بررسی شیمی کانی تورمالین در توده گرانیتی لالزاز (استان کرمان)

صدف احمدی، زهرا طهماسبی.*، احمد احمدی خلیجی، فرهاد زال

گروه زمین شناسی، دانشگاه علوم، دانشگاه اردستان

چکیده: بلوتوتی گرانیتی لاله زار در جنوب شرق کمربند ماکانگ، ارومیه- خورآباد تا نوار دهه- ساردوبيه قرار دارد. این توده دارای تراکم پایینی از تورمالین با ریخت‌های گره‌کی، رگ‌گرا و خروردی است. رخداد کم تورمالین در این توده را می‌توان به اشتباه بودن توده از بور نسبت داد. تورمالین‌های مورد بررسی در گستره سری شور-دارویت و تورمالین‌های علت یافته قرار می‌گیرند. بیشتر گرانیتی‌های Ca = X - vac + Na .Ca + Mg(O) = Na + Mg(OH) می‌توانند از نوع گرانیتی‌های زمین‌شناختی باز و یک خاکسنگ ماکانگ-گرمسی با گرمای یک اثری برای تورمالین‌هاست. از طرفی مقدار بالای عناصر خاکی نادر در تورمالین‌ها و غنی‌سازی نادر گردن بیشتر از عناصر خاکی نادر
(ZREE) و غنی‌سازی کمتر از عناصر خاکی نادر (LREE) نسبت به کندرویت و سنگ‌میزان و غنی‌سازی از عناصر Zr و Zn .Cu, Ni, V, Cr, Zr این توده شامل خاکسنگ گرامی بی‌نار (LREE) است.

واژه‌های کلیدی: تورمالین، گرمسی، کم بنیانه، زمین‌شناختی، اورومیه، دختر

مقدمه

ساختار بلوری تورمالین بی‌نار (Bo) این توده Ca, Na توسط X (Y3)(Z6)T6O18 ین شده است. [1] جایگاه X برای Fe2+, Cr, Mg, Ti, Fe3+, Fe2+ و K, بایا با کاهش دیجیکا Z Ca, Mg, Al یا Mg, Cu, Ni, V, Cr, Zn و B در جایگاه Y از کانی‌های نادر تا جاگه‌ها کننده را شامل می‌شود. جایگاه T اغلب به وسیله Al, O, F, H و اشغال می‌شود و جایگاه V این توده با Ca, Al, OH و W را پر می‌کند. [2] ترکیبات پیچیده تورمالین نشان دهنده تغییرات شیمیایی و فیزیکی محیط است. این روند به نانوکانی می‌تواند به عنوان یک سانسور برای ساختن انواع سنگ‌های آدرین، رسومی و درکستگی اهمیت داشته باشد. [3] جایگاه X با توجه به ترکیب پیچیده تورمالین، این کانی ممکن است در شرایط اولیه ماکانگی با شکلی کامل و با توجه به ترکیب پیچیده تورمالین، این کانی ممکن است در شرایط اولیه ماکانگی با شکلی کامل و با توجه به ترکیب پیچیده تورمالین، این کانی ممکن است در شرایط اولیه ماکانگی با شکلی کامل و با توجه به ترکیب پیچیده تورمالین، این کانی ممکن است در شرایط اولیه ماکانگی با شکلی کامل و...
پارامترهای شیمیایی مانند غنی بودن از آهن، وجود جایگاه خالی بسیار و همچنین رفتار عناصر کمیاب از نوع ماکمایی [59]، تورمالین‌های ملاط‌طالب [71] و تورمالین‌های کوه زر [114] براساس غنی بودن از منیزیم و وجود منطقه‌نامی مشخص از نوع گرانبها معرفی شده‌اند. وجود شکل‌های مختلف تورمالین در توده گرانتی بین یکدیگر ت مشابه آنها در شرایط مختلف است. به طوریکه در مورد تغییر شکل‌های مختلف تورمالین در گرانتی مشهد برای آنها شایع‌تر از ماکمایی تا گرانبها- ماکمایی بین شهدا [59] تورمالین در شکل گره‌کی نیز بیشتر در لیکو گرانتی‌ها مانند لیکو گرانتی‌های مشهد، آستانه گراتلی، بیشتر در شده است. اما معرفی تورمالین به شکل‌های مختلف و بررسی شرایط تشکیل آنها در ایران مورد توجه قرار نگرفته است. در اینجا ما به بررسی زمین‌شناسی شیمیایی، تغییرات ناحیه دیگر کانی‌شناسی، شکل‌گیری تولید و نمایندگی خاصیت اندوه تورمالین‌ها در توده گرانتی‌های لانزار می‌پردازیم.

زمین‌شناسی عمومی منطقه مورد بررسی توده گرانتی لانزار با مختصات طول جغرافیایی '34°53'55"N و عرض جغرافیایی '09°33'10"TA نقصه زمین‌شناسی منطقه مورد بررسی بزرگتره از نقشه‌های 1:1000000. (سازمان زمین‌شناسی و اکتشافات معدنی ایران)

![Diagram](https://example.com/diagram.png)

شکل 1 نقشه زمین‌شناسی منطقه مورد بررسی برگرفته از نقشه‌های 1:1000000. (سازمان زمین‌شناسی و اکتشافات معدنی ایران)
جدول 1: داده‌های عنصر کیفی کاتی ترولائین و سنگ میزبان آن (تجزیه به روش ICP-MS)

<table>
<thead>
<tr>
<th>عنصر</th>
<th>ترولائین</th>
<th>سیمان غیرمعمول</th>
<th>سیمان مدل‌های غیرمعمول</th>
<th>مدل‌های غیرمعمول</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sc</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>V</td>
<td>138</td>
<td>39</td>
<td>44</td>
<td>35.5</td>
</tr>
<tr>
<td>Cr</td>
<td>160</td>
<td>60</td>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>Co</td>
<td>48</td>
<td>68</td>
<td>40</td>
<td>26</td>
</tr>
<tr>
<td>Ni</td>
<td>80</td>
<td>50</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>Cu</td>
<td>120</td>
<td>40</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>Zn</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>Ga</td>
<td>36</td>
<td>37</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>As</td>
<td>37</td>
<td>8</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Rb</td>
<td>15</td>
<td>20</td>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td>Sr</td>
<td>34</td>
<td>68</td>
<td>161</td>
<td>10</td>
</tr>
<tr>
<td>Y</td>
<td>94</td>
<td>56</td>
<td>34</td>
<td>10</td>
</tr>
<tr>
<td>Zr</td>
<td>349</td>
<td>131</td>
<td>172</td>
<td>12</td>
</tr>
<tr>
<td>Nb</td>
<td>44</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Mo</td>
<td>11</td>
<td>3</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>Sn</td>
<td>11</td>
<td>3</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>Cs</td>
<td>32</td>
<td>42</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>Ba</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>10</td>
</tr>
<tr>
<td>La</td>
<td>358</td>
<td>171</td>
<td>171</td>
<td>10</td>
</tr>
<tr>
<td>Ce</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>10</td>
</tr>
<tr>
<td>Pr</td>
<td>54</td>
<td>47</td>
<td>47</td>
<td>10</td>
</tr>
<tr>
<td>Nd</td>
<td>188</td>
<td>48</td>
<td>48</td>
<td>10</td>
</tr>
<tr>
<td>Sm</td>
<td>28.4</td>
<td>19.7</td>
<td>19.7</td>
<td>10</td>
</tr>
<tr>
<td>Eu</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>10</td>
</tr>
<tr>
<td>Gd</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Tb</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>Dy</td>
<td>15.7</td>
<td>15.7</td>
<td>15.7</td>
<td>10</td>
</tr>
<tr>
<td>Ho</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>10</td>
</tr>
<tr>
<td>Er</td>
<td>9.4</td>
<td>9.4</td>
<td>9.4</td>
<td>10</td>
</tr>
<tr>
<td>Tm</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>10</td>
</tr>
<tr>
<td>Yb</td>
<td>9.5</td>
<td>9.5</td>
<td>9.5</td>
<td>10</td>
</tr>
<tr>
<td>Lu</td>
<td>1.54</td>
<td>1.54</td>
<td>1.54</td>
<td>10</td>
</tr>
<tr>
<td>Hf</td>
<td>1.14</td>
<td>1.14</td>
<td>1.14</td>
<td>10</td>
</tr>
<tr>
<td>Ta</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>10</td>
</tr>
<tr>
<td>Pb</td>
<td>3.5</td>
<td>7.5</td>
<td>7.5</td>
<td>10</td>
</tr>
<tr>
<td>Th</td>
<td>81.5</td>
<td>81.5</td>
<td>81.5</td>
<td>10</td>
</tr>
<tr>
<td>U</td>
<td>13.4</td>
<td>13.4</td>
<td>13.4</td>
<td>10</td>
</tr>
</tbody>
</table>
شیمی کانی تورمالین

ددهای مربوط به تجزیه رژیترادیه کانی تورمالین در [۲۷] R3 هر سه نوع تورمالین یا رگه‌ای، خورشیدی و گرگهی در راستای بردار اوت و با تمایل به سمت اوت قرار گرفته‌اند (شکل ۶الف). براساس این نمودار، می‌توان جانشینی Ca, Mg (O) (Na, Fe) (OH) – ۱ را برای این تورمالین‌های مورد بررسی در (Ca Mg) (Na Al) - ۱ تاریک تر تجزیه رژیترادیه و محاسبه‌ی کانی‌شناسی کانی تورمالین مشخص شده که جایگاه X در این تورمالین‌ها بیشتر با عنوان قلبی‌بی‌پوزه ساده می‌شود و پیش‌تر گزارش‌های ۱۹ تاریک تر تجزیه رژیترادیه و محاسبه‌ی جایگاه می‌تواند مقداری کلیسم را نیز مشاهده کرده. از این رو می‌توان گفت که در این نوع کمبود قلبی‌بی‌پوزه ساده به‌طور گسترده و بیشتر جانشینی مربوط به جایگزینی کلیسم و منیزیم بجای ساده و اینه است برای Fe بررسی وضعیت جایگاه Y در کانی تورمالین، از نمودار Mg نسبت به [۲۱] استفاده شده است. بر اساس این نمودار، نمونه‌ها در بالاتر خط سه قرار گرفته‌اند (شکل ۶ب) و بر اساس این نمودار، همه نمونه‌های که دارای Y بیش از ۳ هستند، جانشینی Al در جایگاه Ca, Mg نسبت به Ca, Fe-Mg را به مقدار کم‌تر دارند.
جدول ۲: گزیده‌ای از داده‌های مربوط به تجزیه نقطه‌ای کانی تورمالین خورشیدی، گرهکی و رگه‌ای (محاسبه فرمول کانی تورمالین با استفاده از شکل ۵) (拼音)

<table>
<thead>
<tr>
<th>بند</th>
<th>Xvac</th>
<th>Mg/Mg+Fe</th>
<th>Ca/Ca+Na</th>
<th>Na</th>
<th>Al/Mg</th>
<th>Zn</th>
<th>Fe/Mg</th>
<th>Fe/Fe+Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۰۰۱</td>
<td>۰۰۱</td>
<td>۰۰۱</td>
<td>۰۰۱</td>
<td>۰۰۱</td>
<td>۰۰۱</td>
<td>۰۰۱</td>
<td>۰۰۱</td>
</tr>
<tr>
<td>۲</td>
<td>۰۰۱</td>
<td>۰۰۱</td>
<td>۰۰۱</td>
<td>۰۰۱</td>
<td>۰۰۱</td>
<td>۰۰۱</td>
<td>۰۰۱</td>
<td>۰۰۱</td>
</tr>
<tr>
<td>۳</td>
<td>۰۰۱</td>
<td>۰۰۱</td>
<td>۰۰۱</td>
<td>۰۰۱</td>
<td>۰۰۱</td>
<td>۰۰۱</td>
<td>۰۰۱</td>
<td>۰۰۱</td>
</tr>
</tbody>
</table>

شکل ۵. نمودار Ca-Ca+Na و Mg+Fe نسبت به XVac.
شکل ۶ الگوی توزیع Fe، Mg در نسبت به Ca، Al در روش انتشار شبه-هیپوئید (b) نمودار R2 نسبت به R1 توزیع R3=Al+1.33Ti، R2=Fe+Mn+Mg، R1=Ca+Na R3=Feo+Mgo توزیع Ca، Na، Xvac توزیع Feo+Mgo توزیع Ca، Feo+Mgo توزیع Ca，
بیان کننده وجود مقدار بسیار جزئی از جانشینی جایگاه خالي Al در X و CaO معادل با نامه Feo + Mg این می‌تواند در بهترین سطح مورد نظر بررسی شود که در اینجا نمودار قرار گرفته‌اند. اما تعداد دیگری از اینهای گره‌کی و خورشیدی‌ها که در فرآیندهایی قرار گرفته‌اند (شکل 4).

بررسی فرمول‌سازی‌های تورمالین

ابعاد موجود در حالت‌های مختلف بلو تورمالین در منطقه مورد نظر بررسی شده که در اینجا نمودار قرار گرفته‌اند. در نهایت نمودار قرار گرفته‌اند (شکل 4). در نهایت نمودار قرار گرفته‌اند (شکل 4). در N اینجا پیش‌بینی نشده است. اینجا نمودار قرار گرفته‌اند (شکل 4).

شکل 4 نمودار پیش‌بینی شده عناصر خالی تورمالین و سطح میزان نسبت به کندتریت [3] و N نمودار پیش‌بینی شده عناصر کمیاب تورمالین و سطح میزان نسبت به کندتریت [3].
با توجه به

نگاه‌های شیمیایی در ترمیم‌های عمده، وارام‌های وارد شده ممکن است به‌طور کلی با سبک‌های مختلفی از گروه‌های غربی متقابلی خود به یکدیگر مشابه باشد.

1. Ca + Mg(O) = Na + Mg(OH)

2. Ca = X - vac + Na + Mg(OH)

3. Ca + Mg = (X - vac + Al) - 1

4. FeOFeO+MgO

5. FeOFeO+MgO

6. FeOFeO+MgO

7. FeOFeO+MgO

8. FeOFeO+MgO

9. FeOFeO+MgO

10. FeOFeO+MgO

11. FeOFeO+MgO

12. FeOFeO+MgO

13. FeOFeO+MgO

14. FeOFeO+MgO

15. FeOFeO+MgO

16. FeOFeO+MgO

17. FeOFeO+MgO

18. FeOFeO+MgO

19. FeOFeO+MgO

20. FeOFeO+MgO

21. FeOFeO+MgO

22. FeOFeO+MgO

23. FeOFeO+MgO

24. FeOFeO+MgO

25. FeOFeO+MgO

26. FeOFeO+MgO

27. FeOFeO+MgO

28. FeOFeO+MgO

29. FeOFeO+MgO

30. FeOFeO+MgO

31. FeOFeO+MgO

32. FeOFeO+MgO

33. FeOFeO+MgO

34. FeOFeO+MgO

35. FeOFeO+MgO

36. FeOFeO+MgO

37. FeOFeO+MgO

38. FeOFeO+MgO

39. FeOFeO+MgO

40. FeOFeO+MgO

41. FeOFeO+MgO

42. FeOFeO+MgO

43. FeOFeO+MgO

44. FeOFeO+MgO

45. FeOFeO+MgO

46. FeOFeO+MgO

47. FeOFeO+MgO

48. FeOFeO+MgO

49. FeOFeO+MgO

50. FeOFeO+MgO

51. FeOFeO+MgO

52. FeOFeO+MgO

53. FeOFeO+MgO

54. FeOFeO+MgO

55. FeOFeO+MgO

56. FeOFeO+MgO

57. FeOFeO+MgO

58. FeOFeO+MgO

59. FeOFeO+MgO

60. FeOFeO+MgO

61. FeOFeO+MgO

62. FeOFeO+MgO

63. FeOFeO+MgO

64. FeOFeO+MgO

65. FeOFeO+MgO

66. FeOFeO+MgO

67. FeOFeO+MgO

68. FeOFeO+MgO

69. FeOFeO+MgO

70. FeOFeO+MgO

71. FeOFeO+MgO

72. FeOFeO+MgO

73. FeOFeO+MgO

74. FeOFeO+MgO

75. FeOFeO+MgO

76. FeOFeO+MgO

77. FeOFeO+MgO

78. FeOFeO+MgO

79. FeOFeO+MgO

80. FeOFeO+MgO

81. FeOFeO+MgO

82. FeOFeO+MgO

83. FeOFeO+MgO

84. FeOFeO+MgO

85. FeOFeO+MgO

86. FeOFeO+MgO

87. FeOFeO+MgO

88. FeOFeO+MgO

89. FeOFeO+MgO

90. FeOFeO+MgO

91. FeOFeO+MgO

92. FeOFeO+MgO

93. FeOFeO+MgO

94. FeOFeO+MgO

95. FeOFeO+MgO

96. FeOFeO+MgO

97. FeOFeO+MgO

98. FeOFeO+MgO

99. FeOFeO+MgO

100. FeOFeO+MgO
مستقل برای رعایتی آن یا در شرایط نسبت سنگ، سیال نمایه‌ی همجوئی در مورد غندی‌ها، فلزات و همکارش [79] برای پوشش بر تولید و حرارت و در مورد شکل نامنظم در آنها مستقلی که سرده‌ی سرخ در بلور‌های تورمالین در مراحل ایزیابی تولید می‌باشد. باعث ایجاد یک سطح ناهنجاری سطحی متفاوت می‌شود. ناقلی که دارای یک تعداد کمیستانی با پیوسته‌ی می‌تواند در تورمالینی ایجاد شود که موجب رفته و پیوسته‌ی با بلور تورمالینی ایجاد می‌شود که دارای سطح متفاوت می‌شود.

به پایان دیگر، سیال غنی از مواد فراگیر هگون و درون درonde

References:

References:

[27] Manning D.A.C., "Chemical and morphological variation in tourmalines from the Hub Kapong batholith of peninsular Thailand", Mineralogical Magazine 45 139-147.

[21] Mahmoudi Sh., Mosfoudi F., "Estimation of the degree of metamorphism and P-T path of calc silicate rocks (Skarn) in the metamorphic halo of the Lalehzar intrusion in the northeast of Baft (Kerman), 9th Symposium of Geological Society of Iran, Kharazmi University, Tehran.

