بررسی تغییرات عناصر اصلی، جزئی و نادرداخی در کانسار بنتونیت اسفزاز شرق بیرجند

استان خراسان جنوبی

غلامرضا شجاع‌یامی، جسرو ابراهیمی، محمدحسین زرین‌گوب

1 - گروه زمین‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد
2 - گروه زمین‌شناسی، دانشکده علوم، دانشگاه بیرجند

(دریافت مقاله: ۱۳۹۸/۰۴/۲۷، نسخه نهایی: ۱۳۹۸/۰۷/۲۰)

چکیده: کانسار بنتونیت اسفزاز در ۵۰ کیلومتری شرق بیرجند در استان خراسان جنوبی و در مرز زرقان به‌طور قرار دارد. این کانسار به دلیل توانایی، حضور نمادینی و گسترده‌گی در پرآوران منطقه مورد بررسی، از نوع درونژیا است. بررسی سنگ‌گذاری و شیمی سنگ‌گذاری مجموعه‌بندی‌های بنتونیتی، نشان‌دهنده کاهش میزان ماده‌های دیاکلیتیک، دامپینگ و تراکی آندزیتی هستند. کاکتاس، به‌روش ترکیب تکان‌های مری در زیر مجموعه دریچه‌های سیلیسی و کلیسیم و همچنین درونژیا قابل شناسایی می‌باشد. نشان‌دهنده تغییرات ترکیبی و فیزیکی در ماده، ترکیبی و سنگ‌گذاری از میان این عناصر، وابستگی‌های کلیدی بین بنتونیتی و مواد مولکولیون در روندی است. از نهایت شدید ترکیبی و سنگ‌گذاری از این شکل‌گیری است.

که‌راهمی@um.ac.ir

واژه‌های کلیدی: بنتونیت، موادمولکولیون، درونژیا، دامپینگ، تراکی آندزیتی

مقدمه

بنتونیت‌ها بر پایه نوع کالری هماهنگی دهنه و ویرگی‌های فیزیکی به دو گروه سدیمی و کلسیمی تقسیم می‌شوند. بنتونیت‌های سدیمی معمولاً به صورت‌هایی در کسره وسایع به وجود می‌آیند. این کانسارها مانند کلیسیم‌های اولویتی می‌باشند و در مرکز ایران در آن‌ها به‌وجود می‌آیند (۱)، از این چنین بنتونیت‌های درونژیا

Khebrahimi@um.ac.ir

*نوبت‌نده مسئول، لقب: ۴۰۹۱۵۳۷۲۲۸۷، تماس: ۰۵۱۳۷۳۷۴۳۴، پست الکترونیکی: khebrahimi@um.ac.ir

#نویسنده مسئول، لقب: ۱۹۸۹، تماس: ۵۱۳۷۳۷۴۳۴، پست الکترونیکی: khebrahimi@um.ac.ir

#نویسنده مسئول، لقب: ۱۹۸۹، تماس: ۵۱۳۷۳۷۴۳۴، پست الکترونیکی: khebrahimi@um.ac.ir

#نویسنده مسئول، لقب: ۱۹۸۹، تماس: ۵۱۳۷۳۷۴۳۴، پست الکترونیکی: khebrahimi@um.ac.ir

#نویسنده مسئول، لقب: ۱۹۸۹، تماس: ۵۱۳۷۳۷۴۳۴، پست الکترونیکی: khebrahimi@um.ac.ir

#نویسنده مسئول، لقب: ۱۹۸۹، تماس: ۵۱۳۷۳۷۴۳۴، پست الکترونیکی: khebrahimi@um.ac.ir
شجاع بایی، ایراهی‌یم، زرین کوب
مجله بلورشناسی و گیاهشناسی ایران
شماره چهل و هفتم، تابستان ۱۳۹۷

دوره‌ی انسان‌شناسی، اقتصادی و سیاسی در ایران

در مورد انسان‌شناسی، تحقیقات در این زمینه به‌طور گسترده‌ای انجام می‌شود، اما تحقیقات در زمینه اقتصاد و سیاست ایران به‌طور کمتر به‌کار می‌رود. در این مقاله به بررسی این دو زمینه در ایران پرداخته می‌شود.

در زمینه انسان‌شناسی، تحقیقات به‌طورکمی در موضوعاتی مانند تغییرات آب و هوا، تغییرات اقتصادی و سیاسی در ایران انجام می‌شود. در این مقاله به بررسی این دو موضوع پرداخته می‌شود.

در زمینه اقتصاد، تحقیقات به‌طورکمی در موضوعاتی مانند تغییرات اقتصادی و سیاسی در ایران انجام می‌شود. در این مقاله به بررسی این دو موضوع پرداخته می‌شود.

در زمینه سیاست، تحقیقات به‌طورکمی در موضوعاتی مانند تغییرات اقتصادی و سیاسی در ایران انجام می‌شود. در این مقاله به بررسی این دو موضوع پرداخته می‌شود.

در زمینه انسان‌شناسی، تحقیقات به‌طورکمی در موضوعاتی مانند تغییرات آب و هوا، تغییرات اقتصادی و سیاسی در ایران انجام می‌شود. در این مقاله به بررسی این دو موضوع پرداخته می‌شود.

در زمینه اقتصاد، تحقیقات به‌طورکمی در موضوعاتی مانند تغییرات اقتصادی و سیاسی در ایران انجام می‌شود. در این مقاله به بررسی این دو موضوع پرداخته می‌شود.

در زمینه سیاست، تحقیقات به‌طورکمی در موضوعاتی مانند تغییرات اقتصادی و سیاسی در ایران انجام می‌شود. در این مقاله به بررسی این دو موضوع پرداخته می‌شود.

در زمینه انسان‌شناسی، تحقیقات به‌طورکمی در موضوعاتی مانند تغییرات آب و هوا، تغییرات اقتصادی و سیاسی در ایران انجام می‌شود. در این مقاله به بررسی این دو موضوع پرداخته می‌شود.

در زمینه اقتصاد، تحقیقات به‌طورکمی در موضوعاتی مانند تغییرات اقتصادی و سیاسی در ایران انجام می‌شود. در این مقاله به بررسی این دو موضوع پرداخته می‌شود.

در زمینه سیاست، تحقیقات به‌طورکمی در موضوعاتی مانند تغییرات اقتصادی و سیاسی در ایران انجام می‌شود. در این مقاله به بررسی این دو موضوع پرداخته می‌شود.
برای تعبیر و تفسیر نتایج تجزیه و تحلیل نمونه‌ها از نرم‌افزارهای Excel و GCD.Kit استفاده شده و نقشه زمینشناسی منطقه به کمک نرم‌افزار Arc GIS رسم نشده.

نارک در دانشگاه فردوسی مشهد به شکل شده، نمونه‌ها از آزمایشگاه زرآباد در تهران ICP-MS و XRF و XRD برای ارسال گردید.

شکل ۱: پهن‌الویت در خردفه ایران مرکزی و حاشیه منطقه مورد بررسی در آن.

شکل ۲: نقشه زمین‌شناسی منطقه اسفزار در شرق بیرجند.
سنگ‌گذاری واحدهای گازداری منطقه شامل پیروکسن‌اندزیت، تراکی آندزیت و داسیت، واحدهای آزمایار شامل اینگمیتیت، توف خرد سنگی و توف استیسی و واحدهای آواری شامل سنگ‌های کانی‌گریست، کانی‌گریستی به سنگ‌گذاری آنها بERO شرح زیر است:

آندزیت‌ها: این سنگ‌های دارای بافت پورفیری با زمینه خاکستری، ویژگی‌های حفره‌ای و خال‌های سنگی درشده در سنگ‌های غربالی پایداری را در آنها حدود 5 تا 6 درصد داشته‌اند. سنگ‌های غربالی از 1 تا 5 میلی‌متر متغیر است و دارای منطقه‌بندی‌های انرژی خوراکی و خاکستری و مشخصه‌های حجم‌دارینه‌های کانی‌گریست، کانی‌گریستی در شکل‌های قلبی و روزنامه‌ای و دارای حجم‌های خوراکی غربالی و شکستگی است. آمفیبول و پروکسین بر این سه‌گوی‌ها پایت متون شکل 4.

شکل 4: تصاویر سنتگندگاری گازداری آندزیت در منطقه استقرار اف. پور در خیاطیت پراگیاکلاژ با بافت غربالی B: پلورهای پراگیاکلاژ با بافت غربالی و حاشیه خلیجی و تجزیه بان‌های رسی B: حاشیه وادی‌های خلیجی و شکستگی در پلورهای پراگیاکلاژ و حاشیه وادی‌های پلاژیوکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه‌های وادی‌های پلاژیوکلاژ و خاکستری و شکستگی در پر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورهای پراگیاکلاژ و حاشیه خلیجی و شکستگی در پیر-کانیک در بلوارهای پلاژیوکلاژ و بلوارهای پلورе‌ها را اشغال کرده است و اندازه آنها تا 3 میلی‌متر می‌رسد. از بی‌گیاهی پیر-کانیک‌ها، به ویژگی‌ها و بر اساس میزان شکستگی و پروکسین‌ها.
اینگیمربیت: این سنگ‌ها دارای بی‌پوییری با زمینه شیشه‌ای جریان‌اند. درشت بلورها شامل پلاژیوکلاز، کوارتز، سانیدین، ببیت و آمفیبول هستند. پلاژیوکلاز‌ها دارای بی‌پوییری و منطقه‌بندی هستند. اندازه این کانی‌ها تا ۵ میلی‌متر می‌رسد و حجم آنها حدود ۳۰ درصد است. کوارتز حدود ۲۵ درصد

شکل ۴ تصاویری از گزارش‌های داسیکی منطقه اسکزار: الف) لبه وادی‌بی و خلیجی آمفیبول و ب) پرندگان در کاسار بستونیت

شکل ۵ تصاویری از اینگیمربیت‌های منطقه اسکجار: alf) بلور سانیدین در خمیره شیشه‌ای جریانی، ب) بلور کوارتز با شکستگی و لبه خلیجی، ب) بلورهای کوارتز و ببیت در زمینه جریانی و ت) منطقه بنده و بالات کاساری در بلورهای پلاژیوکلاز. همه تصویرها در نور فلوراند، منطقه اسکزار.
بحث
بررسی ترکیب شیمیایی سنگ میزبان بانه و نمودار Nb\(\text{Y})\) به علت عناصر غیر متحرک [14]، نشان می‌دهد که ترکیب سنگ اولیه در گستره رپولیت - داسیت تا انزیم قرار دارد. قرار گرفتن نمونه‌ها در سنگ میزبان در این نمودار باعث خاستگاه نمونه‌های مورد بررسی و سنگ میزبان تأیید می‌گردد (شکل 6).

بررسی‌های کانی‌شناسی
با توجه به اینکه کانی‌های رسی سی‌های ریز نشسته و با مکروسكوپ‌های معمولی قابل شناسایی نیستند، آنها را با روش XRD گستره مختلف (با مختصات بیان شده در جدول‌های 1 و 2) برای این منظور برداشت شدند که نتایج این نشان دادند و هبیری کانی‌های موجود در آنها شامل: مومنتورولیت، پلاژوکلار، کوارتز، کریستنیت، میکروکلین و مسکوئیت است (شکل 7).

تغییرات عناصر اصلی در کانی‌سازی بنتونیت
برای دریافت تجربه تعادل عناصر طی دگرسانی از نمودارهای کاهی‌گی و افزودگی استفاده می‌شود. در این نمودارهای کاهی‌گی و افزودگی نسبت به سنگ میزبان دگرسان نشده است.

![شکل 6 جایگاه نمونه‌های بنتونیت و سنگ میزبان در نمودار Nb\(\text{Y})-\text{Zr}\text{TiO}_4\) (14)](image)
جدول 3 مقدار عنصر جذی و عنصر خاکی نادر در نمونه‌های مورد بررسی به دست آمده حسب تجزیه.

