توزیع اندازه‌های میانگین پیروکسن و اولوپری و در خروجی‌های حاشیه‌ای شرقی در یافته‌های ارومیه. بررسی احتمال هم‌امیزی و زمان اقامت در اتاق‌های ماکم‌ای

منیر مجرد

گروه زمین شناسی، دانشکده علوم زمین، دانشگاه تهران

چکیده: منطقه‌ای مورد بررسی در فاصله ۱ کیلومتری شبه جزیره اسلامی در شرق درباره ارومیه و در نزدیکی روستای آق‌قند واقع است. سنگ‌ها و یا شبیه به سنگ‌های طبیعی در تونل‌های تکنیکی متراژ نشینه‌ها و مانند می‌شوند در اکثر کوارتز اضافه‌ای از عناصر خاص نادر هستند، جایگاه زمین ساخته شده و بروز به رخ داده‌ها پس از برخورد داشته و برخی نشانه‌های زمین. شیمیایی اشکال به دخل‌های پوسته در تکنیک مه‌گیاک مanol آن دارند. در این یافته در نشانه‌های پیروکسن، پیروکسن و اولوپری موجود در این سطح‌ها از دیدگاه توزیع اندازه‌های یک‌نقطه (CSD) بررسی شده است. منحنی‌های شکستگی با داشتن شکستگی ایجاد شده در این ناحیه، در زمان و برای اولوپری و پیروکسن، سطح شکستگی با اکثریت شکستگی مارکاپانی در دامنه پیروکسن ۵۰۰ سال و برای اولوپری در کناره‌های سطح شکستگی بالاتر توزیع چهار منظوره برنامه‌ریزی کرده و از ۵ سال تا ۱۸ سال به دست می‌آید.

واژه‌های کلیدی: CSD، پیروکسن، اولوپری، زمان انتهایی، ماکم‌ای، نشانه‌ها

مقدمه

از این رو نیاز به سرعت سرد شدن، نیاز به طول آن و نیاز به درست نشانه‌های سنگ‌های اتفاق‌ناپذیر آن‌ها کاهش می‌شود. بررسی توزیع اندازه‌های پیروکسن و اولوپری در شرق درباره ارومیه به دنبال استفاده از روش آزمایشی قبلاً مورد بررسی قرار گرفته و نتایج آن به‌صورت ماتریس دستی (CSD) در بررسی نشانه‌های آزمایشی و از نظر این دستی در این ناحیه، در نشانه‌های پیروکسن، که به دنبال در نشانه‌های پیروکسن و اولوپری در شرق درباره ارومیه به دنبال استفاده از روش آزمایشی قبلاً مورد بررسی قرار گرفته و نتایج آن به‌صورت ماتریس دستی (CSD) در بررسی نشانه‌های آزمایشی و از نظر این دستی

m.modjarrad@urmia.ac.ir

*توپوگرافی مسئول، تلفن: ۹۱۳۴۴۵۴۵۲، تلفن: ۲۶۰۷-۳۰۰۰، پست الکترونیکی: modjarrad@urmia.ac.ir

فرآیندهای وابسته به انتقال‌های مکانیکی را می‌توان با بررسی نمونه‌های گذره در سنگ‌های آتش‌نشانی و یا در سنگ‌های آدرنی درونی که فراورده تاکتیکال منجمد و سخت شده‌اند، مورد بررسی کرد. چنین نمونه‌هایی معمولاً با تجزیه‌های ایزوتوپی و شیمیایی به طور کمی و با مشاهدات بافتی به طور کیفی بررسی می‌شوند. این برخی از جنبه‌های وابسته به بافت سنگ‌ها را می‌توان به طور کمی نیز بررسی کرد.

معمولاً ترین روش استفاده از تعبیه توزیع و پراکندگی انداره‌ای CSD دریافت است (CSD) این روش می‌تواند به شرایط نوین باید بررسی CSD. بررسی فرآیندهای انتقال‌های مکانیکی در انتخاب ماکمی [11] هدف از انجام این پژوهش، بررسی CSD از نظر سنگ‌های آدرنی خروجی و بررسی بین‌های اقطام ماکمی در محفظا‌های درونی، در گستره‌های سرعت شدت (G) تعیین شده و به دست آورد. نرخ هسته‌بندی نوره‌های ناتیولی که همراه با دست‌آمده سی‌آ تواند هم آمیزی ماکمی در خ بویان، نتایج در نرخ هسته‌بندی و سرعت رشد بویان نیز نیز کن.

زمین‌شناسی منطقه

منطقه‌ای مورد بررسی در گرانه‌های دریچه‌ای ارومیه، در

شکل 1: نقشه جایگاه منطقه‌ای آق گنب و راههای دسترنسی به منطقه [14].
دانشکده علوم زمین و محیط زیست (CEE) واحد مشهد مشیریان دانشگاه علوم پزشکی مشهد

پلاسمای چتری شده الکتریکی (ICP-MS) برای تجزیه و تحلیل روش بررسی

جدول 1: نتایج تجزیه شیمیایی 10 گونه ازONMI مورد بررسی (بالاترین اکسید، خاکی-نور) باقی می‌مانند.

<table>
<thead>
<tr>
<th>نمونه</th>
<th>S</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>SM0</th>
<th>SM1</th>
<th>SM3</th>
<th>SM4</th>
<th>SM6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>48.24</td>
<td>50.19</td>
<td>51.80</td>
<td>51.16</td>
<td>46.43</td>
<td>51.41</td>
<td>51.62</td>
<td>52.01</td>
<td>52.54</td>
</tr>
<tr>
<td>Al2O3</td>
<td>11.76</td>
<td>11.44</td>
<td>11.44</td>
<td>11.44</td>
<td>11.44</td>
<td>11.44</td>
<td>11.44</td>
<td>11.44</td>
<td>11.44</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>1.03</td>
<td>1.03</td>
<td>1.03</td>
<td>1.03</td>
<td>1.03</td>
<td>1.03</td>
<td>1.03</td>
<td>1.03</td>
<td>1.03</td>
</tr>
<tr>
<td>MgO</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>CaO</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>K2O</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>P2O5</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
</tr>
</tbody>
</table>

جدول 2: نتایج تجزیه شیمیایی 14 گونه ازONMI مورد بررسی (بالاترین اکسید، خاکی-نور) باقی می‌مانند.

<table>
<thead>
<tr>
<th>نمونه</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>SM0</th>
<th>SM1</th>
<th>SM3</th>
<th>SM4</th>
<th>SM6</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>111</td>
<td>111</td>
<td>111</td>
<td>111</td>
<td>111</td>
<td>111</td>
<td>111</td>
<td>111</td>
<td>111</td>
</tr>
<tr>
<td>Ce</td>
<td>432</td>
<td>432</td>
<td>432</td>
<td>432</td>
<td>432</td>
<td>432</td>
<td>432</td>
<td>432</td>
<td>432</td>
</tr>
<tr>
<td>Pr</td>
<td>233</td>
<td>233</td>
<td>233</td>
<td>233</td>
<td>233</td>
<td>233</td>
<td>233</td>
<td>233</td>
<td>233</td>
</tr>
<tr>
<td>Nd</td>
<td>324</td>
<td>324</td>
<td>324</td>
<td>324</td>
<td>324</td>
<td>324</td>
<td>324</td>
<td>324</td>
<td>324</td>
</tr>
<tr>
<td>Sm</td>
<td>111</td>
<td>111</td>
<td>111</td>
<td>111</td>
<td>111</td>
<td>111</td>
<td>111</td>
<td>111</td>
<td>111</td>
</tr>
<tr>
<td>Eu</td>
<td>203</td>
<td>203</td>
<td>203</td>
<td>203</td>
<td>203</td>
<td>203</td>
<td>203</td>
<td>203</td>
<td>203</td>
</tr>
<tr>
<td>Gd</td>
<td>177</td>
<td>177</td>
<td>177</td>
<td>177</td>
<td>177</td>
<td>177</td>
<td>177</td>
<td>177</td>
<td>177</td>
</tr>
<tr>
<td>Tb</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Dy</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Ho</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Er</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Yb</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Lu</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

(pee) ICP-MS (فلورسنس، XRF) بر روی سایه‌های لولبی، پروپاکس و پروپان در ...
جدول ۲ نتایج تجزیه شیمیایی ۲۱ عنصر فرعی به روش ICP-MS (فرایند عناصر بررسی) (ppm)

