Volume 26, Issue 4 (1-2019)                   www.ijcm.ir 2019, 26(4): 989-1000 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yazdani M. Magma genesis in the supra-subduction zone of the Piranshahr ophiolite complex based on the mineral chemistry of clinopyroxene in the North West basalts of Iran. www.ijcm.ir 2019; 26 (4) :989-1000
URL: http://ijcm.ir/article-1-1205-en.html
Urmia University
Abstract:   (2931 Views)
The Piranshahr ophiolitic complex is located in NW Iran, and at north west of the Piranshahr town. Tectonically, the NW Piranshahr ophiolitic complex is severely mélanged and the boundary of different units in this complex is undistinguishable. Piranshahr ophiolite includes ultramafic, mafic, sedimentary and metamorphic rocks. Mafic rocks with basalt and diabase compositions are exposed in several parts of the region. In this paper, clinopyroxene geochemistry of basaltic rocks are studied and compared with the similar rocks from other supra-subduction zone-type of Eastern Mediterranean ophiolites. Clinopyroxenes display diopsitic compositions within the range of (En0.39-0.59 Fs0.01-0.05 WO0.50-0.57), calc-alkaline nature with low Ti and high Mg content. High-Mg and low-Ti magma suggest a supra-subduction zone setting for the formation of the Piranshahr ophiolitic basalts. According to the distribution of aluminum in clinopyroxenes, these minerals have formed at high oxygen fugacity and water content about 10 percent. The clinopyroxenes of the Piranshahr Ophiolite have similar chemical compositions to those of the other supra-subduction zone-type Eastern Mediterranean ophiolites (e.g., Troodos, Varinous, Pindos and Oman ophiolites) that show arc affinity.
Full-Text [PDF 122 kb]   (883 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Dilek Y., Furnes H., "Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere", Geological Society of America Bulletin 123 (2011) 387-411. [DOI:10.1130/B30446.1]
2. [2] Berger J., Femenias O., Mercier J.C.C., Demaiffe D., "Ocean-floor hydrothermalmetamorphism in the Limousin ophiolites (western French Massif Central): evidence of a rare preserved Variscan oceanic marker", Journal of Metamorphic Geology 23 (2005) 795- 812.
3. [3] Dioh E., Béziat D., Grégoire M, Debat P., "Origin of rare earth element variations in clinopyroxene from plutonic and associated volcanic rocks from the Foulde basin, Northern Kedougou inlier, Senegal, West Africa", European Journal of Mineralogy 21(2009) 1029-1043. [DOI:10.1127/0935-1221/2009/0021-1963]
4. [4] Putirka K.D., Mikaelian H., Ryerson F., Shaw H.,"New clinopyroxene-liquid thermobarometers for mafic evolved and volatile bearing lava compositions, with applications to lavas from Tibet and Snake River Plain, Idaho", American Mineralogist 88(2003) 1542–1554. [DOI:10.2138/am-2003-1017]
5. [5] Putrika K.D.,"Thermometers and Barometers for Volcanic Systems", Reviews in Mineralogy and Geochemistry 69 (2008) 61-120. [DOI:10.2138/rmg.2008.69.3]
6. [6] Kushiro I., "Si-Al relation in clinopyroxenes from igneous rocks", American Journal of Science 258 (1960) 548-554. [DOI:10.2475/ajs.258.8.548]
7. [7] Coombs D.S., "Trends and affinities of basaltic magmas and pyroxenes as illustrated on the diopside-olivine-silica diagram", Mineralogical Society of American Special Papers 1(1962) 227-250.
8. [8] Stocklin J., "Structures history and tectonic of Iran" A review, American Association of Petroleum Geologist Bulletin 52 (1968) 1229-1258.
9. [9] Alavi M., "Tectonic map of the Middle East, scale: 1:5,000,000. Tehran, Iran", Geological Survey of Iran one sheet (1991).
10. [10] Khodabandeh A.A., Soltani G.A., "Naghadeh geological quadrangle map", scale 1:100000, Geological Survey of Iran, Tehran (2004) 1 sheet.
11. [11] Hajialioghli R., Moazzen M., "Supra-subduction and mid-ocean ridge peridotites from the Piranshahr area, NW Iran", Journal of Geodynamics 81 (2014) 41–55. [DOI:10.1016/j.jog.2014.06.003]
12. [12] Morimoto N., Kitamura M., "Q-J diagram for classification of pyroxenes", Journal of the Japanese Association of Mineralogy Petrology and Economic Geology (1983) 78-141.
13. [13] Le Bas M.J.,"The role of aluminum in igneous clinopyroxenes with relation to their parentage", American Journal of Science 260 (1962) 167-88. [DOI:10.2475/ajs.260.4.267]
14. [14] Leterrier J., Maury R.C., Thonon P., Girad D., Marchel M., "Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series", Earth and Planetary Science Letters 59 (1982) 139-154. [DOI:10.1016/0012-821X(82)90122-4]
15. [15] Nisbet E., Pearce J., "Clinopyroxene composition in mafic lavas from different tectonic settings", Contributions to Mineralogy and Petrology 63 (1977) 149-160. [DOI:10.1007/BF00398776]
16. [16] Beccaluva L., Maccciotta G., Piccardo G.B. and Zeda O., "Clinopyroxene composition of ophiolite basalts as petrogenetic indicator", Chemical Geology journal 77 (1989) 165-182. [DOI:10.1016/0009-2541(89)90073-9]
17. [17] France L., Ildefonse B., Koepke J., Bech F., "A new method to estimate the oxidation state of basaltic series from microprobe analyses", Journal of Volcanology and Geothermal Research 189 (2010) 340-346. [DOI:10.1016/j.jvolgeores.2009.11.023]
18. [18] Botcharnikov R.E., Koepke J., Holtz, F., McCammon C., Wilke M., "The effect of water activity on the oxidation and structural state of Fe in a ferro-basaltic melt", Geochimistry Cosmochimistry Acta 69 (2005) 5071–5085. [DOI:10.1016/j.gca.2005.04.023]
19. [19] Moretti R., "Polymerisation, basicity, oxidation state and their role in ionic modelling of silicate melts" Annals of Geophysics (2005).