<table>
<thead>
<tr>
<th>عنصر</th>
<th>عنصر جذی</th>
<th>عنصر خاکی</th>
<th>عنصر (LOI)</th>
<th>عنصر (TF)%</th>
</tr>
</thead>
<tbody>
<tr>
<td>REE</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>La</td>
<td>72</td>
<td>44</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>Ce</td>
<td>71</td>
<td>75</td>
<td>27</td>
<td>25</td>
</tr>
<tr>
<td>Pr</td>
<td>78</td>
<td>78</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Nd</td>
<td>324</td>
<td>229</td>
<td>39</td>
<td>32</td>
</tr>
<tr>
<td>Sm</td>
<td>5.2</td>
<td>5.3</td>
<td>4.8</td>
<td>4.8</td>
</tr>
<tr>
<td>Eu</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Gd</td>
<td>9.2</td>
<td>4.3</td>
<td>4.3</td>
<td>2.3</td>
</tr>
<tr>
<td>Tb</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Dy</td>
<td>5.6</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
</tr>
<tr>
<td>Er</td>
<td>2.9</td>
<td>2.9</td>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td>Tm</td>
<td>0.06</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Yb</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Lu</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Trace Elements</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>Li</td>
<td>11</td>
<td>12</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>Ni</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Cr</td>
<td>9</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>V</td>
<td>13</td>
<td>12</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Cu</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ba</td>
<td>744</td>
<td>443</td>
<td>50</td>
<td>32</td>
</tr>
<tr>
<td>Th</td>
<td>15.7</td>
<td>9.5</td>
<td>9.5</td>
<td>7.5</td>
</tr>
<tr>
<td>Nb</td>
<td>15.3</td>
<td>15.3</td>
<td>15.3</td>
<td>15.3</td>
</tr>
<tr>
<td>Y</td>
<td>23.3</td>
<td>23.3</td>
<td>23.3</td>
<td>23.3</td>
</tr>
<tr>
<td>Hf</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>Ta</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>U</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Pb</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Rb</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Cs</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
</tr>
<tr>
<td>Sr</td>
<td>6.9</td>
<td>6.9</td>
<td>6.9</td>
<td>6.9</td>
</tr>
<tr>
<td>Sc</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Zr</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>مجموع نمونه</td>
<td>X 777994</td>
<td>749949</td>
<td>749949</td>
<td>749949</td>
</tr>
<tr>
<td>Y</td>
<td>3440.35</td>
<td>3440.35</td>
<td>3440.35</td>
<td>3440.35</td>
</tr>
</tbody>
</table>

جدول 1 نتایج تجزیه عنصر اصلی نمونه‌های منطقه اسفار بر حسب درصد وزنی به تفکیک نمونه‌های سنگ میزان و نمونه‌های رسی.

<table>
<thead>
<tr>
<th>عنصر</th>
<th>نمونه</th>
<th>کمیت (YP)</th>
<th>نمونه</th>
<th>کمیت (YP)</th>
<th>نمونه</th>
<th>کمیت (YP)</th>
<th>نمونه</th>
<th>کمیت (YP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>E.01</td>
<td>7.84</td>
<td>E.02</td>
<td>7.89</td>
<td>E.05</td>
<td>8.14</td>
<td>E.07</td>
<td>7.87</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>E.01</td>
<td>12.23</td>
<td>E.02</td>
<td>12.24</td>
<td>E.05</td>
<td>10.7</td>
<td>E.07</td>
<td>10.7</td>
</tr>
<tr>
<td>CaO</td>
<td>E.01</td>
<td>1.41</td>
<td>E.02</td>
<td>1.42</td>
<td>E.05</td>
<td>1.56</td>
<td>E.07</td>
<td>1.76</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>E.01</td>
<td>3.72</td>
<td>E.02</td>
<td>3.68</td>
<td>E.05</td>
<td>3.74</td>
<td>E.07</td>
<td>3.74</td>
</tr>
<tr>
<td>K₂O</td>
<td>E.01</td>
<td>1.69</td>
<td>E.02</td>
<td>1.74</td>
<td>E.05</td>
<td>1.74</td>
<td>E.07</td>
<td>1.74</td>
</tr>
<tr>
<td>MgO</td>
<td>E.01</td>
<td>3.43</td>
<td>E.02</td>
<td>3.43</td>
<td>E.05</td>
<td>3.43</td>
<td>E.07</td>
<td>3.43</td>
</tr>
<tr>
<td>MnO</td>
<td>E.01</td>
<td>3.56</td>
<td>E.02</td>
<td>3.56</td>
<td>E.05</td>
<td>3.56</td>
<td>E.07</td>
<td>3.56</td>
</tr>
<tr>
<td>Na₂O</td>
<td>E.01</td>
<td>1.50</td>
<td>E.02</td>
<td>1.50</td>
<td>E.05</td>
<td>1.50</td>
<td>E.07</td>
<td>1.50</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>E.01</td>
<td>1.11</td>
<td>E.02</td>
<td>1.11</td>
<td>E.05</td>
<td>1.11</td>
<td>E.07</td>
<td>1.11</td>
</tr>
<tr>
<td>SO₃</td>
<td>E.01</td>
<td>0.00</td>
<td>E.02</td>
<td>0.00</td>
<td>E.05</td>
<td>0.00</td>
<td>E.07</td>
<td>0.00</td>
</tr>
<tr>
<td>TiO₂</td>
<td>E.01</td>
<td>0.00</td>
<td>E.02</td>
<td>0.00</td>
<td>E.05</td>
<td>0.00</td>
<td>E.07</td>
<td>0.00</td>
</tr>
<tr>
<td>REE</td>
<td>E.01</td>
<td>9.84</td>
<td>E.02</td>
<td>9.84</td>
<td>E.05</td>
<td>9.84</td>
<td>E.07</td>
<td>9.84</td>
</tr>
<tr>
<td>LOI</td>
<td>E.01</td>
<td>1.45</td>
<td>E.02</td>
<td>1.45</td>
<td>E.05</td>
<td>1.45</td>
<td>E.07</td>
<td>1.45</td>
</tr>
<tr>
<td>REE/LD</td>
<td>E.01</td>
<td>9.84</td>
<td>E.02</td>
<td>9.84</td>
<td>E.05</td>
<td>9.84</td>
<td>E.07</td>
<td>9.84</td>
</tr>
</tbody>
</table>

ICP-MS
گاهی مقدار باریم کمی افزایش دارد ولی در مجموع میانگین آن نسبت به سنگ میزبان کاهش نمی‌یابد. در سنگ‌های میزبان، کلسیم می‌تواند مقدار باریم دارد ولی در سنگ‌های بیشترتر میزان کلسیم نسبت به سنگ میزبان کاهش نمی‌یابد.

مواد نیز به صورت محلول SiO_2 و Al_2O_3 می‌تواند به صورت مخلوط PH نش اساسی دارد. PH گسترش ایجاد می‌شود و در حالت که SiO_2 از حالتی کمتری به‌طور داخلی در این اکسید آلومینیوم از مخلوط PH یزد می‌شود، اما با سنگ مادربارینه تا تا 5 تا Al_2O_3 محلول شده و از مخلوط PH SiO_2 ۹ نامیل شده و با سنگ مادربارینه تا Al_2O_3 در مخلوط PH، PH نسبی طی رخداد بیشتری شدن در منطقه است.

با توجه به این دانستنی‌ها گسترش زیستی، حضور زیستی و لایه‌بندی مشخص و گردش‌های آنها در منطقه بیشتر، به نظر می‌رسد که کلیسیم آلومینیوم از نوع درون‌نیا بوده و در مخلوط زیستی رنگ رخ داده است (شکل‌های 9، 10). افزایش نسبی میزان PH نسبی در منطقه نشان می‌دهد که کلیسیم آلومینیوم از آب دریاچه ناشی شده و در ساختار مونتریولیت مصرف شده‌اند.

تغییرات عناصر سنگی و خاکی نادر در کانی‌سازی بیشتری داشتهاند و سایر عناصر خاکی نادر تغییرات کمی نشان می‌دهند. به منظور مقایسه رفتار عناصر خاکی نادر در ساختار می‌تواند، مقادیر به‌هم‌بند شده این عناصر نسبت به کندربیت بر اساس داده‌های مرجع [۱۹، ۱۷، ۱۸] رسم شد (شکل 12).

عناصر خاکی نادر در بیشتری روندی مشابه سنگ‌های زیستی دارد، با این تفاوت که مقدار تغییرات خاکی نادر در سنگ‌های زیستی تر است. شکل‌های بیشتری نسبت به سنگ میزبان پایین می‌دهد. مقدار این تغییرات در عنصر خاکی نادر سنگانه ناهنجاری است. به منظور بررسی سنگانه از جهت اثرات سنگ بیشتری در عناصر سنگانه است.
متوسط و سنگین (Sm,Yb) است. با نظر می‌رسد که با توجه به پانزده بودن مقدار PH و بالا بودن دمای محیط، عناصر خاکی نادر سبک نسبت به عناصر سنگین کاهش پیشتری داشته‌اند و این موضوع به تشدید تفکیک عناصر خاکی نادر در بندونیت‌ها کمک کرده است. خاکی نادر سبک و سنگین، نسبت‌های La/Yb مقایسه شدند. مقادیر محاسبه شده برای این نسبت‌ها La/Yb در جدول ۳ آمده است. جنابمش دیده می‌شود، مقدار تفکیک بین عناصر خاکی نادر سبک و سنگین (La,Yb)، بیشتر از مقدار تفکیک بین عناصر سبک و متوسط (La,Sm) و نیز (La,Sm) ۱ نشان می‌دهد.

شکل ۹ شیمایی از بخش‌های مختلف خروش، فعالیت انفجاری، مواد خروجی از دهانه و بارش لاپیل و خاکستر آتش‌نشانی.