<table>
<thead>
<tr>
<th>عنصر</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>SM0</th>
<th>SM3</th>
<th>SM4</th>
<th>SM6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba</td>
<td>2,829</td>
<td>2,37</td>
<td>2,23</td>
<td>1,873</td>
<td>2,340</td>
<td>1,844</td>
<td>3,744</td>
<td>2,777</td>
</tr>
<tr>
<td>Sr</td>
<td>1,349</td>
<td>1,349</td>
<td>1,199</td>
<td>1,230</td>
<td>1,230</td>
<td>1,230</td>
<td>1,230</td>
<td>1,230</td>
</tr>
<tr>
<td>Y</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Zr</td>
<td>0,164</td>
<td>0,164</td>
<td>0,164</td>
<td>0,164</td>
<td>0,164</td>
<td>0,164</td>
<td>0,164</td>
<td>0,164</td>
</tr>
<tr>
<td>Cs</td>
<td>0,84</td>
<td>0,84</td>
<td>0,84</td>
<td>0,84</td>
<td>0,84</td>
<td>0,84</td>
<td>0,84</td>
<td>0,84</td>
</tr>
<tr>
<td>Cr</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
</tr>
<tr>
<td>Ag</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>Sn</td>
<td>0,13</td>
<td>0,13</td>
<td>0,13</td>
<td>0,13</td>
<td>0,13</td>
<td>0,13</td>
<td>0,13</td>
<td>0,13</td>
</tr>
<tr>
<td>Be</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>Co</td>
<td>0,28</td>
<td>0,28</td>
<td>0,28</td>
<td>0,28</td>
<td>0,28</td>
<td>0,28</td>
<td>0,28</td>
<td>0,28</td>
</tr>
<tr>
<td>Ni</td>
<td>0,32</td>
<td>0,32</td>
<td>0,32</td>
<td>0,32</td>
<td>0,32</td>
<td>0,32</td>
<td>0,32</td>
<td>0,32</td>
</tr>
<tr>
<td>Cu</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
</tr>
<tr>
<td>Zn</td>
<td>0,90</td>
<td>0,90</td>
<td>0,90</td>
<td>0,90</td>
<td>0,90</td>
<td>0,90</td>
<td>0,90</td>
<td>0,90</td>
</tr>
<tr>
<td>Ga</td>
<td>0,21</td>
<td>0,21</td>
<td>0,21</td>
<td>0,21</td>
<td>0,21</td>
<td>0,21</td>
<td>0,21</td>
<td>0,21</td>
</tr>
<tr>
<td>Hf</td>
<td>0,29</td>
<td>0,29</td>
<td>0,29</td>
<td>0,29</td>
<td>0,29</td>
<td>0,29</td>
<td>0,29</td>
<td>0,29</td>
</tr>
<tr>
<td>Ta</td>
<td>0,16</td>
<td>0,16</td>
<td>0,16</td>
<td>0,16</td>
<td>0,16</td>
<td>0,16</td>
<td>0,16</td>
<td>0,16</td>
</tr>
<tr>
<td>Mo</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>W</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>Pb</td>
<td>0,12</td>
<td>0,12</td>
<td>0,12</td>
<td>0,12</td>
<td>0,12</td>
<td>0,12</td>
<td>0,12</td>
<td>0,12</td>
</tr>
<tr>
<td>Th</td>
<td>0,51</td>
<td>0,51</td>
<td>0,51</td>
<td>0,51</td>
<td>0,51</td>
<td>0,51</td>
<td>0,51</td>
<td>0,51</td>
</tr>
<tr>
<td>U</td>
<td>0,75</td>
<td>0,75</td>
<td>0,75</td>
<td>0,75</td>
<td>0,75</td>
<td>0,75</td>
<td>0,75</td>
<td>0,75</td>
</tr>
</tbody>
</table>

بحث و بررسی
سنگ نگاری
بررسی‌های سنگ نگاری نشان می‌دهد که سنگ‌های این ناحیه از نوع زیر اشباع از سپیلنس هستند. در این سنگ‌ها که در سنگ‌نگاری از نوع بارالت‌های لوئیسمی - بربوسکسیس دار به نظر می‌رسد، درشت برپاره‌ای از لوئیسمی‌ها، بربوسکسیس، اولیپوئست و پلایزیوریال زونه وجود دارد که در اندازه‌های مختلف ۵ نا می‌شود. میلی موثر در متن سنگ قرار دارد (شکل ۲). گاهی اندکی در سنگ‌نگاری مانند روتاری و بربوسکسیس گاهی در سنگ‌نگاری که در سنگ‌نگاری دستی قابل مشاهده بوده و در محفظه‌های مهمی می‌باشد. در هم مقاطع، به نظر می‌رسد از سنگ‌های به میکروسکوپ بررسی شده و شکاف‌های بربوسکسیس در هر اندازه‌ها حالت شکسته شده‌اند و

