استفاده از روش‌های آمار اتصالات و تحلیل‌های عمیق و خوش‌آموز برای بررسی رفتار زمین-شیمیایی نفره در کانی‌های مس-مولپیدن پورفوری حراران، استان کرمان

سمیه عباس‌زاده، امیرحسین کوهساری

دانشکده مهندسی معدن و متالورژی دانشگاه بروجرد، ایران

چکیده: یکی از منابع نقره، ذخار مس-مولپیدن پورفوری است که در ان عصر نقره به‌صورت جنابی تولید می‌شود. در این مطالعه، رفتار زمین-شیمیایی عنصر نقره در منطقه حراران برای به‌دست‌آوردن نتایج نزدیک به ۲۰۰ نمونه سنگ‌زیمن‌شیمیایی برای عنصر Ba, Co, Cu, Mo, Pb, Sh, Sn, Sr, Bi پورفوری است. از روش‌های آمار اتصالات و تحلیل جنده‌استفاده برای شناسایی نواحی در دایر یه‌هنجاری نقره و عنصر همراه استفاده شد. بررسی نقص‌های نواحی یه‌هنجار به‌دست‌آمده با استفاده از روش آمار اتصالات نشان داد که نواحی یه‌هنجار عناصر نقره، مس، سرب و روی تقریباً هم‌پوشانی دارند. نمونه‌برداری به‌دست‌آمده از تحلیل خوشه‌ای سلسله مراتبی نشان داد که عنصر نقره و مس هم‌گستنی داشته و در یک گروه قرار گرفته‌اند. علرنه، نتایج تحلیل عمیق نیز نشان داد که عامل سهم شامل عنصر نقره و مس با بی‌تینی مقدار ویژه است. سرانجام رفتار درگاه نقره یعنی هم‌مراحل با مس به‌خطر قرار گرفتن در شکه‌کانی مس داده‌زبان کالکوپیریت و پورپوریت از یک‌طرف و همراهی با عنصر سرب به‌خطر قرار گرفتن در شکه‌کانی از سوی دیگر با روی‌های آمار اتصالات و تحلیل‌های جنده متغیر نبودند.

واژه‌های کلیدی: رفتار عنصر نقره؛ آمار اتصالات؛ تحلیل عمیق؛ تحلیل خوشه‌ای سلسله مراتبی

مقدمه

نقره از محدودیت انتشار است که در طبیعت به‌صورت آزاد پراکنده و شده و یکی از نشان‌های جنایی به شمار می‌رود. این سنواتی از مقدار این عنصر در سنگ‌های آذرین متغیر است و از ۰.۵٪ تا ۱٪ گرم بر تن در سنگ‌های آهنی و غیره‌ای غیره‌ای قرار گرفته است. در حدود ۰.۵ درصد به‌صورت فراورده اصلی از ذخار نقره و در حدود ۰.۵ درصد به‌صورت فراورده‌گانی از کاناسرهای سرب، روی و طلاست. [۱] نقره ب Autor گه‌های سرب، روی و مس و کالکوپیریت در سولفید‌های پورپوریت و آنتیمونیان سرب، روی و و. [۲] kohsar@yahoo.com
ونی سرب بسیار نزدیک به شعاع بیشینه نفوذ است و بر اضافه
در وضعیت هشته و چشمه بیشینه بیشتری به
همراه نفوذ در آن می‌شود.[۱] بیشینه نفوذ در گالن یک
مثال خوب از محلول جامد است که در واکنش گالنیزی
۲Ag⁺ ↔ Pb۲+ تقریباً نامحلول است و در تنظیم یک با یاهو
امن آن در شبکه گالن جای می‌گیرد. در صورت نیاز به
و گالنیزی، روش گالن محلول گالن در محلول جامد از ۱:۲
درصد تجزیه نمی‌کند و نفوذ تکمیلی به‌صورت میانی، رابطه
بیانی با گالن میزانی نشان نمی‌دهد.[۵]

