استفاده از روش‌های آمار اتصال و تحلیل‌های عامی و خوش‌های برای بررسی رفتار زمین-شیمیایی نفره در کانی‌زاپیس مس-مولبدن پورفیری حزاران، استان کرمان

سمیه عباس‌زاده، امیرحسین کوهساری

دانشکده مهندسی معدن و متالورژی دانشگاه یزد، یزد، ایران

چکیده: یکی از مباحث نقره، ذخایر مس-مولبدن پورفیری است که در آن عنصر نفره به صورت جانبی تولید می‌شود. در این مطالعه، رفتار زمین-شیمیایی عنصر نفره در منطقه حراران برایه به ترتیب تجزیه و قسمت‌سازی شیمیایی یاریای عنصر نفره بررسی شد. این ذخیه‌که در جنوب شرق ایران قرار داشته و دارای کانی‌زاپیس مس-مولبدن Ba, Co, Cu, Mo, Pb, Sh, Sn, Sr, Bi بوده‌است. از روش‌های آمار اتصال و تحلیل جنبه‌گیری برای شناسایی نواحی مربوط به عنصر نفره و عنصر همراه استفاده شد. بررسی نسبت‌های نواحی به هم‌بسته اولیه با استفاده از روش آمار اتصال خوانی داد که نواحی‌های بین‌رده اتصال نفره، مس، سرب و روی تقریباً همواره داده‌گویی بوده‌اند. نمونه‌برداری و تحلیل خونهای سلسله‌های مربوط به عنصر نفره و این ثابت شد که عنصر نفره و مس هم‌بستگی داشته و در یک گروه قرار گرفته‌اند. علی‌رغم بررسی، نتایج تحلیل عامی نشان داد که عامل سوم شامل عنصر نفره و مس با بالاترین مقادیر و یزد است. سرانجام رفتار دوگانه نفره مقیاسی محسوب می‌شود که قرار گرفته در شیکه‌کانی‌های سیرام‌دانال، کالکوپیریت و بوریت، از یک‌طرف و هم‌بستگی با عنصر سرب به خاطر قرار گرفتن در شیکه‌گان از سوی دیگر به روی‌های آمار اتصال و تحلیل‌های جناب تنگه‌بند شد.

واژه‌های کلیدی: رفتار عنصر نفره؛ آمار اتصال؛ تحلیل عامی؛ تحلیل خونهای سلسله مراتبی

مقدمه

نقره از معدود عنصری است که در طبیعت به صورت آزاد پایت شده و یکی از این عنصرهای چرخ به پیوند می‌رود. این عنصر به عنصر نقره است [1]. تحقیقات این عنصر در سلسله‌های آذرین متفاوت است و از مقدار این عنصر در سلسله‌های بلوری، میکروسیلیک‌ها، مس، سرب و طلاسته [1]. نقره به عنصر سرب، روز و مس و کاهی در سلول‌های پیمسود و آنیون‌های دیم می‌شود. نتایج و بالا بر این

که این کانی‌ها، این عنصر به همراه عنصر آنتی‌سیمیوان، بی‌سموت و آرسنیک به صورت محلول جامد دیده شده‌اند. مقایسه آن‌ها به طور مستقیم با دمای تشکیل تغییر می‌کند. پارامترهای شیمی‌بی‌ملو نقره به سرب تبدیل است و به صورت میدان هشتند و در کانی‌گان دیده می‌شود. شعاع

koohsary@yahoo.com
يوئی سرب سیلور نزدیک به شعاع بونی نازک است و این اضافه
در وضعیت هسته و یا سرب بارهای جذبینی بیشتر به
همه نازک در آن می‌شود. جذبیت نازک در گالن یک
مثال خوب از محلول جاده است که در واگرش جذبیت
نیسته که در برخی محصولات گالن ممکن است که در
کاهش تعداد قدرت جذبیت در محلول جاده از ۱۰ مول
درصد تجزیه می‌کند و نازک تشکیل شده به‌صورت میانی، برابر
بلوری با گالن میزان نشان نمی‌دهد[۵].