ماکم‌ی ایجاد شده باشد.
شکل ۲ تصاویر میکروسکوپی از کانال‌های مشاهده شده در سنگ لوپوسیت (در نور PPL؛ اف) بی‌صورتی نیتروژن‌نامیان خودشکل در زمینه تب‌پیمان‌ها، پیروکسن بی‌صورت مربوط به نگ کی به رنگ قهوه‌ای ظاهر شده اند. پیروکسن بی‌صورت کانال خود شکل در سنگ مشخص است.

شکل ۳ تصاویر میکروسکوپی از سنگ‌های زیر اشباع از سیلیس مشاهده شده در منطقه دانگ در نور PPL، لوله‌های لوپوسیت، پیروکسن و آلوپاسین در سنگ مشاهده شده بود. بی‌صورتی نیتروژن‌نامیان خودشکل در زمینه تب‌پیمان‌ها، پیروکسن بی‌صورت مربوط به نگ کی به رنگ قهوه‌ای ظاهر شده اند. پیروکسن بی‌صورت مربوط به نگ کی به رنگ قهوه‌ای ظاهر شده اند. پیروکسن بی‌صورت کانال خود شکل در سنگ مشخص است.

زمین‌شیمی
نمونه‌های ساحلی و دریایی از نظر اکسید‌آب اصولی در گستره تقریبی و فنوتفرت و با استفاده از عناصر جزئی
در نمونه شکل ب ناهنجاری مثبت Pb و همچنین قیمت Pb در مدگی Cs در دیده می‌شود که در کنار ناهنجاری منفی نسبی شیمیایی بایک و نسبتی زبرین Nb و Ti, Ta در [16] و تر احتمال با کمک اگزسپید با ترکیب منفاته است. ناهنجاری منفی عنصر P می‌تواند به دلیل جداشیت آینیک بوده باشد.

در نمونه عکس‌برداری به‌همچنین شده به یکندرت، عنصر باریم بازیلیته یافت می‌شود. بازیلیته از نظر شعاع بیونی تها عنصر اصلی قابل مقایسه با پاسیم است. باریم از نظر اثرات طرفیت بیشتر از پاسیم است، بنابراین به وسیله ترکیبات ناتامیک تصفیه شده داده‌های قابل استرس نشان می‌دهد که باریم به نسبت در کالینی پاسیم‌پرداز که زودتر
تشکیل می‌شوند، بیشتر است.

استگرازی سنگ‌های قلبی در برگردن پیچیده‌ترین مباحث علم سنگ شناسی است و عواملی متواری در ماهی همچون عمق‌شناسی، دما، زیست‌محیطی، خوراک، آشیانه، رود و
درگویی‌ها انرژی‌سی، و کمیابی، اگزکسپید ساخت-
ماهیابی و رابطه آن بین زمان و در سنجش تکنیک این مسائل به طوری که مکمل و تاید کننده باید به پرسی‌های
سنگ‌زایی مورد نظر است [17].

برای تعیین محیط زمین ساختی تشکیل‌گذاری مولدی ماده
Shale 6 (fig) نمونه‌برداری و تعدادی از نمونه‌برداری
TiO2 - 10MnO - 10P2O5 - Zr منطقه، از نمونه‌برداری 10P2O5
[21] استفاده شده است (شکل 5). این نمونه‌برداری

شیمیایی نمونه‌های مورد نظر در گسترش جغرافیای
زمین ساختی مختلف را برای بازیلیته با گستره سیلیسی

شاید در مرحله اولیه تعیین‌کننده منطقه مورد بررسی در ناحیه (OIA)، بازیلیته قلیایی جزایر

[20] که نمونه‌های منطقه مورد بررسی در ناحیه (OIA) (فرز می‌گردد. ب) نمونه‌پردازی Ti (OJA)

توزیع اندیه‌های سیست‌های لوئیسیت، پیروکسن و اولیوین در...

ب) است. تحلیل نمونه‌های بسته می‌گردد. بر اساس نمودارهای CSD لیولیت پیروکسن (شکل 7) و J را با استفاده از مقادیر G به دست آورده برای آنها 1000 سال است. نرخ هسته‌بندی (J) برای آنها 0.49 به دست آمده در واحد زمان است.