علت وجود نفوذ به محمل جامد در کانه‌های
سولفیدی مس، بهبود در بار و اندازه پیوند مس و نفوذ،
که مقدار آن با تغییر در کانه‌های کوچکتی، بیرون،
کالکوپتین، کالکوبریت و پریپت افزایش می‌یابد.[۶] به‌طور
کلی، نفوذ نفوذ در کانه‌های مس نامتظم بوده و نتیجه تنزلی
شیمیایی کانه‌های مس دفتر نشان داده است که بین مقدار
مس و نفوذ آنها رابطه مکرر وجود دارد و در این نوع کانه‌ها
مقدار نفوذ به صورت نفوذ طبیعی با آن آبی از حالتی
است که به‌صورت جانشینی همواروی و بدون اصلاح ساختار
نیایشی در ساختار کانه شکل می‌گیرد.[۷]

پی‌گذاری از پژوهشگران برای شناسایی ناحیه‌بندی در
انکشاف مواد عضوی مورد استفاده قرار گرفته‌اند.[۸،۱۸،۱۹-۲۱]

داده‌های مورد استفاده از نمونه‌های سنگزیم‌سیمپیایی از
منطقه حجاری برداشت‌شده‌اند که از انتهای کانه‌ای مس-
مولبید یونکی در شرایط کیفیت سخت شرایه واقع در
طلج جغرافیایی ۳۰۳۳۹۰ تا ۳۰۳۲۹۰ درجه سانتی‌گراد و رض
 gördüها ۲۳۶۴۰ تا ۲۹۶۹۲ سمیلی در فضاهای مرکزی که
نگاری ۱۰۰۰۰۰ باقی واقع است این منطقه از نظر رونماییت
زمین‌شناسی در خصوص چنین آن‌ها در شرایط ناگهانی‌رنگ
درخت واقع است و اساس تجسمات زمین‌شناسی و ساختار دیمپتیجی
(۱۹۷۳) در پهنه دماغ - ساردونیه از استان کرمان جای دارد
[۲۴] موضوعات جغرافیایی این منطقه در شکل ۱ الف نشان
داده شده است.
شکل 1 موقعیت جغرافیایی منطقه حراز و نقاط نمونه‌برداری آن (الف) موقعیت جغرافیایی تعدادی از ذخایر مس-مولبدین بورفی و منطقه مورد مطالعه در گروه‌های ارومیه-دخترب (ب) نقاط نمونه‌برداری لرزش‌شیمیایی در منطقه حراز.

زمین‌شناسی منطقه مورد بررسی
چنان که در شکل ٢ دیده می‌شود، بیشتر واحدهای سنگ‌های قدیمی مربوط به دوره‌های یونس و هستند و در بیشتر نواحی منطقه رخنمش دارند و شامل سنگ‌های آندزیت و آندزیت بورفی و هستند که در شمال منطقه واقع شده‌اند. سنگ‌های آندزیت برای است یافتن از این واحدهای سنگی، هستند که در جنوب‌ترین قسمت از ناحیه مورد بررسی قرار گرفته‌اند.
همچنین توده‌های نفوذی دریت و گراندیتروپی قرار گرفته در جنوب منطقه به درون سنگ‌های آنتشالیت نفوذ کرده و در بری، آن دکسیسی و کالیسی صورت گرفته است. افزون بران توده‌های نفوذی دریت و گراندیتروپی که در قسمت‌هایی از مرکز غرب منطقه واقع شده‌اند، مربوط به واحد‌های سنگ‌های یونس هستند. این توده‌ها به‌صورت استوک‌های معه مجموعه سنگ‌انشتشالیت آندزیتی نفوذ کرده و توده پس از کانی‌سازی و پک مجموعه‌گریناسی و کانی‌سازی نیز اثر داشته‌اند. دیگر رخنمش‌ها شامل آلومینیا با سنگ آنتشالیتی آندزیتی، آلومینیا با جوش آنتشالیتی، کوارتز می-
برای انجام بررسی‌های آماری این پژوهش از نرم‌افزار SPSS و برای رسم مناطق به‌هنگامی عناصر از نرم‌افزار Golden Surfer استفاده شده است.

