سید محمد حسینی؛ علیرضا داوودی‌نده‌کرده، ناهید شبانیان بروجنی، حسین عزیزی

1- دانشکده مهندسی و اقتصاد، دانشگاه شهید کریمی
2- گروه معدن‌سازی، دانشگاه ملی تهران
(دریافت مقاله: ۱۳۸۹/۱۱/۲۳، نسخه نهایی: ۱۳۹۰/۷/۷)

چکیده: در شمال شرق روسیه با نام جنوب شرقی (جنوب شرقی) در ناحیه ناصری واقع شده است. این ناحیه در حال واقع شدن در این منطقه کاملاً منفی است. این اینکه این ناحیه در حال واقع شدن در این منطقه کاملاً منفی است.

واژه‌های کلیدی: زمین‌شناسی، تپه‌شناسی، مدل‌سازی، مدل‌سازی، مدل‌سازی، مدل‌سازی

مقدمه

ساختمان‌های بازالتی از بین درون صرفه‌جایی LREE همراه با ناهید شبانیان بروجنی، حسین عزیزی

تردید است [12] برای از پژوهشگران نت‌های صخیه‌های مانندی را در تشکیل چند ماهماهی دخیل می‌داند. [1] در حالی که نت‌های صخیه‌های دیگر با چگونگی دیگری دیده می‌شود. ماهماهی صخیه‌های برای بازالتی از بین درون صرفه‌جایی LREE همراه با ناهید شبانیان بروجنی، حسین عزیزی

بازالت‌های منطقه قاره‌ای گسترش بیشتری کسب می‌کنند. گسترش بازالت‌های پایستار به تغییرات انرژی در دما سطح و فشار جدید بوده و معمولاً کمتر به جدایی بلوی حساس هستند. [13] به گروه نت‌های پایین می‌تواند (Ti/Y<500) و گروه نت‌های بالا (Ti/Y>500) در اثر فرآیند جدایی تغییر نمکند.

نکته‌ای از این دارد که درجه ذوب‌شدن و یا آیمنتگی سازگاری منفی تفاوت نسبت داده می‌شود. طوری که هر چه ذوب افزایش یابد،
در اینجا با استفاده از داده‌های زمین‌شناسی عناصر اصلی و کمیاب، زمین‌شناسی و سنگ‌زایی سطح مادر-امفیبولیت‌ها شمال شرق روستای یان چمه در شمال استان چهارمحال و بختیاری بررسی می‌شود.

زمین‌شناسی منطقه

منطقه مورد بررسی در جنوب دریاچه سد زایندو رود واقع شده است. در شمال شرق روستای یان چمه در موقعیت ۳۲° ۴۳'-۵۳" شرقی و ۵۲° ۵۰'-۵۳" شمال تا ۵۴° ۳۳'-۴۵" شمال شمال مجموعه‌ای از سنگ‌های دگرگونی و دکترالکش وجود دارد که به عنوان بخشی از مجموعه

دگرگونی شمال شرقی در یکی از گربه‌های زیر است. در نظر گرفتن می‌شود (شکل ۱) این مجموعه دگرگونی به ترتیب فراوانی مشکل از آمفیبولیت، کوارتزيت، شیست کوارتزر- فلدسباری و مرمر است. کوارتژیت‌ها به اندازه کافی شیست کوارتزر- فلدسبار و مرمر است. کوارتژیت‌ها افشته‌گی به اندازه کافی شیست کوارتزر- فلدسبار و مرمر است. کوارتژیت‌ها افشته‌گی به اندازه کافی شیست

شکل ۱ ۱/۱۱۱۲ منطقه مورد بررسی پر نقش ایران و نقشه زمین‌شناسی (برگرفته از مرجع [۱۱] با اندکی تغییرات).
ناحیه مورد بررسی بخشی از مجموعه دگرگونی شمال شهرکرد بوده که در ایال تنوعی از سنگ‌های آفلوزیت، آمیپیولیت، گارنت، آمیپیولیت، مرمر، ستینسیت، اتروتکایس، پاراگنیت و مناگنیت‌های میلونیتی است. زمان دگرگونی این سنگ‌ها بر اساس نتایج سن‌سنجی
بر 40Ar/39Ar پلورهای میکای سفید فندیز ویزاسیک زیرین مشخص شده