شکل 7 نمودار براکتنگی اندازه بلور (CSD) برای بلورهای انتهایی لوئیسیت، پیروکسن و پ) اولیوین.

جدول ۴ داده‌های CSD به دست آمده از بلورهای لوئیسیت منطقه.

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>G (10^10)</th>
<th>G (10^11)</th>
<th>شیب (-1,G)</th>
<th>ضریب زمان اقامت (سال) بر یکه</th>
<th>زمان اقامت (سال) بر یکه</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-5 (Lc)</td>
<td>32.1</td>
<td>9.9</td>
<td>0.95</td>
<td>99.6</td>
<td></td>
</tr>
<tr>
<td>S-4 (Lc)1</td>
<td>55.5</td>
<td>4.8</td>
<td>4.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-4 (Lc2)</td>
<td>47.7</td>
<td>5.7</td>
<td>57.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sa-4.3 (Lc)</td>
<td>35.5</td>
<td>9.1</td>
<td>90.1</td>
<td>11.7</td>
<td>27.3</td>
</tr>
<tr>
<td>Sa-5.2 bLC</td>
<td>38.0</td>
<td>9.2</td>
<td>92.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sa-18 (Lc)</td>
<td></td>
<td></td>
<td></td>
<td>15.2</td>
<td>24.24</td>
</tr>
<tr>
<td>Sa- 20 1</td>
<td>32.9</td>
<td>9.16</td>
<td>99.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sa- 20 2</td>
<td>37.8</td>
<td>8.46</td>
<td>84.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sa- L.5 (Lc)</td>
<td>33.3</td>
<td>9.32</td>
<td>93.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sa-L.6 (Lc)</td>
<td></td>
<td></td>
<td>14.83</td>
<td>19.24</td>
<td></td>
</tr>
<tr>
<td>Sa- L.7 (Lc)</td>
<td>-23.1</td>
<td>8.39</td>
<td>83.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM-0 (Lc)</td>
<td>-26.1</td>
<td>12.56</td>
<td>122.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G = 10^{-11} L (-1/Gt)

G = 10^{-10} L (-1/Gt)
جدول ۵ داده‌های CSD به دست آمده از بلورهای بی‌پروکسی منطقه.

<table>
<thead>
<tr>
<th>شیب (I.Gt)</th>
<th>مقدار مربوط (Lmn³)/mm³</th>
<th>زمان اقامت (سال) بر پایه $G = 10^{10}$</th>
<th>زمان اقامت (سال) بر پایه $G = 10^{11}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-5 (Px)</td>
<td>118</td>
<td>1,52</td>
<td>77,11</td>
</tr>
<tr>
<td>S-2 (Px)</td>
<td>-24,4</td>
<td>10,13</td>
<td>92,22</td>
</tr>
<tr>
<td>S-3 (Px)</td>
<td>-50,2</td>
<td>12,63</td>
<td>158,91</td>
</tr>
<tr>
<td>S-4 (Px)</td>
<td>-34,4</td>
<td>14,94</td>
<td>176,56</td>
</tr>
<tr>
<td>Sa-4,3 (Px)</td>
<td>-186</td>
<td>1,92</td>
<td>172,04</td>
</tr>
<tr>
<td>Sa-18 (Px)</td>
<td>-36,2</td>
<td>14,94</td>
<td>144,04</td>
</tr>
<tr>
<td>Sa-20 (Px)</td>
<td>-26,4</td>
<td>10,13</td>
<td>159,11</td>
</tr>
<tr>
<td>Sa-20 (Px)</td>
<td>-186</td>
<td>1,92</td>
<td>171,17</td>
</tr>
<tr>
<td>Sa-L.5 (Px)</td>
<td>-183</td>
<td>13,94</td>
<td>134,04</td>
</tr>
<tr>
<td>Sa-L.6 (Px)</td>
<td>-130</td>
<td>1,73</td>
<td>333,57</td>
</tr>
<tr>
<td>Sa-L.7 (Px)</td>
<td>-21,4</td>
<td>11,67</td>
<td>187,12</td>
</tr>
<tr>
<td>SM-0 (Px)</td>
<td>-10,7</td>
<td>9,54</td>
<td>299,9</td>
</tr>
</tbody>
</table>

اندازه بلوری برای کالیهای فرعی CSD در مقابل اتمی این کالیهای است: ۱ دو گستر زمانی مختلف حدود ۲۰۰ سال برای نشان دهنده درست کنار هر دو خاکه و ۲/۳. این نشان دهنده درست کنار هر دو خاکه و ۲/۳. این نشان دهنده درست کنار هر دو خاکه و ۲/۳. این نشان دهنده درست کنار هر دو خاکه و ۲/۳. این نشان دهنده درست کنار هر دو خاکه و ۲/۳. این نشان دهنده درست کنار هر دو خاکه و ۲/۳. این نشان دهنده درست کنار H.