آمار انفصال

آمار انفصال یکی از روش‌های برپایی تابع توزیع است که به کمک آن می‌توان حد آستانه‌ای را برآورد کرد. آمار انفصال بیشتر برای موادی که ناپوستگی داده‌ها جدان آشکار نیست مفید است [12].

به همین‌طور، به دنبال انجام سنجش جرمی‌پلاسماتی و به‌وسیله آزمایشگاه تجزیه (ICP-MS) سنگی سپرده‌ای جفت‌های اکثری از وسایل متالوئن‌هایی از جمله W, Zn, Ag, As, Ba, Cu, Mo, Pb, Sb, Sn, Sr شدند که در این پژوهش از نتایج تجزیه عناصر استفاده شد.

سنجش گستره‌سنجی از فرم‌های خودسوزی و به‌وسیله منطقه حراز (۱۵۰۰۰) رخپوستن سنگ‌های قدیمی گچ در بیشتر منطقه دیده می‌شود، مربوط به دوره آلوسون هستند.
نقطه 3 مقطع صفحی نمونه به دست آمده از منطقه حرارت کانال کوریتریت، بوربریت و کولتیت را نشان می‌دهد.

اولین قدم در استفاده از این روش یافته تبدیلی از داده‌های کست توپوز داده‌ها را طبق ممکن به توزیع نرمال تبدیل کنید، زیرا اساس این روش بر فرض نرمال بودن توزیع داده استوار است. در محفل بعد داده‌های تبدیل یافته به رسم مقدار مرتکب شده و برای حذف نتایج مقاله‌ای داده‌ها، بايد استفاده شوند، رطوبت‌های میانگینی در عمر صفر و انحراف معیار آن یک باشد. در اینجا، داده‌های استفاده‌شده Z نامیده می‌شوند. در مراحل بعدی مقادیر امر انفعال برای هر زوج به از صورت زیر محاسبه می‌شود:

\[m = \frac{Z_i + 1 + Z_i}{2} \]

\[y = ZS + X \]

روش‌های تحلیل چندنگره‌ای

روش‌های چندنگره‌ای برای بررسی و شناسایی روابط بین عناصر در داده‌های زمین‌شناسی اکتشافی مورد استفاده قرار می‌گیرند. این روش‌ها شامل تحلیل مؤلفه اصلی، تحلیل خوشه‌ای عناصر، تحلیل رگرسیون، تحلیل تابیز و ... هستند. در این پژوهش از روش‌های تحلیل عاملی و تحلیل خوشه‌ای سلسله مراتبی برای شناسایی روابط بین عناصر استفاده شد.

توضیح عاملی

تحلیل عاملی یک روش آماری چندنگره‌ای است که روابط بین متغیرها را بر اساس ضرایب همبستگی خطي بین آنها اندامگاه می‌کند. هدف اصلی این روش شناسایی ساختار داده‌های چندمتغیره و کاهش تعداد آن به تعداد عامل مشخص است. در این روش جند عامل با استفاده از توابع خطي عناصر شیمیایی اصلی محاسبه می‌شوند. هر عامل برای گروه خاصی از عناصر به‌کار برده شده و ارتباط بین آنها را مشخص می‌کند که این امر در زمین‌شناسی اکتشافی به‌طور عادی دارد تا اینکه هر عناصر به‌نتایج مورد بررسی قرار گیرد در این روش برای کاهش درجه ارتباط بین آن و دیگر متغیرها مشخص می‌کند.

\[Z_i = F(m) \left(Z_i + 1 - Z_i \right) \]

\[\text{F(m)} = 0.3989e^{-\frac{\text{m}^2}{2}} \]
تحلیل خوشه‌ها سلسله‌مراتبی

روش آنالیز خوشه‌ها سلسله‌مراتبی یکی از معمول‌ترین روش‌های شناسایی خوشه‌هایی از نمونه و یا بیشترین شاهت، به کار می‌رود.[۱۶] در این روش، ابتدا فصل‌بندی (شاخه‌بندی) جفت نمونه‌ها ماحصل شده و سپس گروه‌بندی اساس شاهت‌ها و شاخص‌های استاندارده شده و سرالگان نمونه‌ها در مجموعه این نمونه‌ها با بهره‌گیری از نظر محاسباتی و تجزیه و تحلیل درک خوشه قرار می‌دهند. این کار تکرار می‌شود تا همه نقاط خوشه‌بندی شوند.[۱۴]

نتایج

بر اساس اصول روش آمار انتقالی که در بخش ۲-۱ توضیح داده شد و بر اساس روابط ارائه شده، یک کد در برنامه اکسل محاسبه شد. مقدار بندی آن را در جدول ۱ آورده است. به مناسبت این کد، متغیر بندی نخست هر نقطه را با نوع خوشه‌ها مجزا در نظر گرفته و شاهت سایر نقاط را نسبت به آن می‌سنجد و نقاط تابع را در یک خوشه قرار می‌دهد و این کار تکرار می‌شود تا همه نقاط خوشه‌بندی شوند.[۱۴]

جدول ۱۴ بایان‌های آماری انتقالی اولیه بستگی عناصر در داده‌ها

<table>
<thead>
<tr>
<th>عناصر</th>
<th>میانگین (گرم بر تن)</th>
<th>انحراف معیار (گرم بر تن)</th>
<th>کمیته‌بندی (گرم بر تن)</th>
<th>بیشترین (گرم بر تن)</th>
</tr>
</thead>
<tbody>
<tr>
<td>بیشترین (گرم بر تن)</td>
<td>۱۴۹</td>
<td>۱۰۹</td>
<td>۷۳</td>
<td>۹۰</td>
</tr>
<tr>
<td>بیشترین (گرم بر تن)</td>
<td>۱۴۸</td>
<td>۱۱۰</td>
<td>۸۸</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>بیشترین (گرم بر تن)</td>
<td>۱۴۷</td>
<td>۱۱۱</td>
<td>۹۳</td>
<td>۱۱۳</td>
</tr>
<tr>
<td>بیشترین (گرم بر تن)</td>
<td>۱۴۶</td>
<td>۱۱۲</td>
<td>۹۸</td>
<td>۱۲۳</td>
</tr>
<tr>
<td>بیشترین (گرم بر تن)</td>
<td>۱۴۵</td>
<td>۱۱۳</td>
<td>۱۰۳</td>
<td>۱۲۸</td>
</tr>
<tr>
<td>بیشترین (گرم بر تن)</td>
<td>۱۴۴</td>
<td>۱۱۴</td>
<td>۱۰۸</td>
<td>۱۳۳</td>
</tr>
<tr>
<td>بیشترین (گرم بر تن)</td>
<td>۱۴۳</td>
<td>۱۱۵</td>
<td>۱۱۳</td>
<td>۱۳۸</td>
</tr>
<tr>
<td>بیشترین (گرم بر تن)</td>
<td>۱۴۲</td>
<td>۱۱۶</td>
<td>۱۱۸</td>
<td>۱۴۳</td>
</tr>
<tr>
<td>بیشترین (گرم بر تن)</td>
<td>۱۴۱</td>
<td>۱۱۷</td>
<td>۱۲۳</td>
<td>۱۴۸</td>
</tr>
<tr>
<td>بیشترین (گرم بر تن)</td>
<td>۱۴۰</td>
<td>۱۱۸</td>
<td>۱۲۸</td>
<td>۱۵۳</td>
</tr>
</tbody>
</table>
شکل ۴ نمودارهای ستونی داده‌های خام سنگ زمین شیمیایی (سمت چپ) و داده‌های سنگ‌زمان لیتوژون‌شیمیایی تبدیل بافت‌های تابع لاحق بهنگار
عناصر نقره، سنگ سرب و روی در منطقه حجاران.
جدول ۲ مقادیر حد آستانه‌ای به‌دست آمده برای عنصر مختلف با استفاده از روش آمار انفصال در منطقه مورد بررسی.

<table>
<thead>
<tr>
<th>عنصر</th>
<th>حذف آستانه</th>
<th>سرب</th>
<th>استراتسوم</th>
<th>نقره</th>
<th>نیکل</th>
<th>مس</th>
<th>مولیبدن</th>
<th>روی</th>
<th>تکسیم</th>
<th>قلع</th>
<th>فلز</th>
<th>قلع</th>
<th>فلز</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>47.55</td>
<td>35.01</td>
<td>0.00</td>
<td>14.27</td>
<td>22.16</td>
<td>22.86</td>
<td>22.32</td>
<td>0.71</td>
<td>16.01</td>
<td>0.12</td>
<td>1.25</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td></td>
</tr>
</tbody>
</table>

شکل ۵ نقشه‌های هنجاری عنصر تقریباً سرب و روی در منطقه حوزه ای (مناطق رنگی نشان‌داده مقدارهای بالاتر از حد آستانه برای هر عنصر هستند.)
نتایج تحلیل کوه‌های

نتایج برآمده از تحلیل خوش‌های با استفاده از روش وارد و فاصله اقلیدسی به صورت نمودار درخشان 6 نشان داده و به

است. عناصر با توجه به همبستگی آنها در چنگ غربالگری اتصال

نکشیدن شده زنا در شکل این هم‌گروهها با رنگ‌های مختلف

نشان داده شده‌است. گروه بسیار به رنگ فرم نشان داده شده-

است که شمار عناصر نقره و سپس است و این نشان می‌دهد که

این دو عنصر با ارتقای همبستگی را با هم دارند. علاوه بر آن،

عناصر سرب، روی و انتیمون که به رنگ آبی در نمودار خوشه-

ای نشان داده شده‌اند نیز در یک گروه جداگانه قرار گرفته‌اند

که بیانگر همبستگی این عناصر است و چنان که دیده می‌شود

این دو گروه از عناصر در مرحله بعد یک گروه بزرگتر تشکیل

می‌دهد که نشان دهنده وجود همبستگی بین نقره و سرب و

روی اما به میزان کمتر نسبت به نقره است.

تحلیل عاملی

برای انجام این روش، داده‌های سپس به پیش پردازش، استاندارد

شده تا اثربخش بین بروز یکی از ماهیت‌های روش‌های استاندارد رسدی، تبدیل داده‌ها به صورتی است که میانگین آن‌ها

صرف و واریانس آن‌ها یک به شش[12] به این منظره، برای هر

\[\text{Rescaled Distance Cluster Combine} \]

\[\begin{array}{cccccc}
\text{CASE} & 0 & 5 & 10 & 15 & 20 & 25 \\
\hline
Bi & 6 & & & & & \\
Mo & 9 & & & & & \\
N & 1 & & & & & \\
\hline
Aa & 4 & & & & & \\
Ba & 5 & & & & & \\
Sn & 12 & & & & & \\
Co & 7 & & & & & \\
Sr & 13 & & & & & \\
Ag & 3 & & & & & \\
Cu & 0 & & & & & \\
Zn & 2 & & & & & \\
Pb & 10 & & & & & \\
Sb & 11 & & & & & \\
\end{array} \]

\[\]
جدول 2: واردایی تجمعی به‌دست آمده از تحلیل عاملی داده‌های سنگزمانی‌های تیم‌های در منطقه حسوان.

<table>
<thead>
<tr>
<th>بردارهای ویرژن اولیه</th>
<th>مجموع مؤلفه‌های استخراج شده</th>
<th>مجموع مؤلفه‌های دوران بایته</th>
<th>عامل</th>
<th>تعداد (٪)</th>
<th>تعداد (٪)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1491</td>
<td>4787</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>145</td>
<td>58.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>10.3</td>
<td>66.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.81</td>
<td>73.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>0.71</td>
<td>78.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>0.87</td>
<td>85.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>0.51</td>
<td>87.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>0.44</td>
<td>90.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0.36</td>
<td>93.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>0.23</td>
<td>95.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>0.33</td>
<td>98.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>0.23</td>
<td>100.00</td>
</tr>
</tbody>
</table>
نتایج کانی‌شناسی
از آنجا که نتایج تجزیه نقره‌برای کانی‌های کالکوبایت و یا گالن در منطقه مورد بررسی موجود نیست، نتایج تجزیه آنها برای تعدادی کانسیار مس پورفیری از سایر نقاط دنیا اورده شده است. با توجه به اینکه معمولا مدل‌های کانسیارهای مس پورفیری مشابه هستند، نتایج گزارش شده می‌تواند به این

کانسیار مس پورفیری نیز تعیین داده شود. این نتایج در جدول ۴ ارائه شده است و بر اساس آن می‌توان نتیجه گرفت که تقریب
صورت محلول جامد در کانی‌های گالن و کانی‌های مس
مانند کالکوبایت یا بورنیت وجود دارد که با نتایج به‌دست‌آمده
از داده‌های شیمیایی هم‌خواني‌دار.
جدول ۱ مقدار عنصر نقره بر حسب گرم بر تن در کالکوپریت، کالن و بورنیت تعدادی از ذخایر مس پوربری

<table>
<thead>
<tr>
<th>عنصر</th>
<th>کالکوپریت</th>
<th>کالن</th>
<th>بورنیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valea Morii</td>
<td>۲۰۰</td>
<td>۱۴۵</td>
<td>۱۲۰</td>
</tr>
<tr>
<td>Bucium-Tarni ța</td>
<td>۸۱</td>
<td>۷۲</td>
<td>۷۳</td>
</tr>
<tr>
<td>Bolcana</td>
<td>۲۱۹</td>
<td>۱۵۱</td>
<td>۱۵۵</td>
</tr>
<tr>
<td>Rovina</td>
<td>۲۷۷</td>
<td>۲۴۳</td>
<td>۲۴۶</td>
</tr>
<tr>
<td>Roşia Poien</td>
<td>۱۴۷</td>
<td>۱۴۶</td>
<td>۱۴۵</td>
</tr>
<tr>
<td>Colnic</td>
<td>۲۸۵</td>
<td>۲۸۷</td>
<td>۲۹۱</td>
</tr>
<tr>
<td>Elatsite Bulgaria</td>
<td>۶۱۸</td>
<td>۶۱۷</td>
<td>۶۱۶</td>
</tr>
</tbody>
</table>

برداشت
روش‌های آمار افسمال، تحلیل توزیع سلسله مراتبی و تحلیل عاملی برای شناسایی رفتار زمین‌شیمیایی عنصر نقره در ذخیره مس-پوربری واقع در منطقه حوزه انصرف فردند. مقادیر حالت محلول نقره و عنصر هری در استفاده از روش آمار افسمال محاسبه شدند و بر اساس این مقادیر توجه به عنصر نقره در ذخیره مس و در محله بعد نواحی جدید نظر گرفته می‌شد. مس-پوربری در منطقه مورد بررسی قرار دادن که با نتایج بدست‌آمده از تحلیل‌های آماری همخوانی دارد.

مراجع

[29] Sfidari E., A. Kadkhodaie-Ikhchis. Najjar, "Comparison of intelligent and statistical clustering approaches to predicting total organic carbon using intelligent systems", Journal of