است [11] در نتیجه این دگرگونی سنگ‌هایی با رخ‌های دگرگونی اکلوژیت تشکیل شده‌اند. با پاسخ زمان شروع
فرورانش اكلاژیت نوتوتیس به زیر پهنه سندرچ سیرجان
184 میلیون سال پیش (زوراسیک پیشین) است [11]. پس از
رخ‌دادگرگونی فشار بالا، سنگ‌های دگرگونی به سمت با
صدود گره و در سری‌آوری دچار دگرگونی رخ‌های آمپیپولیت

شکل 2. (الف) کوارتز‌تیت با اغست‌گی به حلول و آمیپپولیت ترورتیت. ب) سنگ‌های آمپپولیت در سنگ‌های
آمپپولیتی. (ب) به‌نواز میدان دید 3 میلی‌متر و نور XPL (XPL، ت) پورفیروکلاست‌های آمپپولیت که حفره راستگرد را نشان می‌دهند؛ (ب) به‌نواز میدان دید 3 میلی‌متر و نور XPL، (پ) پورفیروکلاست‌های آمپپولیت که در اثر دگرگشکل دیاماسیک منطقه، به اکستینو دوزی تبدیل شده‌اند، (پ) به‌نواز میدان دید 3 میلی‌متر و نور XPL (چ) پورفیروکلاست‌های آمپپولیت که در اثر دگرگشکل دیاماسیک منطقه، به اکستینو دوزی تبدیل شده‌اند
کلیسیت و کانی‌های کدر تشکیل‌شدهاند. این سنگ‌ها بافت
میولوئیتی (شکل ۲ پ) نشان می‌دهند و اینگونه کانی‌ها به صورت
زیر است
امپیبول به صورت پورفورولیت‌کلاست متوسط تا مراکزیت با رنگ
سیاه روشن تا سبز مایل به زرد دیده می‌شود که به طور کلی
چندگانه شدیدی نشان می‌دهد. امپیبول درشت در نور
طیبی در اثر درگشتکی دچار رنگ مردگی شده و در نور
قطف‌فیت نیز کاملاً سفید نشان می‌دهد. این کاکی در مقاطع
طولی یک دسته رخ و در مقاطع عرضی دو دسته رخ دارد که
به عنت آبی‌زی و تبدیل به کلریت و پیوستن در امتداد آن
ازآورده تیتانیت رخ داده است. این آورده رخ در شکل
دبیمی‌ المنطقه، بیشتر به صورت امپیبول ماهی در آب‌دان که
براساس (زندی‌مرجع) [۱] در رده ۲ و ۳، در می‌گردد و
جهت حکم راکتر را نشان می‌دهد (شکل ۲ پ). این
کاکی‌ها در اثر میولوئیت شدن شدید تبدیل به اکتیونت‌های با
دسته علی‌جهت شدن که زنده و برگزاره دچار را تکیه
دادهاند (شکل ۲ پ). پورفورولیت‌کلاستی امپیبول احتمالاً
گاهی در اثر درگشتکی‌های نیمه سکنا و شکن‌بندی دچار
خردنگی و جایگاهی قطعات شدیداند (شکل ۲ ج) که فضای
بین قطعات خرد شده را کلسیت و کلریت پر کردهاند. درصد
پورفورولیت‌کلاستی امپیبول نسبت به زنده سنگ با افزایش
شید درگشتکی کاهش یافته است.
پلازیکلاست‌ها بیشتر به صورت پورفورولیت‌کلاست‌های کوهک
دیده می‌شود که معمولاً چشته برش راست‌گردا را نشان می-\nدهند. این گاهی دارای ماکت تکاری (چندتاجی) هستند و
اثر تجزیه به سری‌های آن‌ها شکن می‌دهند. این کاکی‌ها به
صورت ریز بلوژ زنده سنگ را تکیه بخش می‌دهند و همگام با
کارتون فضای بین پلورها را پر کردهاند.
کارتون با اداره کوهک فضای بین دانه‌ها را پر کرد است و
گاهی دارای کچیدگی است. همچنین بلوژ کارترز در برخی
موارد به صورت رمگاه‌های بلوژ کارترز را قطع کردهاند که
دارای خاموشی موجب شده‌است. این موضوع بیانگر تأثیر
فازهای درگشتکی‌های از ورود رگه‌های سیلیسی به درون
سنگ است.