علت وجود نازک به‌صورت محلول جاده در کانه‌های
سولفیدی، سیلیکات در باره و اندازه بیوزهای مس و نازک
که مقدار آن به‌طور قابل‌توجهی در کامی‌های کوبیلت، بوریت،
کالکوپتستین، کالکوپتستین و پرپتید آنلاین می‌باشد[۶]. بطور
کلی، توزیع نازک در کانه مس اندازه‌بندی شده و نتایج تجزیه
شیمیایی کانی‌های مس نازک دارد نشان داده است که بین مقدار
مس و نازک آن‌ها رابطه معکوس وجود دارد و در این نوع کانی‌ها،
یک مقدار نازک به‌صورت قابل‌توجه صورت می‌گیرد با آن آبشیز
از جمله است که به‌صورت جذبیت همراهی نهاده و بدون اصلاح ساختار
بلوری آن‌ها در ساختار کانی نشان می‌دهد[۷].

یکی از منابع اصلی نازک در مخلوط مس و پرپتید
مثبت‌کن در عنوان فارادره‌ها جانی استخراج می‌شود.
[۸] متوسط نازک ذخیره مس پرپتید بین ۲ تا ۷ گرم تن
متفاوت است[۹]. گستش‌و‌های مقدار نازک ذخیره مس
پرپتیدی ال‌سالادور را ۷۰ گرم گرم تن بر افزوده کردن که در
کانی‌های بوریت، کالکوپتستین و پرپتید با مقادیر توزیع
پایین‌تر، بی‌یاریت، مولپتستین، طلا و نازک در سیستم‌های مس-
مولپتستین را با چند ترکیب موردی بررسی کرد[۱۱].

هدف از انجام این پژوهش بررسی رفتار زمین‌شیمیایی نازک در
معتد مس پرپتیدی سرب و اندازه‌بندی آن با سیستم‌های کامی‌های نازک
است؛ این نازک را به‌صورت تحلیل تکمیل‌داده و فیزیولوژی‌ای است. آمار
انفاضه‌ای، یکی از روش‌های تکمیل‌داده است که از طریق آن
حد آستانه‌انفاضه می‌شود. روش این روش تابع توزیع است

دیده‌ای که نزدیک به شعاع بونی نازک است و این اضافه
در وضعیت هسته و یا سرب بارهای جذبیتی بیشتر به
همه نازک در آن می‌شود. جذبیت نازک در گالن یک
مثال خوب از محلول جاده است که در واگنش جذبیت
نیسته که در برخی محصولات گالن ممکن است که در
کاهش تعداد قدرت جذبیت در محلول جاده از ۱۰ مول
درصد تجزیه می‌کند و نازک تشکیل شده به‌صورت میانی، برابر
بلوری با گالن میزان نشان نمی‌دهد[۵].

علت وجود نازک به‌صورت محلول جاده در کانه‌های
سولفیدی، سیلیکات در باره و اندازه بیوزهای مس و نازک
که مقدار آن به‌طور قابل‌توجهی در کامی‌های کوبیلت، بوریت،
کالکوپتستین، کالکوپتستین و پرپتید آنلاین می‌باشد[۶]. بطور
کلی، توزیع نازک در کانه مس اندازه‌بندی شده و نتایج تجزیه
شیمیایی کانی‌های مس نازک دارد نشان داده است که بین مقدار
مس و نازک آن‌ها رابطه معکوس وجود دارد و در این نوع کانی‌ها،
یک مقدار نازک به‌صورت قابل‌توجه صورت می‌گیرد با آن آبشیز
از جمله است که به‌صورت جذبیت همراهی نهاده و بدون اصلاح ساختار
بلوری آن‌ها در ساختار کانی نشان می‌دهد[۷].

یکی از منابع اصلی نازک در مخلوط مس و پرپتید
مثبت‌کن در عنوان فارادره‌ها جانی استخراج می‌شود.
[۸] متوسط نازک ذخیره مس پرپتید بین ۲ تا ۷ گرم تن
متفاوت است[۹]. گستش‌و‌های مقدار نازک ذخیره مس
پرپتیدی ال‌سالادور را ۷۰ گرم گرم تن بر افزوده کردن که در
کانی‌های بوریت، کالکوپتستین و پرپتید با مقادیر توزیع
پایین‌تر، بی‌یاریت، مولپتستین، طلا و نازک در سیستم‌های مس-
شکل 1 موقعیت جغرافیایی منطقه حراران و نقاط نمونه‌برداری آن: (الف) موقعیت جغرافیایی تعدادی از دخواه مس-مولپیدن پوپفیری و منطقه مورد مطالعه در کمربند ماگمایی ارومیه-دخترب (ب) نقاط نمونه‌برداری لیتوژنرژی‌پذیر در منطقه حراران.

زمین‌شناسی منطقه مورد بررسی

جانا که در شکل ۲، نشان داده می‌شود، پیشرو احتمالی سکه‌های قدیمی مربوط به دوره اونس سنتن در دری نواحی منطقه رخمین دارندر و شال سنگ‌های آندزیت و آندزیت پوپفیری‌های هستند که در شال منطقه واقع شده‌اند. سنگ‌های آندزیتی بررسی شده نوع دیگری از این واحدهای سنگی‌های سنگ‌های سنتن که در جنوب منطقه، ناحیه مورد بررسی قرار گرفته‌اند. همچنین نتایجی از دیدگاه دوره‌بندی و گروه‌بندی قرار گرفته در جنوب منطقه به درون سنگ‌های آنتفانشیا نفوذ کردند. در پرینامدن از منطقه مورد بررسی نمونه‌برداری که در قسمت‌هایی از مرکز، غرب و شمال غربی منطقه واقع شده‌اند، دیده شده که نتایج این نمونه‌برداری نسبت به نتایج اخیر است. در روش بررسی نمونه‌برداری در منطقه مورد بررسی به مساحت تقیی ۲.۵ کیلومتر مربع، ۶۰۷ نمونه سنگ‌زمین شیمیایی در یک شبکه نامنظم واحی جنوبی و شمالی، شبکه تراکمی ۱۰۰ × ۱۰۰ مریخ و در مرکز با فاصله ۴۰۰ × ۴۰۰ مریخ برداشت شده است که جایگاه آنها در گزارش ۱ دیده می‌شود. نمونه‌ها توسط شرکت باشند. دایک‌های داسیتی با روند شمال شرق-جنوب غربی در پیشرو قسمت‌های منطقه یک‌شانه‌اند.

دانشگاه تهران
برای انجام بررسی‌های آماری این پژوهش از نرم‌افزار SPSS استفاده شده است.

آمار انفعال
آمار انفعال یکی از روش‌های برایه تابع توزیع است که به کمک آن می‌توان حد آستانه‌ای را برآورد کرد. آمار انفعال بیشتر برای موادی که ناپوستگی‌ها جدای اشکار نیست مفید است [12].

شکل 2 نقشه زمین‌شناسی منطقه حراران (۱:۵۰۰۰). رخ هم‌سیستم‌های قلیمی که در بیشتر منطقه دیده می‌شوند، مربوط به دوره آتاسی است.
اولین قدم در استفاده از این روش یافتن تبدیلی از داده‌های که توسعه داده‌ها چنان منفی به توسعه نرم‌افزار نویدی کنید، زیرا اساس این روش بر فرض نرم‌افزار بودن توسعه داده استوار است. در مراحل بعد، داده‌های تبدیلی یافته بر حسب مقادیر مربوط شده و برای هزینه آثار مقیاس داده‌ها، پایه استاندارد شوند، به طوری که میانگین هر عنصر صفر و انحراف معیار آن یک باشد. در اینجا، داده‌های استانداردشده \(Z \) نامیده می‌شوند. در مراحل بعدی، دقایق اثر‌افعال برای هر جوجه به \(Z \) صورت زیر محاسبه می‌شود:

\[
(1) \quad H_i = \frac{m_i}{Z}
\]

\[
(2) \quad H = \sum H_i \]

\[
(3) \quad m_i = \frac{1}{Z} + Z_i
\]

\[
(4) \quad y = ZS + X
\]

\[
\text{شکل ۲ مقاطع صیفی نمونه به‌دست آمده از منطقه حرازان که کالکوپرتیت، پورتیت و کوپلترا را نشان می‌دهد.}

روش‌های تحلیل چندمتغیره

روش‌های تحلیل چندمتغیره برای بررسی و شناسایی روابط میان عناصر در داده‌های زمین‌شناسی اکتشافی مورد استفاده قرار می‌گیرند. این روش‌ها شامل تحلیل مولفه اصلی، تحلیل خوشه‌ای، تحلیل فاصله و تحلیل رگرسیون تحلیلی هستند. در این پژوهش از روش‌های تحلیل عاملی و تحلیل خوشه‌ای سلسه مراتبی برای شناسایی روابط میان عناصر استفاده شده است.[۲۸]

تکیه عاملی

تکیه عاملی یک روش آماری چندمتغیره است که روابط بین متغیرها را بر اساس ضرایب همبستگی خطي بین آن‌ها نشان می‌دهد. هدف اصلی این روش شناسایی ساختار داده‌های چند متغیره و کاهش تعداد آن‌ها به تعدادی عامل مشخص است.[۳۱] در این روش چند عامل با استفاده از توابع خطی عناصر شناسایی می‌شوند. هر عامل برای گروه‌های که این متغیرها در آن‌ها از یک خاصیت تعداد بزرگرده و ارتباط بین آن‌ها مشخص می‌کند، در این امر در زمین‌شناسی اکتشافی اهمیت بیشتری دارد تا اینکه برای نمونه‌های مرده، بررسی قرار گیرد. در این روش، برای هر عامل درجه ارتباط بین آن و متغیرها مشخص می‌گردد.[۱۴]
تحليل خوشهی سلسه مراتبی

روش آنالیز خوشه‌ی سلسه مراتبی یکی از معمول‌ترین روش‌های آماری برای کشف و افزایش شناختی از داده‌ها یا نمونه‌ها با بیشترین مناسبی است. در این روش، با انتقال شبه‌های جفت نمونه‌ها محاسبه شده و سپس مطابق با اساس شبه‌هایشان انتخاب‌دهی می‌شوند و سرانگام نمودار درختی که یک ساختار سلسه مراتبی است چگونگی اتصال نمونه‌ها و یا منجر به هم را نشان می‌ده. تولید می‌شود، در بالای این نمودار یک مقیاس خطی افقی قرار داده می‌شود و محل اتصال هر نمونه با یک خوشه با خوشه دیگر بر این مقیاس خطی مناظر با دید جراحی آن است.

نتایج روش آماری انتقال

بر اساس اصول روش آماری انتقال که در پیش 2-3 توضیح داده شده و با اساس روابط ارائه‌شده، یک کد در برنامه اکسل نوشته شد. مقادیر حد آستانه‌ای داده‌ها برای هر عنصر محاسبه شد که نتایج آن در جدول 1 آورده شده است. دیده می‌شود که حد آستانه برای برای 2 با 3 مقیاس‌های این است. بنابراین مقادیر بزرگ‌تر از حد آستانه به‌عنوان مناطق دارای انجام با هنجاری نشان‌داده می‌شوند که این مناطق برای مناطق نقره مس. برای روی منطقه حزار در شکل‌های شاخه‌ای که دیده می‌شود، این مناطق به‌همراه تقیب‌آ هیپوئیک دارند.

جدول 1: بازارهای آماری توصیفی اولیه بخشی از عنصر در منطقه حزاران

<table>
<thead>
<tr>
<th>عنصر</th>
<th>میلاینگ (کرم بر تن)</th>
<th>انحراف معیار (کرم بر تن)</th>
<th>کمپاری (کرم بر تن)</th>
<th>بیشماره (کرم بر تن)</th>
<th>کیفیتی (کرم بر تن)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نقره</td>
<td>234</td>
<td>29</td>
<td>0.2</td>
<td>87</td>
<td>94</td>
</tr>
<tr>
<td>مس</td>
<td>118.89</td>
<td>245</td>
<td>0.3</td>
<td>201</td>
<td>58</td>
</tr>
<tr>
<td>سرب</td>
<td>245</td>
<td>248</td>
<td>0.2</td>
<td>495</td>
<td>73</td>
</tr>
<tr>
<td>روی</td>
<td>91.73</td>
<td>81.43</td>
<td>0.1</td>
<td>111.20</td>
<td>6.5</td>
</tr>
<tr>
<td>استرالیوم</td>
<td>337.8</td>
<td>99.15</td>
<td>0.5</td>
<td>46.83</td>
<td>2.8</td>
</tr>
<tr>
<td>باریم</td>
<td>210.11</td>
<td>116</td>
<td>0.5</td>
<td>157.03</td>
<td>2.2</td>
</tr>
<tr>
<td>ارسینک</td>
<td>41.7</td>
<td>115</td>
<td>0.0</td>
<td>130.50</td>
<td>36</td>
</tr>
<tr>
<td>کالک</td>
<td>170</td>
<td>154</td>
<td>0.1</td>
<td>80.50</td>
<td>40</td>
</tr>
<tr>
<td>مولبیدن</td>
<td>231</td>
<td>32</td>
<td>0.5</td>
<td>32.60</td>
<td>76</td>
</tr>
<tr>
<td>انتونم</td>
<td>380</td>
<td>181</td>
<td>0.1</td>
<td>157.00</td>
<td>18.8</td>
</tr>
<tr>
<td>قلع</td>
<td>11.1</td>
<td>0.55</td>
<td>0.7</td>
<td>53</td>
<td>28.8</td>
</tr>
<tr>
<td>نگش</td>
<td>11.5</td>
<td>19.3</td>
<td>0.7</td>
<td>46.30</td>
<td>42.9</td>
</tr>
</tbody>
</table>
شکل ۴ نمودارهای ستونی داده‌های خام سنگ زمین‌شیمیایی (سمت چپ) و داده‌های سنگ‌زمین‌شناسی‌شیمیایی تبدیل بافت‌ها با تابع لگاریتمی
عناصر نقره، مس، سرب و روت در منطقه حرازان.
جدول ۲ مقادیر حد آستانه‌ای به‌دست‌آمده برای عنصر مختلف با استفاده از روش آمار انتساب در منطقه مورد بررسی.

<table>
<thead>
<tr>
<th>عنصر</th>
<th>حد آستانه</th>
<th>سرب</th>
<th>استرالیوم</th>
<th>تاریم</th>
<th>نقره</th>
<th>کلسیم</th>
<th>آرسنیک</th>
<th>مس</th>
<th>مولیبدن</th>
<th>سرب</th>
<th>انتساو</th>
<th>مس</th>
<th>روی</th>
<th>تکسنو</th>
<th>قلع</th>
</tr>
</thead>
<tbody>
<tr>
<td>تکسنو</td>
<td>1.75</td>
<td>1.65</td>
<td>1.55</td>
<td>1.45</td>
<td>1.35</td>
<td>1.25</td>
<td>1.15</td>
<td>1.05</td>
<td>0.95</td>
<td>0.85</td>
<td>0.75</td>
<td>0.65</td>
<td>0.55</td>
<td>0.45</td>
<td>0.35</td>
</tr>
</tbody>
</table>

شکل ۵ نقشه به‌هنجاره عنصر نقره، مس، سرب و روی در منطقه حفره (مناطق رنگی نشان‌داده‌شده مقادیر بالاتر از حد آستانه برای هر عنصر هستند).
نتایج تحلیل خوشه‌ای
نتایج برآمده از تحلیل خوشه‌ای با استفاده از روش وارد و فاصله اقلیدسی به صورت نمونه درختی در شکل ۶ نشان داده شده است. عناصر با توجه به همبستگی آنها، در چهار گروه جداگانه تفکیک شده‌اند که در شکل این گروه‌ها با رنگ‌های مختلف نشان داده شده‌اند. گروه سوم که با رنگ قرمز نشان داده شده، است. شامل درصد نفره و سس است و این نشان می‌دهد که این درصد عناصر بالاترین همبستگی را با هم دارند. علاوه بر آن، عناصر سرب، روی و نئونیومان که به رنگ آبی در نمونه خوشه-ای نشان داده شده‌اند نیز در یک گروه جداگانه قرار گرفته‌اند که بنابراین همبستگی این عناصر است و جنگی که دیده می‌شود این دو گروه از مرحله بعد یک گروه بزرگ تر تشکیل می‌دهد که نشان دهنده وجود همبستگی بین نفره و سرب و روی اما به میزان کمتر نسبت به سس و نفره است.

تغییر فعالیت
برای انجام این روش، داده‌های سپس پردازش انجام شده و درصد نزدیکی به صورتی است که میانگین آنها صفر و واریانس آنها یک باشد [۱۶]. به این منظور، برای هر

![Rescaled Distance Cluster Combine](image-url)

![شکل ۶ نمودار خوشه‌ای به دست آمده از تحلیل خوشه‌ای سلسله مراتبی داده‌های سنگین‌سازی پیکر برای مطالعه حرارت.](image-url)
جدول ۲

<table>
<thead>
<tr>
<th>عدد</th>
<th>تعدادهای اصلی</th>
<th>بردارهای وبره اولیه</th>
<th>مجموع تعدادهای استخراج شده</th>
<th>مجموع تعدادهای دوونهای اصلی</th>
<th>عمیق کل</th>
<th>عمیق (٪)</th>
<th>تعدادهای اصلی (٪)</th>
<th>عمیق (٪)</th>
<th>عمیق (٪)</th>
<th>عمیق (٪)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>400</td>
<td>6,94</td>
<td>30,76</td>
<td>30,76</td>
<td>400</td>
<td>30,76</td>
<td>30,76</td>
<td>30,76</td>
<td>30,76</td>
<td>30,76</td>
</tr>
<tr>
<td>3</td>
<td>1,18</td>
<td>11,18</td>
<td>58,85</td>
<td>58,85</td>
<td>1,18</td>
<td>58,85</td>
<td>58,85</td>
<td>58,85</td>
<td>58,85</td>
<td>58,85</td>
</tr>
<tr>
<td>4</td>
<td>0,91</td>
<td>7,91</td>
<td>46,76</td>
<td>46,76</td>
<td>0,91</td>
<td>46,76</td>
<td>46,76</td>
<td>46,76</td>
<td>46,76</td>
<td>46,76</td>
</tr>
<tr>
<td>6</td>
<td>0,71</td>
<td>5,79</td>
<td>32,83</td>
<td>32,83</td>
<td>0,71</td>
<td>32,83</td>
<td>32,83</td>
<td>32,83</td>
<td>32,83</td>
<td>32,83</td>
</tr>
<tr>
<td>7</td>
<td>0,63</td>
<td>4,87</td>
<td>27,34</td>
<td>27,34</td>
<td>0,63</td>
<td>27,34</td>
<td>27,34</td>
<td>27,34</td>
<td>27,34</td>
<td>27,34</td>
</tr>
<tr>
<td>8</td>
<td>0,51</td>
<td>3,93</td>
<td>27,22</td>
<td>27,22</td>
<td>0,51</td>
<td>27,22</td>
<td>27,22</td>
<td>27,22</td>
<td>27,22</td>
<td>27,22</td>
</tr>
<tr>
<td>9</td>
<td>0,41</td>
<td>3,14</td>
<td>20,21</td>
<td>20,21</td>
<td>0,41</td>
<td>20,21</td>
<td>20,21</td>
<td>20,21</td>
<td>20,21</td>
<td>20,21</td>
</tr>
<tr>
<td>10</td>
<td>0,36</td>
<td>2,81</td>
<td>15,80</td>
<td>15,80</td>
<td>0,36</td>
<td>15,80</td>
<td>15,80</td>
<td>15,80</td>
<td>15,80</td>
<td>15,80</td>
</tr>
<tr>
<td>11</td>
<td>0,33</td>
<td>2,57</td>
<td>13,78</td>
<td>13,78</td>
<td>0,33</td>
<td>13,78</td>
<td>13,78</td>
<td>13,78</td>
<td>13,78</td>
<td>13,78</td>
</tr>
<tr>
<td>12</td>
<td>0,32</td>
<td>2,44</td>
<td>11,75</td>
<td>11,75</td>
<td>0,32</td>
<td>11,75</td>
<td>11,75</td>
<td>11,75</td>
<td>11,75</td>
<td>11,75</td>
</tr>
<tr>
<td>13</td>
<td>0,23</td>
<td>1,77</td>
<td>8,31</td>
<td>8,31</td>
<td>0,23</td>
<td>8,31</td>
<td>8,31</td>
<td>8,31</td>
<td>8,31</td>
<td>8,31</td>
</tr>
</tbody>
</table>
نتایج کاتیشناسی

از آنجا که نتایج تجزیه نقره برای کانی‌های کالکوپیریت و یا گالن در منطقه مورد بررسی موجود نیست، نتایج تجزیه آنها برای تعدادی کانسار مس پورفریز از سایر نقاط دنیا اورده شده است. با توجه به اینکه معمولا مدل‌های کانسارهای مس پورفریز مشابه هستند، نتایج گزارش شده می‌تواند به این کانسارهای مس پورفریز مرتبط باشد.
جدول 4 مقدار عنصر نقره بر حسب گرم بر تن در کالی‌های کالکوپیریت، کالی و بورنیت تعدادی از ذخایر مس، پورفیری

<table>
<thead>
<tr>
<th>عنصر</th>
<th>کالکوپیریت</th>
<th>کالی</th>
<th>بورنیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>نام ذخایر</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valea Morii</td>
<td>1562</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Bucium-Tarni ța</td>
<td>83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolcana</td>
<td>1510</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>Rovina</td>
<td></td>
<td>277</td>
<td></td>
</tr>
<tr>
<td>Roșia Poien</td>
<td>1472</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Colnic</td>
<td></td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>Elatsite Bulgaria</td>
<td>618</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

برداشت
روش‌های آمار افغانی، تحلیل خوش‌خیاب سلسله مراتبی و تحلیل عمومی برای شناسایی رفتار زمین‌شیمیایی عنصر نقره در ذخیره‌های مس-پورفیری واقع در منطقه خزان استفاده شده، مقادیر حد آستانه عنصر نقره و عنصر هر دو با استفاده از روش آمار افغانی محاسبه شده و بر اساس این مقادیر نگهداری یافته شده است. هنگامی عنصر نقره، مس، سرب و روی رسم شدن نواحی بی‌هیبوبی را نشان خواهد داد.

[29] Sfidari E., A. Kadkhodaie-IlkhchiS. Najjari, "Comparison of intelligent and statistical clustering approaches to predicting total organic carbon using intelligent systems", Journal of

[39] El-Makky A. M., "Statistical Analyses of La, Ce, Nd, Y, Nb, Ti, P, and Zr in Bedrocks and Their Significance in Geochemical Exploration at the Um Garayat Gold Mine Area, Eastern Desert,