جدول ۶ داده‌های CSD به دست آمده از بلورهای بی‌پروکسی منطقه.

<table>
<thead>
<tr>
<th>شیب (I.Gt)</th>
<th>مقدار مربوط (Lmn³)/mm³</th>
<th>زمان اقامت (سال) بر پایه $G = 10^{10}$</th>
<th>زمان اقامت (سال) بر پایه $G = 10^{11}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-3 (Ol)</td>
<td>296</td>
<td>10,21</td>
<td>10,11</td>
</tr>
<tr>
<td>S-4 (Ol1)</td>
<td>-24,4</td>
<td>14,80</td>
<td>64,21</td>
</tr>
<tr>
<td>S-4 (Ol2)</td>
<td>-28,0</td>
<td>14,80</td>
<td>42,61</td>
</tr>
<tr>
<td>Sa-L.7 (Ol)</td>
<td>-20,4</td>
<td>13,67</td>
<td>10,52</td>
</tr>
<tr>
<td>Sa-L.7 (Ol)</td>
<td>-28,3</td>
<td>11,30</td>
<td>11,20</td>
</tr>
</tbody>
</table>
TABLE 8

<table>
<thead>
<tr>
<th>Sample</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>Result 1</td>
</tr>
<tr>
<td>Sample 2</td>
<td>Result 2</td>
</tr>
</tbody>
</table>

FIGURE 8

A picture showing the distribution of CSD microstructures, distribution of CSD microstructures in different regions and the Wong model of CSD microstructures.

FIGURE 9

A picture showing the distribution of CSD microstructures, distribution of CSD microstructures in different regions and the Wong model of CSD microstructures.
برداشت
سنگ‌های آنتفیشانی مورد بررسی بصورت تیزه‌های به‌هم‌سازی که سنگ‌ها حالت متناوب از تغییرات فنولیت و لوثیسیتیت را دارند، این تناوب بیانگر آن است که ماکم‌های خروجی در واحدهای زمینی متافاکس فوران داشته است که طی هرکی از این زمان‌ها این گروه‌های سنگی خارج شده‌اند.

ماهیت سنگ‌های مورد نظر قلب‌ای بوده و جزء سری شوشتری و پانتاسیم‌های هستند.

نشاندهندگی این اقتصادی-آزمایشگاهی که در معمول راحت‌گر می‌رود گرفته‌اند با دگرگونی مایعاتی که آنها را تشکیل می‌دهند نگریز می‌کنند. اگر بسادگی پرده‌گری و فعالیت‌های پرده‌گری باید تولید مال به شکلی می‌تواند به میزان مشاهده شود از این باید افزایش یابد. منابع اقتصادی این سنگ‌ها را گوشته غنی‌سازی اس‌بی‌پین-، گیرنده‌های اثر در کلولاتی با آهن‌زد دوپین معمولی می‌کند.

سنگ‌های محلی تغییر محسوس و شیمی‌سنجی نشانگر فعالیت آنتفیشانی درون صفحات بروی این سنگ‌های زیر اشکال از سیلیس است.

بررسی منحصراً برای درشت‌ها این CSD بررسی منحصراً هم‌آزمایی ماکم‌های با تغییرات در درشت‌ها این تناوب کانی لوثیسیتیت و ترکیب دو جمعیت آماری از بلورها به هم در یک‌روش ماکم‌های را تائید می‌کند. برای بلورهای لوثیسیتیت، این منحصراً بصورت شکسته‌شده و خمیده‌است که این حالت

شکل ۱۰: تصاویر به دست آمده از مناطق نازک میکروسکوپی، توزیع بلورهای اولویتین در این مناطق و اگر نمونه‌های پلی‌چندین CSD اولویتین اولویتین.
[21] Pearce J.A., “Trace element characteristics of lavas from destructive plate boundaries”, In: