سنتز، شناسایی و تعبیه ساختار بلوری پلیمر کوتوربندیسپونی جدید از کادمیم (II) بر پایه لیگاندهای پیریدین هیدرازید

بهروز نوتاش

گروه شیمی معدنی و کاتالیست، دانشکده علوم شیمی و نقشه، دانشگاه شهید بهشتی، اپور، تهران/ ایران

چکیده: دو ترکیب پلیمری جدید از کادمیم استفاده از دو ایزومر از لیگاندهای پیریدین هیدرازید تهیه و ساختار آنها به روش پراش پترو انکس تک بلور شناسایی شد. بررسی‌های ساختاری نشان داد که هر دو ترکیب در سیستم بلوری تک‌اکسیژن و گروه [Cd(OAc)2(L1H)]2(1) و [Cd(OAc)2(L2H)L2(EtOH)]3(2) پیش‌آمده است. لایه‌های بلوری [Cd(OAc)2(L1H)]2(1) از دیدگاه دو‌بعدی و چندگانه هستند.

واژه‌کلیدی: پلیمر کوتوربندیسپونی، ساختار بلوری، تک میل، بیوند هیدزاژ، کادمیم.
بهروز نوتاش

ضمناً، تنهی ترکیب پلیمری (L1H) و (Cd(OAc)₂(L1H))ₙ (ترکیب ۱) و (Cd₃(OAc)₃(L2H)L₂(EtOH))ₙ (ترکیب ۲) به عنوان لیگاند با نسبت مولی ۱:۱ از نمک فلزی و لیگاند به روش شبیه گرمایی (همرفت) و با استفاده از لوله دارای شاخه جابجای حمام رونق به دمای در گستره ۵۰۰-۶۰۰°C در حلال‌های متناسب و آتانول تبهی شدند.

روش‌های تجزیه

همه موارد مورد استفاده در این پژوهش از شرکت مرک و آلدریج تنهی شدند و بدون هیچ گونه خاصل سازی مورد استفاده قرار گرفتند. طیف‌های فرسنگی (cm⁻¹) نمونه‌ها با KBr به وسیله دستگاه فرسنگ شیمادزو GDU-10C ۴۰۰ مجهر به کامپیوتری از نوع شیمادزو مدل ۲۷۵ ثبت شدند. همچنین داده‌های تجزیه‌گری نمونه‌ها نیز با انسپتابولوگی LA اندازه‌گیری شدند. ساختار بلوری ۹۱۰۰ الکترون‌سنجی STOE مدل IPDS-II ترکیب‌ها با برژشنب پرتو اکسید شده. نتایج مولکولی از نمک فلزی و لیگاند با استفاده از روش شبیه گرمایی (همرفت) در حمام رونق با گستره دمایی ۵۰۰-۶۰۰°C در حلال‌های آتانول تبهی شد. بلورهای مناسب مشورت شکل و برگی این ترکیب از حدود یک هفته در شاخه جابجای حمام نظر شکل گرفته‌اند که چهار انجام

شکل ۱ از این پروپتی می‌توان پاسخ‌های اکسیژن و نیتروژن با گویه‌های رنگی نشان داده شده‌اند.

با لیگاند‌های پاراپیریدن هیدراتید (L1H) و متایپریدین (L2H) و (Cd(OAc)₂(L1H))ₙ (دو ترکیب پلیمری) با تبهی در حلال‌های متناسب و آتانول تبهی شدند.

پایه پرتو‌سنگی از نوع Imag plate مجهز به یک نک-۱۴۰۰ فام ساز گرافیتی چهت نق دانستنی به (Mo-Kα) به انجام گرفت. جمع‌آوری اطلاعات در (Mo-Kα) از تیزی مورد نیاز بر X-AREA و با استفاده از سیستم انرژی افزایشی [۴۶] انجام گرفت. نتایج جنب به صورت مورد و با پروتئین X-AREA و X-RED32 [۷۳] صورت گرفت.
بررسی ساختارهای بلوری و برهم کنش‌های غیرکووالانسی در ترکیب‌های ۱ و ۲ \(\text{[Cd(OAc)₃(LH)]} \text{۲} \text{cm}^{-1}\)

و همچنین نو‌نواهی‌های جذبی مربوط به گروه کربنیل \(\text{N-H}\) آمید و \(\text{NH}_₄\) آمین، به ترتیب در ۱۵۵۰ و ۱۴۹۰ \(\text{cm}^{-1}\) و ۳۴۳۸ \(\text{cm}^{-1}\) به ترکیب ۲ دیده شد. نواهایی‌های جذبی و حضور \(\text{C-H}\) افتاده \(\text{NH}_₂\)، \(\text{CH}₂\) و \(\text{C-OH}\) همچنین تأثیری نداشتند.

جدول ۱ نتایج تجزیه عناصری ترکیب‌های ۱ و ۲

<table>
<thead>
<tr>
<th>C</th>
<th>H</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۳۸</td>
<td>۳۹۱</td>
<td>۱۱۶۵</td>
</tr>
<tr>
<td>۳۱۴</td>
<td>۳۵۷</td>
<td>۱۱۴۳</td>
</tr>
<tr>
<td>۳۱۴</td>
<td>۳۵۷</td>
<td>۱۱۴۳</td>
</tr>
</tbody>
</table>

درصد وزنی (محاسبه شده) درصد وزنی (تجزیبی)
جدول ۲ داده‌های پلورشانسی ترکیب‌های ۱ و ۲

<table>
<thead>
<tr>
<th>[Cd₆(OAc)₃(L₂H)L₂(EtOH)]₀.(2)</th>
<th>[Cd₂(OAc)₃(L₁H)]₀.(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نام ترکیب</td>
<td></td>
</tr>
<tr>
<td>C₆H₅Cd₃N₃O₆</td>
<td>C₆H₅Cd₂N₃O₆</td>
</tr>
<tr>
<td>جرم مولکولی (g mol⁻¹)</td>
<td>437.4</td>
</tr>
<tr>
<td>رنگ بلور-شکل</td>
<td>بینهایت منشوری</td>
</tr>
<tr>
<td>اندازه بلور (mm)</td>
<td>۰.۵ × ۰.۵ × ۰.۵</td>
</tr>
<tr>
<td>جریان مولکولی (Å)</td>
<td>۸۷.۶۱-۷۳.۲۷</td>
</tr>
<tr>
<td>دما (K)</td>
<td>۱۲۰.۵</td>
</tr>
<tr>
<td>ترمیم</td>
<td>سیستم بلوری</td>
</tr>
<tr>
<td>P̃</td>
<td>P̃</td>
</tr>
<tr>
<td>جرخ فضایی</td>
<td>گروه فضایی</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[Cd(OAc)₂(L₁H)]₀(1)</th>
<th>[Cd₂(OAc)₃(L₂H)L₂(EtOH)]₀.(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نام ترکیب</td>
<td></td>
</tr>
<tr>
<td>Cd(1)-N(1)¹</td>
<td>Cd(1)-N(1)²</td>
</tr>
<tr>
<td>Cd(1)-O(1)</td>
<td>Cd(1)-O(1)</td>
</tr>
<tr>
<td>Cd(1)-O(2)</td>
<td>Cd(1)-O(2)</td>
</tr>
<tr>
<td>Cd(1)-O(3)²</td>
<td>Cd(1)-O(3)²</td>
</tr>
<tr>
<td>Cd(1)-O(4)</td>
<td>Cd(1)-O(4)</td>
</tr>
</tbody>
</table>

Symmetry codes: (i): x, y, z; (ii): x, y+3, z-2, z+2

جدول ۳ طول‌های پیوند (Å) و زوایای ان掺ای (°) در ترکیب‌های ۱ و ۲

<table>
<thead>
<tr>
<th>[Cd₆(OAc)₃(L₂H)L₂(EtOH)]₀.(2)</th>
<th>[Cd₂(OAc)₃(L₁H)]₀.(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd(1)-N(1)¹</td>
<td>Cd(1)-N(1)²</td>
</tr>
<tr>
<td>Cd(1)-O(1)</td>
<td>Cd(1)-O(1)</td>
</tr>
<tr>
<td>Cd(1)-O(2)</td>
<td>Cd(1)-O(2)</td>
</tr>
<tr>
<td>Cd(1)-O(3)²</td>
<td>Cd(1)-O(3)²</td>
</tr>
<tr>
<td>Cd(1)-O(4)</td>
<td>Cd(1)-O(4)</td>
</tr>
</tbody>
</table>

Symmetry codes: (i): x, y+1, z+1; (ii): x+1, y+1, z+1.

<table>
<thead>
<tr>
<th>[Cd₆(OAc)₃(L₂H)L₂(EtOH)]₀.(2)</th>
<th>[Cd₂(OAc)₃(L₁H)]₀.(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd(1)-N(1)¹</td>
<td>Cd(1)-N(1)²</td>
</tr>
<tr>
<td>Cd(1)-O(1)</td>
<td>Cd(1)-O(1)</td>
</tr>
<tr>
<td>Cd(1)-O(2)</td>
<td>Cd(1)-O(2)</td>
</tr>
<tr>
<td>Cd(1)-O(3)²</td>
<td>Cd(1)-O(3)²</td>
</tr>
<tr>
<td>Cd(1)-O(4)</td>
<td>Cd(1)-O(4)</td>
</tr>
</tbody>
</table>

Symmetry codes: (i): x+2, y+2, z-2; (ii): x+1, y+1, z+1.
بنی‌گون‌های [Cd(OAc)_2(L1H)]_n و [Cd(OAc)_2(L1H)]_n

گرمایی با احتمال ۵۰ درصد رسم شده‌اند. به منظور وضوح بیشتر، انتهای هیدروژن حذف شده‌اند.

Symmetry codes: (i): x-1, y, z, (ii): x, -y+3/2, z-1/2, (iii): -x+2, -y+1/2, -z+3/2, (iv): -x+1, y+1/2, -z+3/2

چنین که در شکل ۳ نشان داده شده است، در ساختار گسترش پایه‌ای ترکیب ۱، یک مجموعه زنجیره‌های یک‌بودکی از پل شدن L1H بین دو مرکز فلزی Cd1 ایجاد شده‌اند. انتقال این زنجیره‌ها به یکدیگر به واسطه کوثرودینه شدن اکسیژن‌های گره‌های انتهایی به صورت یک بین مرکز فلزی، منجر به تشکیل یک پلیمر دوبعدی با شبکه‌ای مستطیلی شده است. برهم‌کنش‌های ضعیف هیدروژنی بین انتهای اکسیژن NH2، آمید و آمین‌های NH3 گروه‌های انتهایی با ساین‌های (7) و (4) ردل [R2(NH)3]۵۴ از عوامل کنترل کننده و هدایت کننده‌ی انتاسه‌گی پلیمر در ترکیب ۱ هستند.
شکل ۳ (الف) شبکه مستطیلی دوبعدی ایجاد شده از پل شدن لیگاند L1H و پیوندهای استات بین مراکز فلزی کادمیم در ترکیب [Cd(OAc)₂(L1H)]ₙ \(\text{برهمکنش} \) \(\text{و پیوندهای هیدروژنی با سینتون (4)} \). به صورت خط چین‌های آبی رنگ نشان داده شده‌اند. \(\text{ب) پیوندهای هیدروژنی بین صفحه‌های پلیمری گسترده شده در راستای محور} a \) با سینتون \(R \) \(\text{با خط‌چین‌های آبی رنگ مشخص شده‌اند.} \)

شکل ۴ نمای دیگری از صفحه‌های پلیمری گسترده شده در ترکیب [Cd(OAc)₂(L1H)]ₙ \(\text{که به واسطه پیوندهای هیدروژنی بین صفحه‌ها به صورت ایجادی ABAB به هم متصکل شده‌اند. به منظور پوشش بیشتر شکل، پیوندهای هیدروژنی گردهای استات و هیدروژن‌های آمید نشان داده شده‌اند.} \)
جدول 4. پارامترهای هندسی بین‌دهنی هیدروژنی بررسی (Å و °) در ترکیب‌های 1 و 2.

<table>
<thead>
<tr>
<th>تنظیم (DHA)</th>
<th>d (D-A)</th>
<th>d (H-A)</th>
<th>d (D-H)</th>
<th>D-H-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>186(5)</td>
<td>2.71(3)</td>
<td>1.32(5)</td>
<td>0.80(3)</td>
<td>N2-H2A-O5</td>
</tr>
<tr>
<td>187(3)</td>
<td>2.99(0)</td>
<td>2.34(3)</td>
<td>0.90(0)</td>
<td>N3-H3B-O2</td>
</tr>
<tr>
<td>192(4)</td>
<td>2.39(0)</td>
<td>1.88(5)</td>
<td>0.90(5)</td>
<td>N3-H3B-O1</td>
</tr>
<tr>
<td>146.99</td>
<td>3.84(5)</td>
<td>3.05(2)</td>
<td>0.95(0)</td>
<td>C1-H1=π</td>
</tr>
<tr>
<td>146.8(3)</td>
<td>2.73(5)</td>
<td>1.81(3)</td>
<td>0.85(3)</td>
<td>O8-H8-N2-2</td>
</tr>
<tr>
<td>146(1)</td>
<td>2.65(3)</td>
<td>1.82(2)</td>
<td>0.95(0)</td>
<td>N3-H3B-O9</td>
</tr>
<tr>
<td>145.0</td>
<td>3.77(4)</td>
<td>0.85(3)</td>
<td>C4-H4=O8</td>
<td></td>
</tr>
<tr>
<td>118.0</td>
<td>0.75(3)</td>
<td>0.85(0)</td>
<td>C2-H2=O7</td>
<td></td>
</tr>
<tr>
<td>114.6</td>
<td>0.71(5)</td>
<td>0.95(0)</td>
<td>C3-H3=O7</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry codes: (i): x,-y,z (ii): x,y,2z+1 (iii): -x+1,y, -z+3/2, (iv): -x+1,y, 1/2-z, (v): x,y,1/2-z

بررسی توبولوژی ساختاری ترکیب 1 با استفاده از نرم‌افزار آنالیز توبولوژی با نام توبوس [29] نشان داد که این ترکیب با توبولوژی (4,4) دارای مرکز فلزی است که هر یک با واسطه چهار عامل اندازه دهنده (دو لیگاند و دو گروه استات) از چهار ثابت مثبت را تشکیل می‌دهند. نامایش این واحدهای مستطیلی در شکل 5 ب اوره شده است.

در انسانیتی بلوری ترکیب 1 مشابه با ترکیب 1 زنجیره‌ای پلیمری حاصل از پل واتر لیگاند L2H بین مراكز فلزی به واسطه یک هیدروژن اتصال دهنده کریستال اکسپلوراتور [41] برای دو نمونه 1 و 2 انجام شد با محاسبه سطوح هرشتفلد. تصویری از فاصله تقریبی انتخابی مجازی کندگی موجب می‌شود که هیدروژن‌های بین مولکولی آن ایجاد می‌شود. همچنین نمادهای انتخابی که سپس از انجام این محاسبه‌ها به دست می‌آید نشان دهنده نمودن درصد هیدروژن از بین کردن این هیدروژن‌ها در ترکیب است. نمادهای شفاف دوباره برای هر دو ترکیب 1 و 2 و در سه‌گانه استاندارد 2-3،4،5،6 سم شدند. تجزیه و تحلیل سطح هرشتفلد برای این ترکیب‌ها حضور بین‌دهنی هیدروژنی و پهلوی حساسیت به ترکیب‌ها اتصالات بین مولکولی در انسانیتی بلوری را مشخص نمود. چنان که در شکل 7 نشان داده شده است، در هر دو ترکیب 1 و 2 گزارش شده است که در اتصالات انتخابی H-0- H، در اتصالات و کنترل انسانیتی هستند. این پهلوی تشکیل در نمادهای اثر انگشت ۶۸ در ترکیب نیز به صورت میخی مشکل نمایش داده شد.
شکل ۵ نمایشی از ال‌ف توبولوژی (۴۴۰) ترکیب پلیمری (۱)، [Cd(OAc)۲(L۱H)۲]، و ب) توبولوژی (۴۳۰) ترکیب پلیمری (۲)، [Cd(OAc)۲(L۱H)]۲، که با استفاده از نرم افزار توبوپس رسم شده‌اند.

شکل ۶ ال‌ف ترکیب [Cd۲(OAc)۳(L۲H)L۲(EtOH)]۲ با طرح جاناقی که در آن هر بک از یک رنگ به رنگ‌های مختلف [Cd(OAc)۲(L۲H)L۲(EtOH)]۲ و مراکز فلزی به رنگ مشکی نشان داده شده‌اند. ب) برخی از پیوندهای همبودونی بین زنجیره‌های پلیمری با سیلنون (۳D) و به که انکش سر π-π یا سر به دم بین حلقه‌های پرپیدنی با خطچین‌های آبی رنگ نشان داده شده‌اند.
در این پژوهش، دو ترکیب جدید از کادمیم استان با گروه ایزوورازدهاشده از پیریدین‌های دچار اضطراب به عنوان لیکان تهیه و شامل شده‌اند. ساختار بلوئی این ترکیب‌ها با پیراهن برکتهای تک پروتئینی تشکیل آنها را ناپایدار و مشخص شده که هر دو ترکیب در سیستم بلوئی تکمیل و با گروه فضایی $P2_1/c$ مشابه می‌شوند.
بررسی ساختار حالت جامد بلوئیها و همچنین تجزیه و تحلیل سطح هر دو ترکیب نشان داد که برهم‌کنش‌های هیدروژنی به ویژه $O\cdot\cdot\cdot H$ برای هر دو ترکیب از عوامل اصلی هدایت کننده ساختار است.
of silver salts and the linear chain dinitriles NC(CH2)nCN (n = 2 to 7): a systematic investigation of the role of counterions and of the increasing length of the spacers”, CrystEngComm 4 (2002) 413-425.

References:

[37] X-RED, Program for Data Reduction and Absorption Correction, version 1.28b, Darmstadt, Germany 2005.

[38] X-SHAPE, Program for Crystal Optimization for Numerical Absorption Correction, version 2.05, Darmstadt, Germany 2004.

[40] Janiak C., “A critical account on π-π stacking in metal complexes with aromatic nitrogen-