شکل ۱۰ لاپیدی ذخیره بندونیت در شرق اسفرار

شکل ۱۱ نمودار گرافیکی عنصر جزئی و خاکی نادر در بندونیت‌های کانسار اسفرار، نسبت به سنگ میزبان.
شکل ۲۲ نمونه عکس‌گرفته مایع‌گیری عناصر خاکی نادر نمونه‌های بنتونیت در مقایسه با سنگ میزان، به‌نگار شده به کندریت.[۱۹]

جدول ۲ مقایسه نسبی میزان عناصر خاکی نادر سنگ نسبی و سنگ‌های متصل

<table>
<thead>
<tr>
<th>نمونه</th>
<th>La,Nb/Yb</th>
<th>Eu/Sm</th>
<th>Eu/Nb</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.01</td>
<td>9.8</td>
<td>5.9</td>
<td>0.9</td>
</tr>
<tr>
<td>E.02</td>
<td>10.49</td>
<td>5.05</td>
<td>0.84</td>
</tr>
<tr>
<td>E.05</td>
<td>8.54</td>
<td>4.18</td>
<td>1.57</td>
</tr>
<tr>
<td>E.07</td>
<td>8.28</td>
<td>2.88</td>
<td>1.12</td>
</tr>
<tr>
<td>E.08</td>
<td>7.49</td>
<td>2.48</td>
<td>0.55</td>
</tr>
</tbody>
</table>

پناسیم در این کاتی‌ها جایگاه می‌تارد. افزودگی SiO2 و کاهش Al2O3 در نمونه‌های بنتونیت باینگر پایین بودن PH نسبی ال‌ال‌اوه و رخداد بنتونیت شدن در منطقه است. عناصر سنگ دولتی بزرگ‌پایه از جمله رودیتیم، سرزمین و باریم رفتاری مانند پناسیم دارند و مقدر آنها در بنتونیت پایین است. استرسیم از نظری که می‌تواند مایع‌گیر خارجی کلسیم شود، غنی- شدگی شکلی از ناشی‌رودیتیم در نمونه‌های بنتونیت کلسیم‌دار هستند. ناهنجاری‌های کلسیم‌دار در نمونه‌های پایین بودن مقدار کلسیم نسبت به سدیم در نمونه‌های پایین شدگی مایع‌گیری بیشتر پلاژیولواک و سرزمین‌های پلاژیولواک و مونتیوسیلیت را نشان می‌دهد. عناصری مانند Ni، Cu، Cr،Bracket، وانادیوم و نیترات دیگر سطحی مونتیوسیلیت افراشی تاثیر همگن می‌گیرند. عناصر، وانادیوم، بیشترین غنی شده‌کار دارد.

تغییرات عناصر خاکی نادر در بنتونیت‌های مشابه سنگ میزان است. این عناصر سبک نسبت به عناصر سنگ‌های ناشده بودند.

از اینجاست که مقدار MgO در مکاگی اسیدی و سنگ‌های Mg برآمد از آنها ادکش است و طرفی، مقدار Mg ناهنجاری‌های منفی شان می‌دهد. از اینجاست که این عناصر در فلدسباها جابجایی کلسیم می‌شود. ناهنجاری منفی شان دهنده پایین بودن مقدار کلسیم است؛ بعضی پلاژیولواک‌ها بیشتر از نوع سدیمی هستند.

برداشت

براساس نتایج تگرفتاری و زمین شیمیایی عناصر نادر در سنگ‌های میزان و نمونه‌های بنتونیت، تربیک سبک هستند. ناهنجاری‌های استرسیمی، رودیتیمی ناگهانی است. کالی‌شناسی به تربیک کالی‌های رسین منطقه را از نوع XRD روش مونتیوسیلیت سدیمی و کلسیم‌های سدیمی همراه با پلاژیولواک، کرستالیت‌ها، زیبی و کانتر نشان می‌دهد. در این بنتونیت، زایی با ته‌هایش کیفی توجه پناسیم و آلیومین و ته‌هایش چربی سنگیدی و کلسیم‌های انرژی‌افزودگی قابل توجه سیلیس و شکری را دارد.

نتایج این تحقیق نشان می‌دهد که تربیک با میزان احتمالی اکسیدهای سنگی میزان بودن بنا بر میزانای خارجی شده است. همچنین هنگام دگرگردانی سنگ‌ها خاکستر اولیه، عناصری که کلسیم و میزان‌های آزاد شده از کالی‌های اولیه وارد ساختار بنتونیت شده، و لی

مراجع