td>
<td>0.14</td>
<td>0.17</td>
<td>0.17</td>
<td>0.18</td>
<td>0.15</td>
<td>0.1</td>
<td>0.13</td>
<td>0.13-0.13</td>
</tr>
<tr>
<td></td>
<td>0.18</td>
<td>0.13</td>
<td>0.15</td>
<td>0.15</td>
<td>0.16</td>
<td>0.13</td>
<td>0.1</td>
<td>0.12</td>
<td>0.12-0.12</td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>0.15</td>
<td>0.87</td>
<td>0.87</td>
<td>0.86</td>
<td>0.85</td>
<td>0.1</td>
<td>0.11</td>
<td>0.11-0.11</td>
</tr>
<tr>
<td></td>
<td>0.57</td>
<td>0.12</td>
<td>0.55</td>
<td>0.55</td>
<td>0.54</td>
<td>0.53</td>
<td>0.1</td>
<td>0.08</td>
<td>0.08-0.08</td>
</tr>
<tr>
<td></td>
<td>0.39</td>
<td>0.07</td>
<td>0.41</td>
<td>0.41</td>
<td>0.40</td>
<td>0.39</td>
<td>0.1</td>
<td>0.07</td>
<td>0.07-0.07</td>
</tr>
<tr>
<td></td>
<td>0.22</td>
<td>0.01</td>
<td>0.21</td>
<td>0.21</td>
<td>0.20</td>
<td>0.20</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1-0.1</td>
</tr>
</tbody>
</table>

X.PMA
کالکوپریت، روي، قلع در نمونه‌های کالکوپریت گزارش شده است. در این بروزات، نمودار انرژی تشکیل دهنده کالکوپریت، هیچ یک از نمونه‌های دیگر به‌وجود نمی‌آید و نتایج تجربه نشان از وجود سرب، روی، آرسنیک و منگنز دارد (شکل 7). نمونه اصلی سازنده کالکوپریت مقادیر نزدیک تابی نشان می‌دهد (با افزایش نسبی سرب و کاهش نسبی گوگرد از مرکز به کناره)، اما یکی از مقادیر سرب و آرسنیک به سمت کناره غربی می‌یابد (جدول 2). در نمونه‌های کالکوپریت، بطور کلی وجود روی به‌طور هم‌اکنون ارسنیک و منگنز نفر به شکل می‌شود. بررسی در دیگر نقاط مقادیر انرژی، می‌تواند این اشکال را به‌عنوان نمودار گوگرد را نشان دهد. نشان دهنده نشان از افزایش در سایل‌های گرمابی و کاهش گوگرد در آنها دارد. صرف بخش عمده‌ای از گوگرد برای تشکیل اسافاریت و نا‌شیافه‌گردنش و با کاهش مقادیر گوگرد سایل گرمابی عرضه برای ارسنیک در این سایل با شده است. بررسی جامعی که اسافاریتهای کانسراهای رنگ‌های و اسکارن زاین انجم شده، نشان داد که اسافاریتهای با درصد مرکب کمتر از 12 درصد، در کانسراهای رنگ‌های وابسته به گرافن‌پرده‌های سرب مکرمت نمی‌شود و مقادیر بیش از 14 درصد این ایمپلنتهای همراه است (28). بیشترین مقدار‌های پیروی محاسبه شده (5/8 نمان) از یکی از گرافن‌پرده‌های نوع مکرمته‌ای دارد. کلر و فلز فراوان سرب مکرمت نسبت به سری ایمپلنت امکان انتقال فلزات چون روی، طلا، منگنز، نقره و جویه به ترتیب ترکیبات به‌چشم کاربردی است. در مکرمت، بیشترین این اشکال در گرافن‌پرده‌های منطقه مورد بررسی بیشتر سایر ایج‌های مشاهده شده از نوع مکرمت بود. وجود همانیت، بروز و ایجاد ندوز گرافن‌پرده‌های گرافن‌پرده‌های مکرمته‌ای است. کالکوپریت: وجود مولبدن به ویژه در دمای بالا و نیز نیکل،
پیوسته این کاتین مواد نیکل، کالکان، روی، آرسنیک، سلنیم، نقره و طلا را در ترکیب خود داشته باشند [۲۶] اما در کانسار ندوضن به جز آهن و گوگرد، که بیشتر اصلی پیریت است، فقط عناصر منگنز و آرسنیک در نتایج تجزیه آشکار شدند (شکل ۸). بررسی ترکیب پیریت (جدول ۳) نشان‌دهنده کاهش شرایط احیا پیریت از آغاز زمان تشکیل تا پایان آن داشته است. بر این اساس، منگنز باید بصورت سولفیدی بوده باشد.

| XPMA | | | | | | |
|---|---|---|---|---|---|
| As | Pb | Cu | Fe | S | کانکوبورپت |
| 0.۱ | ۱۱۳.۳۶ | ۳۳.۶۸ | ۲۹.۹۷ | ۲۹.۳۴ | ۷۸.-۸۹۴۷ | ۷۸.-۸۹۴۷ |
| ۰.۲۱ | ۱۴۹.۲۷ | ۳۷.۹۹ | ۳۲.۹۷ | ۳۲.۳۵ | ۷۸.-۸۹۴۷ | ۷۸.-۸۹۴۷ |
| ۰.۱۴ | ۲۸۹.۲۴ | ۳۷.۹۷ | ۳۲.۳۵ | ۳۷.۹۷ | ۷۸.-۸۹۴۷ | ۷۸.-۸۹۴۷ |
| ۰.۰۵ | ۳۳۳.۸۷ | ۳۷.۹۷ | ۳۲.۹۷ | ۳۲.۳۵ | ۷۸.-۸۹۴۷ | ۷۸.-۸۹۴۷ |

شکل ۷: تغییرات مرکز به کناره در کالکوبورپت، (ب) گسترده فراوانی عناصر موجود در یکی از نمونه‌های کالکوبورپت و (ب) جایگاهی برخی نقاط تجزیه شده بر آن.

جدول ۲: نتایج تجزیه فراوانی عناصر کالکوبورپت به روش XPMA.
گالن: گالن که مهم سرب و دومین کاله اقتصادی فراوان در کانسار است. تمامی تشکیل تأخیری این کالا نسبت به اسفالیت را از فازهای بدام افتاده در گالن می‌توان پدیدان کرد. نتایج تجزیه نمونه‌های گالن مناطق مختلف دنبال نشان می‌دهد که این کالی میزان مناسب عناصر سلیم، تلوریم، نقره، بیسموت، انتیم و گال تاlim است [44]. بررسی...

جدول ۲

نتیجه تجزیه چند نقطه بر پیروت به روش XPMA

<table>
<thead>
<tr>
<th></th>
<th>As</th>
<th>Fe</th>
<th>MnO2</th>
<th>SiO2</th>
<th>Al2O3</th>
<th>CaO</th>
<th>S</th>
<th>Pirit</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰.۰۸</td>
<td>۰.۱۲</td>
<td>۰.۴۵</td>
<td>۰.۴۵</td>
<td>۰.۴۵</td>
<td>۰.۴۵</td>
<td>۰.۴۵</td>
<td>۰.۴۵</td>
<td>۰.۴۵</td>
</tr>
<tr>
<td>۰.۰۹</td>
<td>۰.۰۵</td>
<td>۰.۲۸</td>
<td>۰.۲۸</td>
<td>۰.۲۸</td>
<td>۰.۲۸</td>
<td>۰.۲۸</td>
<td>۰.۲۸</td>
<td>۰.۲۸</td>
</tr>
<tr>
<td>۰.۱۱</td>
<td>۰.۳۴</td>
<td>۰.۵۶</td>
<td>۰.۵۶</td>
<td>۰.۵۶</td>
<td>۰.۵۶</td>
<td>۰.۵۶</td>
<td>۰.۵۶</td>
<td>۰.۵۶</td>
</tr>
</tbody>
</table>

* تغییر نسبت بیان‌شده در پیروت، های انگیزه شده نشان از اختلاف متغیر ۱۰٪ در مقدار سرب و گروه نسبت به هم در ترکیب گالن دارد [2۵].

شکل ۸

الف) تغییرات کلی ترکیب پیروت ب، تغییرات ترکیب از مرکز پیروت به کناره ها (ب) تصویر نقاط تجزیه شده بر یکی از نمونه‌های پیروت و (ب) داده‌های XPMA.
شکل 9. نمودارهای گالن کانسارت ندوشین مس دار و آهن دار

شکل 9. تغییرات مقدار سرب در گسترده 88 تا 91% جای دارد (3/2 گستره تغییر) و نشان دهنده خلوص بالای نقاط تجزیه شده است. مقدار سرب در مرکز بیشتر است و در لبه تا 50% کاهش می یابد. از انجاکه مقدار سرب تعيين گردیده شد. شرایط احیا سامانه کانسارت با است. بررسی این مقدار در ارتباط با فراوانی عنصر دیگر جالب توجه است. نمودارهای گالن را می توان به انواع کم گودر (کمتر از 1/0 و گودر بالا (بیش از 1/0 دسته بندی کرد. وجود نیکل و کادمیم در یک نمونه (KB5-1998)، نشان از شرایط احیا دارد و افزایش مقدار کادمیم و نیکل به سوی مرکز همراه با افزایش مقدار گودر نویز یابیده بر سرشت گودریودست و حساسیت این دو عنصر به شکل 9. تغییرات کلی تركیب گالن B) تغییرات تركیب از مرکز به کنارها در یکی از نمونههای گالن ب) تصویر نقاط تجزیه شده بر این و تا داده های XPMA در نقطه 2.
بررسی تغییرات ترکیب از لبه به مرکز کانال نشان می‌دهد که به تطبیقی مقادیر گوگرد، و (وگرد، نیکل و کادمیم) به مدت کنارها کاهش و مقادیر سرب، کانال و آن افزایش می‌یابد.

این افت و کاهش ترکیب نشان از تغییر روند تکوین زمین شیمیایی سیال کانال از سیال غنی از نیکل، گوگرد، و کادمیم و تبدیل آن به سیال غنی از آرسنیک، کبالت و وانادیم دارد.

dowload from ijcim.ir at 14:41 +0330 on Saturday September 28th 2019

References:

[23] Barton P.B., Bethke P.M., “Chalcopyrite disease in sphealerite: Pathology and...