پس از برداشت نمونه‌ها باید مختل‌ساز جغرافیایی توسط
GPS دسته‌گهی از بین آنها ۳۰ نمونه سالم جهت مقطع ناک
انگبان شد پس از نهایی مقاطع نازک، بررسی دقیق
کانی‌نشانی‌سنگ‌شناسی و ریسک‌سنجی نمونه‌ها انجام و
مدار ذخیره‌سنجی‌های ویژه توصیه شده و همچنین
توصیه از دور از آنها برای اجتناب از

روش انجم شد

و از دیدگاه علمی دانشجویانی که در مورد این

یک تحقیق جدید در حوزه دانشجویی

مجله بوروندی و کانی‌شناسی ایران

حسینی، داوودیان دهکاری، شببانی بروجی، عزیزی

صلحی

به همراه می‌پردازند (ننین) از نگاه درگشتکی شکل‌پذیر
شنگن [۱۱،۱۲]. بنابراین، می‌بایست بررسی در این
پژوهش بر اساس از دگرگویی در شاخه اثرات و رخدادهای
به‌بستر به این‌سانستگه‌های این مجموعه دگرگویی
(پیوسته شیسته‌های کارتون-فولسفات) دارای برگ‌های و
خوشه بارزی بوده و خوشه کشته آن‌ها که مخلوطی از
سنگ‌های درگشتکی وزنی در نظر گرفته‌های اصلی می‌باشد.
سنگ‌های شیسته‌های کارتون، از جهت دیده‌شده ۳۰۰ تا
۳۲ دیره (پس از انجم شد) با زاویه شیب می‌باشد.
این خوشه به موارد روند کلی کوه‌های زاگرس ارتقای
سنجین می‌باشد. این خوشه‌ها می‌توانند موجب ایجاد
سنگ‌های مناسب‌سنجی و اکتشافی می‌باشند. موجب
می‌باشد که نسبت مادر (پورفورولیت) بازالتی هستند و در یک
مبحث رفت‌میانه ایجاد شدهاند. [۱۳]
میکاک سفید (فنیت) در سنگ‌هایی که دچار روشکافی بی‌سرعت شده‌اند، فراوانی بر این که در اندامها کوچک و دارای جهت‌گیری مشترک شده، از گروه‌گیری اصلی سنگ‌پروری می‌کند و به‌طور پیوسته‌ای پلاژیوکلاز و آمفیبول را در می‌آورد.

کلینوژئیت‌ها به‌صورت دانه‌های منفرده یا گلایه‌های بسیار اجتماعی از جهت بلو دیده می‌شوند و غالباً ناشی از دکرپت و همچنین درکرپت‌های آمفیبول هستند. این بلوها با توجه به ابعاد معمولاً هم بعد دانه هستند و جهت‌گیری خاصی را نشان می‌دهند.

بی‌سبت هم طی‌گیری و دکرپت‌های آمفیبول تشكل‌های شندان و به‌همین علت بدن شکل هستند. آنها دارای چندین بؤلقه‌های روشنه تا بی‌شکن و معمولاً خشک نمی‌سوزند.

تیتانیت به‌صورت شکل‌های دیده می‌شود و بی‌سبت به صورت تجزیه‌ور در اندام‌های آمفیبول‌ها و اطراف کفتر کدی‌های می‌شود (شکل 2 ج). کلریت برآمده از تجزیه کفتر آمفیبول و دارای کندرکنشی سیز‌کریست تابی‌نگ در است. کاکی کفتر به‌صورت کشیده‌دیده می‌شود و در راستای جهت‌باف‌گی کلی سنگ‌فرآور می‌گردد. این کاکی از اطراف در حال تبدیل به تیتانیت است که به‌طور کامل صورت گرفته است و درون‌ریخت هستند. در مرکز و هسته و برخی از کاکی‌های کفتر می‌توان کاکی رونالد را مشاهده کرد. نیترای ترکیب‌ی این کاکی‌های کفتر احتمالاً ایلامه‌ای است که از دکرپت‌های کاکی رونالد شکل گرفته‌اند.

زمین‌شیمی
نتاج تجزیه نمودنی به‌روش‌های در ICP-OES و ICP-MS

[DOI: 10.29252/ijcm.27.1.19]
جدول 1. نتایج تجزیه أمینولیت‌های شمال‌شرق پای چشم به روش‌های ICP-OES و ICP-MS (عناصر اصلی بر حسب درصد وزنی، فرعی، عناصر کمیاب و REE ها بر حسب ppm)

<table>
<thead>
<tr>
<th>عنصر</th>
<th>Ho-1-6</th>
<th>Ho-2-1</th>
<th>Ho-2-2</th>
<th>Ho-2-3</th>
<th>Ho-2-5</th>
<th>Ho-2-6</th>
<th>Ho-2-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂ %Wt</td>
<td>44.31</td>
<td>44.21</td>
<td>44.10</td>
<td>44.00</td>
<td>43.90</td>
<td>43.80</td>
<td>43.70</td>
</tr>
<tr>
<td>Fe₂O₃*</td>
<td>9.30</td>
<td>10.18</td>
<td>8.80</td>
<td>8.95</td>
<td>8.87</td>
<td>8.94</td>
<td>8.77</td>
</tr>
<tr>
<td>MgO</td>
<td>13.16</td>
<td>13.01</td>
<td>13.13</td>
<td>13.16</td>
<td>13.12</td>
<td>13.10</td>
<td>13.16</td>
</tr>
<tr>
<td>CaO</td>
<td>1.91</td>
<td>1.89</td>
<td>1.93</td>
<td>1.91</td>
<td>1.91</td>
<td>1.88</td>
<td>1.92</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.36</td>
<td>1.80</td>
<td>1.95</td>
<td>1.99</td>
<td>1.88</td>
<td>1.77</td>
<td>1.80</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.36</td>
<td>1.52</td>
<td>1.63</td>
<td>1.57</td>
<td>1.72</td>
<td>1.72</td>
<td>1.72</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.06</td>
<td>1.48</td>
<td>1.53</td>
<td>1.54</td>
<td>1.44</td>
<td>1.40</td>
<td>1.44</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.32</td>
<td>0.31</td>
<td>0.37</td>
<td>0.35</td>
<td>0.34</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>MnO</td>
<td>0.87</td>
<td>0.91</td>
<td>0.97</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>MgO</td>
<td>1.70</td>
<td>1.66</td>
<td>1.71</td>
<td>1.70</td>
<td>1.70</td>
<td>1.70</td>
<td>1.70</td>
</tr>
<tr>
<td>CaO</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
</tr>
<tr>
<td>SiO₂ %Wt</td>
<td>44.31</td>
<td>44.21</td>
<td>44.10</td>
<td>44.00</td>
<td>43.90</td>
<td>43.80</td>
<td>43.70</td>
</tr>
<tr>
<td>Fe₂O₃*</td>
<td>9.30</td>
<td>10.18</td>
<td>8.80</td>
<td>8.95</td>
<td>8.87</td>
<td>8.94</td>
<td>8.77</td>
</tr>
<tr>
<td>MgO</td>
<td>13.16</td>
<td>13.01</td>
<td>13.13</td>
<td>13.16</td>
<td>13.12</td>
<td>13.10</td>
<td>13.16</td>
</tr>
<tr>
<td>CaO</td>
<td>1.91</td>
<td>1.89</td>
<td>1.93</td>
<td>1.91</td>
<td>1.91</td>
<td>1.88</td>
<td>1.92</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.36</td>
<td>1.80</td>
<td>1.95</td>
<td>1.99</td>
<td>1.88</td>
<td>1.77</td>
<td>1.80</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.36</td>
<td>1.52</td>
<td>1.63</td>
<td>1.57</td>
<td>1.72</td>
<td>1.72</td>
<td>1.72</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.06</td>
<td>1.48</td>
<td>1.53</td>
<td>1.54</td>
<td>1.44</td>
<td>1.40</td>
<td>1.44</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.32</td>
<td>0.31</td>
<td>0.37</td>
<td>0.35</td>
<td>0.34</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>MnO</td>
<td>0.87</td>
<td>0.91</td>
<td>0.97</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>MgO</td>
<td>1.70</td>
<td>1.66</td>
<td>1.71</td>
<td>1.70</td>
<td>1.70</td>
<td>1.70</td>
<td>1.70</td>
</tr>
<tr>
<td>CaO</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
</tr>
</tbody>
</table>

میزان مجموع

| عنصر | Ba (ppm) | Ni | Sc | Cr | Co | Cs | Ga | Hf | Nb | Rb | Sr | Ta | Th | U | V | W | Zr | Y | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu |
|-------|----------|
| Fe₂O₃* | 1.70 | 1.66 | 1.71 | 1.70 |

Fe₂O₃ کلیه تصویر و رنگ
و نمونه‌ها در گستره آدرین قرار می‌گیرند. نیز

$[\text{TiO}_2]$ نسبت به $[\text{FeO}/\text{MgO}]$ نمودار گی‌گردان که نشان می‌دهد که سنگ‌های مورد بررسی از واریانس تغییرات در $[\text{SiO}_2]$ نسبت به $[\text{K}_2\text{O}]$ نمودار K_2O نسبت به $[\text{SiO}_2]$ نمودار K_2O نسبت به $[\text{SiO}_2]$ نمودار K_2O نسبت به $[\text{SiO}_2]$ نمودار
گروه عنصر خاکی نادر (REE) به همراه مسیره (REE) همچنین عنصر خاکی نادر سیک (LREE) (مقدار Ln/Ln بین 0.61 تا 1.56 و مقدار Ce/Ce بین 0.42 تا 0.64) را نشان می‌دهد (شکل 4). که پتانسیل ماکمای نوی سازگاری پیش‌های میان ایانوئی (E-MORB) و حضور احتمالی گرانت در خاستگاه است (20). همچنین ناهنجاری Eu/Eu* (E/Eu*) ناشی از ضعیف مثبت منفی) از REE محلولی (0.3 تا 0.89) نیز دیده می‌شود. REE فروزنه (Gd/La) REE به همراه نشان‌دهنده نقش خاصی می‌کند در یک جدایی بلوری کلیوپیپروسکس و پلازاکلاز از مرگ بدون اولویت است (شکل 4).

شکل 4: نمودار تغییرات نسبت به مقدار عنصر Zr.

[24] زیرا هوشیلند توسط غنی‌شدن REE و بهبود غنی‌شدن REE ممکن است. نادر متوسط ممکن است به عنصر غنی‌شدن REE که در کبد غنی‌شدن REE (LREE) (نسبت به عنصر خاکی نادر سیک (HREE) (مقدار Ln/Ln بین 0.61 تا 1.56 و مقدار Ce/Ce بین 0.42 تا 0.64) را نشان می‌دهد (شکل 5). که پتانسیل ماکمای نوی سازگاری پیش‌های میان ایانوئی (E-MORB) و حضور احتمالی گرانت در خاستگاه است (20). همچنین ناهنجاری Eu/Eu* (E/Eu*) ناشی از ضعیف مثبت منفی) از REE محلولی (0.3 تا 0.89) نیز دیده می‌شود. REE فروزنه (Gd/La) REE به همراه نشان‌دهنده نقش خاصی می‌کند در یک جدایی بلوری کلیوپیپروسکس و پلازاکلاز از مرگ بدون اولویت است (شکل 4).
شکل 5: الگوی REE به‌هم‌شدن نسبت به کندیت برای آمفیبولیت‌های شمال‌شرقی یان چشم [23] و بی‌مقدار به‌هم‌شدن شده عناصر کمیاب REE این آمفیبولیت‌ها نسبت به MORB [28].

شکل 6: تغییرات مقدار MgO بر حسب شیمیایی CaO حسب که نشان می‌دهد که اساساً اولویت در تکرار ماسا دخیل است و بی‌مقدار در MgO بر حسب Fe2O3

ماین‌پی نسبت داده می‌شود [26]. میزان‌های گوشتخانه‌ی دارای حدود 21 درصد [29] و محاسبه‌ای این نسبت در الیاف قاره‌ای بالای 50 درصد [32] در سنگ‌های مردن بررسی این نسبت از 1.8 تا 2.4 (با میانگین 2) تغییر می‌کند و در نمونه‌های ثابت در نزدیکی خط مانندی اولیه قرار می‌گیرند (شکل 5) که نشان می‌دهد عدم آلودگی توسط الیاف قاره‌ای Zr, Nb, Ti. همچنین مقدار پایین (شکل 6) در مقایسه با سنگ‌های پوسته‌ای (به ترتیب 0.25, 0.37, 0.42, 0.45, 0.50) در میان‌های گوشتخانه وجود ندارد. این در حالی است که این مقدار در الیاف (OIB) به شاهد به‌هم‌شدن حلال‌های آنتی‌روسی (اروپیا) (شکل 5) همکاری می‌کند و مقدار این آمفیبولیت‌ها می‌تواند برآمد از یک گوشتخانه‌ایی اویلی با خاستگاه (Ba, Rb, K) LILE. پایین Y, Zr و Nb با نسبت بین OIB و با رفتار آمفیبولیت‌ها در ماگماها سیالی قاره‌ای دما بالا و اولیه است.

میانه‌ی زمین‌ساختی و سنگ‌زایی ترکیب شیمیایی آمفیبولیت‌های مورد بررسی نشان دهنده یک سنگ مادره‌ی پرزی با میزان‌های لیتوژنیک است. مقدار پایین و P2O5, Zr, TiO2 از هر زمان با ناهنجاری منفی منجی LREE از میزان‌های باز Nبازت‌های تولیدی سیالی قاره‌ای است [24]. همچنین در نمونه‌های مورد بررسی در گستره درون Ti نسبت به Ti نمونه‌های مورد بررسی در گستره درون MgO به مبنای آلودگی می‌گردد (شکل 7). در اگزی و جدیدترین به‌هم‌شدن شده به منته و الگوی عناصر خاکی نادر به‌هم‌شدن شده به کندیت غنی‌شدن LREE و LILE گوشتخانه با ریزت این سنگ‌زایی.

همچنین مقدارهای قبیل مثلاً Rb (4.5 - 0.5) و نیز نشان می‌دهد که احتال آلودگی پوسته‌ای کم است. مقدارهای بیشتر نشان می‌دهد که میزان توسط مواد پوسته‌ای آلودگی خارجی آباده این نشان می‌دهد که میزان توسط مواد پوسته‌ای آلودگی خارجی آباده

شکل 7 افزایش V/

در آن نشان می‌دهد در انتها مرحله اولیه قرار گرفتن آلودگی در درجه دوم نسبت آلودگی پوسته‌ای است.

همچنین مقایسه میزان‌های پلیمر شیمیایی در محدوده نسبت آلودگی توسط مواد پوسته‌ای آلودگی خارجی,

به یک کربن فلزی در تراکم‌های مختلف می‌باشد. برای مثال در طی آباده‌ای آباده

در محدوده بین نسبت آلودگی و نسبت آلودگی خارجی است. شکل 7 نشان می‌دهد که میزان آلودگی پوسته‌ای در درجه دوم نسبت آلودگی پوسته‌ای آلودگی خارجی,

به یک کربن فلزی در تراکم‌های مختلف می‌باشد. برای مثال در طی آباده‌ای آباده

به یک کربن فلزی در تراکم‌های مختلف می‌باشد. برای مثال در طی آباده‌ای آباده,

به یک کربن فلزی در تراکم‌های مختلف می‌باشد. برای مثال در طی آباده‌ای آباده,

به یک کربن فلزی در تراکم‌های مختلف می‌باشد. برای مثال در طی آباده‌ای آباده,

به یک کربن فلزی در تراکم‌های مختلف می‌باشد. برای مثال در طی آباده‌ای آباده,

به یک کربن فلزی در تراکم‌های مختلف می‌باشد. برای مثال در طی آباده‌ای آباده,

به یک کربن فلزی در تراکم‌های مختلف می‌باشد. برای مثال در طی آباده‌ای آباده,

به یک کربن فلزی در تراکم‌های مختلف می‌باشد. برای مثال در طی آباده‌ای آباده,

به یک کربن فلزی در تراکم‌های مختلف می‌باشد. برای مثال در طی آباده‌ای آباده,

به یک کربن فلزی در تراکم‌های مختلف می‌باشد. برای مثال در طی آباده‌ای آباده,

به یک کربن فلزی در تراکم‌های مختلف می‌باشد. برای مثال در طی آباده‌ای آباده,

به یک کربن فلزی در تراکم‌های مختلف می‌باشد. برای مثال در طی آباده‌ای آباده,

به یک کربن فلزی در تراکم‌های مختلف می‌باشد. برای مثال در طی آباده‌ای آباده,

به یک کربن فلزی در تراکم‌های مختلف می‌باشد. برای مثال در طی آباده‌ای آباده,

به یک کربن فلزی در تراکم‌های مختلف می‌باشد. برای مثال در طی آباده‌ای آباده,

References:

[34] Boillot G., Coulon C. "La déchirure continentale et l'ouverture océanique, Géologie