20. [20] Schweitzer E., Papike J., Bence A., "Statistical Analysis of Clinopyroxenes from Deep-Sea Basalts", American Mineralogist 64 (1979) 501-513.
21. [21] Marcelot G., Maury R.C., Lefevre C., "Mineralogy of Erromango Lava New Hebrides: Evidence of an early stage of fractionation in island arc basalts", Lithos, 16 (1983) 135-151. [DOI:10.1016/0024-4937(83)90011-7]
22. [22] Cameron M., Papike J.J., "structural and chemical variations in pyroxenes", American minerals 66 (1981) 1-50.
23. [23] Vieten K., "The minerals of the volcanic rock association of the Siebengebirge,1. Clinopyroxenes, and 2. Variation of chemical composition of Ca-rich clinopyroxenes(salites) in the course of crystallization", Neues Jahrbuchfur Mineralogie Abhandlungen, 140 (1980) 54-88.
24. [24] Helz R.T., "Phase Relations of Basalts in Their Melting Ranges at P H2O = 5 kbar. Part II. Melt Compositions", Journal of Petrology 17 (1976) 139-193. [DOI:10.1093/petrology/17.2.139]
25. [25] Soesoo A., "A multivariate statistical analysisof clinopyroxene composition: empirical coordinates for the crystallisation PTestimations", Geological Society of Sweden (Geologiska Föreningen) 119 (1997) 55-60.
26. [26] Blackwell D.D., Bowen R.G., Hull D.A., Riccio J., Steele J.L., " Heat flow, arc volcanism and subduction in northern Oregon" Journal Geophysical Research 87 (1982) 8735-8754. [DOI:10.1029/JB087iB10p08735]
27. [27] Zhao D., Hasegawa A., Horiuchi s., "Tomographic imaging of p and S wave velocity structure benesth northeastern Japan" Journal Geophysical Research 97 (1992) 19909-19928. [DOI:10.1029/92JB00603]
28. [28] Aoki K. and Shiba I., "Pyroxene from Iherzolite inclusions of Itinomegata", Japan, Lithos 6 (1973) 41–51. [DOI:10.1016/0024-4937(73)90078-9]
29. [29] Simonetti A., Shore M., Bell K., "Diopside phenocrysts from nephelinite lavas, Napak Volcano, Eastern Uganda Evidence for magma mixing", The Canadian Mineralogist 34 (1996) 411–421.
30. [30] Sisson T.W., Grove T.L., " Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism", Contributions to Mineralogy and Petrology 113 (1993a) 143-166. [DOI:10.1007/BF00283225]
31. [31] Pearce J.A., Lippard S.J., Roberts S., "Characteristics and tectonic signifi cance of supra-subduction zone ophiolites. In: Kokelaar, B. P. & Howells, M. F. (eds.): Marginal Basin Geology", Geological Society, London, Special Publications 16 (1984) 77–94.
32. [32] Yaliniz K.M., Concoüglo C.M., "Clinopyroxene composition of the isotropic gabbros from the Sarikaraman ophiolite: New evidence on suprasubduction zone type magma genesis in Central Anatolia", Journal Turkish Earth Science 8 (1999) 103–111.
33. [33] Van der Lann S.R., Arculus R.L., Pearce J.A., Murton B.J., "Petrography, mineral chemistry and phase relations of the basement boninite series of site 786, Izu-Bonin forearc", Ocean Drilling Program, Journal of Scientific Research 125 (1992) 171-201.
34. [34] Bebard J.H., "Cumulate recycling and crustal evolution in the Bay of Island ophiolite", Journal Geology 99 (1991) 225-249. [DOI:10.1086/629486]
35. [35] Pearce J.A., "Trace element characteristics of lavas from destructive plate boundaries", In: Thorpe, R.S. (Ed.), Andesites, Wiley and Sons, New York (1982) 525-548.
36. [36] Vannucci R., Rampone E., Piccardo G.B., Ottolini L., Bottazzi P., "Ophiolitic magmatism in the Ligurian Tethys: an ion microprobe study of basaltic clinopyroxenes", Contributions to Mineralogy and Petrology 115 (1993) 123-137. [DOI:10.1007/BF00321215]
37. [37] Yazdani M., "Study of field occurrence and petrology of igneous rocks related to ophiolite complex in Northwest Piranshahr-NW Iran (in Persian) ", University of Tabriz, PhD Thesis (2014).
38. [38] Yazdani M., Jahangiri A., Moazzen M., Hajialioghli R., Ahangari M., "Investigations on olivine and spinel mineral chemistry and tectonic setting of peridotites from North West of Piranshahr Ophiolite, NW Iran (in Persian)", Iranian Journal of Crystallography and Mineralogy 22 (2014) 557-570

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb