کانی شناسی، زمینشناسی و خاتمه‌کنگر کانسار منگنز هلالان، جنوب دامغان

مهدیه مصدق، فر جل الله فردوسی*، افسانه سلطانی

دانشکده علوم زمین، دانشگاه صنعتی شریف

چکیده: کانسار منگنز هلالان، بر نوا، آنفلوئو-روسی تود- چاه شیرین و بخش شمالی پهن‌های ساختاری-روسی ایران مركزی واقع شده است. منگنز رخت‌نمونه یافته در منطقه شامل مجموعه دگرگونی با ترکیب سه‌گانه‌ای اسلایس، قلیفت، شیبیت، مرمر، آهک، دولومیت و مستندگانی کمی درگرونشده با سن زوراسیک پیشین هستند. کانسار منگنز به شکل چینه‌ای (لاهیاب و عدسی شکل) و هیپرون با لایه‌بندی رخ داده است. کانساری اصلی تشکیل هرده‌های معدنی پیش‌پرولوژیت، پیسولومان، هولاندیت، براونیت و همانند هستند. ساخته‌های هدایتی، لاهیاب عدسی و نواری، و بافت‌های دانه پراکنده، پرکنده فضای خالی و جانشینی شدید و هنوز هم شناخته نمی‌شود. هرده‌های موجد در منطقه شامل کریتی، آزپنیت سلیسی و کریتیک و Co, Ni, Mn/Fe هستند. براساس بررسی‌های زمین‌شناسی، با لایه سنین Fe و با لایه سنین Cu و با لایه سنین مقاپر Mg, SiO2 به عنوان شاخصی از غنی‌شدن و تثبیتی Mn از سیلای‌های گرما زیردربایی (بروندی) در این نهضته هستند. این شاخص گویای این است که کانسار منگنز هلالان با دو سازوکار غنی‌شدن در آب درا توسط سیلای گرماپی-بروندی و تعشیی در شرایط رسوبی دستخوش تعیینات پتانسیل کاسیشم-کاهش pH در محیط دریایی تشکیل شده و کانسار آنتفلوئو-روسی است. با توجه به بررسی‌های انجام شده، کانسار منگنز هلالان بیشتری شهاهی را کانسارهای منگنز نوع کوبه‌راشان می‌دهد. با این تفاوت که کانسار منگنز هلالان دستخوش یک فاز دگرگونی در حد رخ‌سره شیست سپر نیز شده است.

واژه‌های کلیدی: منگنز‌ها، کانسار، ژئومیدی، روسی، انتفلوئو-روسی، نوع کوبه‌ها، هلالان

مقدمه

انباشت‌های اولیه منگنز در پوسته زمین مربوط به پس از پایان آرکن میلیا و در ارتباط با آب‌های سطحی کم عمق بوده است [1]. تراکم بایل ممکن است در آب درا در زمان آرکن در ارتباط Mn با عدم کاسیشم این عصر است [2]. برزگرین سنین منگنز به پروتوژئیک پسین مربوط می‌شود. جدایی پاتوکا توسط افناز آرام از اپوکراوس و گندونا آغاز دوره‌های کانسیم منگنز در مراکز سنتوژئیک است. در این مرحله از نکات

*فیلمنه دستورالعمل تلفن: 91162432234654706703 - پست الکترونیکی: faraj_fardoost@yahoo.com
زمن شناسی منطقه مورد بررسی
کلسیم و فلزات بیش از زمین‌شناسی سیاسی مختلف در ایران شناسایی شده‌اند. تجربیات انسانی، اقتصادی و سیاسی است. این تجربیات با شاخص‌های تدابیر بیماری و انسان‌شناسی غربی و استراتژیک در نظر گرفته شده‌اند. هر چه بیشتر از استراتژی‌ها و تکنیک‌ها در زمین‌شناسی در شناسایی انسان‌یاری و تکنیک‌های مختلف شناسایی مورد بررسی قرار گرفته باشد، این تجربیات در زمین‌شناسی در نظر گرفته شده‌اند. در این ناحیه، انسان‌یاری انسان‌شناسی در بیشتر شناسایی انسان‌یاری و تکنیک‌های مختلف شناسایی مورد بررسی قرار گرفته باشد.

روش بررسی
در این پژوهش، سپ از تهیه نقشه زمین‌شناسی ۱۰۰۰۰۰۰ منطقه با استفاده از تصادف ماهواره‌ای و بیماری‌های ماهواره‌ای و با استفاده از نقشه ۱۰۰۰۰۰۰:۱۰ کلنر، تعداد ۲۰ نمونه از گیاه‌شناسی منطقه مورد بررسی در این ناحیه داده، دانلند بر پیشنهاد طولانی مدت کار با پیشنهاد به‌صورت هر چه بیشتر مورد بررسی قرار گرفته باشد.

سنگ شناسی منطقه مورد بررسی
نقشه زمین‌شناسی گسترش معمول بررسی ماهواره‌ای حواشی اپیدورسی (LOI) بررسی شده و چگونه در انتهای سیستم‌های نپلی و به‌صورت هر چه بیشتر کمپیوتر گونه‌های منطبقه معمول بررسی، سنگ‌های درگونی با سن بیشتر، شیست، مسکونی، شیست‌های اپیدورسی، سنگ‌های کربنات (آهن و دومیت) و نتیجه‌های نادرخورده‌های هستند. در ادامه هر یک از این واحدها توصیف می‌شوند.

واسته است از [۴]، اکسیدهای سنگی در محیط‌های مختلف از جمله محیط‌های خشک و در برابر توسط فرآیندهای آب‌زدایی، روزنده و تغییر تنظیم مناسب و افزایش کمپیوتر منطقه در محیط‌های گیاه‌زایی‌پذیر فرآیندهای در این ناحیه است.

کنند (۲) گیاه‌های زمین‌شناسی درون‌افزایی همه از سیاله‌های موجود در منطقه راه‌های مورد بررسی در دام‌های پایین‌ریزهات و سیاله‌های درون‌افزایی مکانیز عناصر فلزات در ساختار کربنات کم ت تعیین کرده می‌باشد. در این پژوهش، بررسی پی جویی‌های منطقه می‌باشد. شیمی‌دانی، کاسپی، زمین‌شناسی و زمین‌شناسی را انجام می‌دهد. این پژوهش در سنج و مزین‌سنجی ماده معدنی، شکل هندسی، کلینیک‌ها، ساختمان و بافت، زمین‌شناسی، خاتم‌های و چگونگی تکنیک آلبریشه است.
کلیه شیست: در بررسی‌های صحرایی، واحدهای کلیه‌ای شامل دو بخش، مسکونی و مسکونی‌داری به صورت طبیعی یا انسانی تشکیل می‌شوند. شکل‌های اصلی این واحدهای مسکونی شامل سنگ‌های کامپاش، کوارتز و مسکونی‌داری به صورت طبیعی یا انسانی تشکیل می‌شوند. شکل‌های اصلی این واحدهای مسکونی شامل سنگ‌های کامپاش، کوارتز و مسکونی‌داری به صورت طبیعی یا انسانی تشکیل می‌شوند.
اشتباهاتی سیز آپیدوتی شده: بر اساس شواهد صحرا، این واحد به صورت همرنردی با واحدهای رخمون یافته در منطقه همره با رزیچه‌های ریزی و حوضه دگرسان و کانه‌ها قرار دارد. این واحد شامل اپیدوتی شده‌ای که دارای مولکول بی‌پهنی است. در این واحد، مسکویت، کوارتز، پلاژیوکلاز و سونریشهای اصلی هستند. (شکل ۲) این واحد به صورت خطره‌ها در امتداد شیستوارگی چهت یافته و در دل‌های چین‌های دیده می‌شوند.

شکل ۲-۱ بهبود میکروسکوپی از واحد کلریت شیست با حضور کانی‌های مسکویت، کوارتز، کوارتز و گارنت به سیز آپیدوتی شده، این نسبت به تولید میکروسکوپی از نمایگیری‌های غنی از میکا (مسکویت و سرپیت) نسبت به نوارهای غنی از کوارتز، پلاژیوکلاز و اسفن و تکرار نشان دهنده است. نمایگیری نوارهای غنی از کوارتز، پلاژیوکلاز و اسفن و تکرار نشان دهنده است. نمایگیری نوارهای غنی از کوارتز، پلاژیوکلاز و اسفن و تکرار نشان دهنده است. نمایگیری نوارهای غنی از کوارتز، پلاژیوکلاز و اسفن و تکرار نشان دهنده است.
کلیسیت و سنگچرگی از راه‌های باطلی‌ها در کانسار منگنز هستند که درجه خلوص ماده معدنی را با بین‌های می‌آورند [14].

شوند، اما به طور مداوم توسط فرآیندهای نانویه (دروازه‌ای) به فازهای دیگر تبدیل می‌شوند [12]. کانی‌های رسی از جمله مونتморیلونت و کلینوکلر و کوارتز، اسپارتن، والاسنت.

شکل ۳ (الف) تصویر میکروسکوپی از پیرولوزیت‌های اولیه (پیلولتان، ت) تصویر میکروسکوپی بافت توده‌ای از کانی پیلولتان، ط) تصویر میکروسکوپی از بافت جانشینی (جانشین شدن پیلولتان توسط پیرولوزیت) و ج) تصویر میکروسکوپی الکترونی پس پراکنده از کانی پیرولوزیت، پیلولتان، پیلولتان، پیلولتان، پیلولتان و Br برلین. [DOI: 10.29252/ijcm.26.4.945]
پیروزولیت و پیروزولیت‌مانی به پیروزولیتی کالی م הזוג می‌گذرد.

است که به صورت اولیه (سلول اول) با بایق رشته‌ای و بوزنی (شکل 3) ب به صورت تانیه (سلول دوم) با بایق توده‌ای دیده می‌شود. پیروزولیت‌مانی بایق‌های توده‌ای (شکل 3 ت). بیان اکسیدهای کالیا در کانسیستر می‌گذرد. پیروزولیت و کالیا های باختلاش شکل کلوکامی می‌گذرند.

شکل کلوکامی بایق‌های در محیط آرام، اسمع و مداری به عنوان سالیان پسیلوپاژی یا پیروزولیت (شکل 3) ب، می‌تواند خاستگاه کالیا را تایید کند (شکل 16). بایق‌های پیروزولیت/توده‌ای است. شکل اولیه کانسیستری پیروزولیت در کانسیستر می‌گذرد. بایق‌های به شکل رگه-رگه‌ای دیده می‌شود.

شکل کالیا براینیت (سبیلات مینیت) (شکل 3) با ممکن‌ترین کانسیستری داشت که کالیا در نمونه دست به رنگ خاکستری یا رنگ خاک سیاه قابل تشخیص می‌باشد. باینیت در اندازه‌های سیب‌یار ریز تا یوندگاه شده می‌شود و به اصطلاح به ان کانسیستری گفته می‌شود. [17] براینیت به همراه کوالریز از رابطی کالیا در کانسیستری درون‌تراز مینیت هستند. می‌توان گفت که براینیت به عناوین یک فراورد، درون‌ترازی با رنگ ریز و مهیازک (14) براینیت طی درون‌ترازی از یک کانسیستری مینیتی و محلول گرمابی و همچنین واکنش مینیت به سیلیس موجود در روتوش تشکیل شده است که این واکنش در دمای بالا و فشار بالا صورت می‌گیرد [18].

\[\text{SiO}_2 + 7\text{MnO}_2 \rightarrow 3\text{Mn}_2\text{O}_3 + \text{MnSiO}_3 + 2\text{O}_2 \]

\[\text{Mn}_2\text{O}_3 + \text{O}_2 \rightarrow 2\text{MnO}_2 \]

\[\text{CaO} + \text{SiO}_2 \rightarrow \text{CaSiO}_3 \]

\[\text{SiO}_2 + 7\text{MnO}_2 \rightarrow 3\text{Mn}_2\text{O}_3 + \text{MnSiO}_3 + 2\text{O}_2 \]

\[\text{Mn}_2\text{O}_3 + \text{O}_2 \rightarrow 2\text{MnO}_2 \]

\[\text{CaO} + \text{SiO}_2 \rightarrow \text{CaSiO}_3 \]

\[\text{SiO}_2 + 7\text{MnO}_2 \rightarrow 3\text{Mn}_2\text{O}_3 + \text{MnSiO}_3 + 2\text{O}_2 \]

\[\text{Mn}_2\text{O}_3 + \text{O}_2 \rightarrow 2\text{MnO}_2 \]

\[\text{CaO} + \text{SiO}_2 \rightarrow \text{CaSiO}_3 \]

\[\text{SiO}_2 + 7\text{MnO}_2 \rightarrow 3\text{Mn}_2\text{O}_3 + \text{MnSiO}_3 + 2\text{O}_2 \]

\[\text{Mn}_2\text{O}_3 + \text{O}_2 \rightarrow 2\text{MnO}_2 \]

\[\text{CaO} + \text{SiO}_2 \rightarrow \text{CaSiO}_3 \]
در کانسارهای گرمای، مقدار باین (Zn) (7-283) ppm. Cu (5-1000ppm) به روسپ برخی این کانسار نسبت داده شده است [۲۴].

زمین‌شناسی عناصر کمیاب سنگ میزبان

نمونه‌ها مختلفی برای تشخیص خاسگاه انواع کانسارهای منگنز با استفاده از عناصر کمیاب و عناصر اصلی بیشتر به شده است. این نمونه‌ها برای تایوز کانسارهای گرمای (قاره‌ای با دربی) و آبادی استفاده می‌شوند. Ce و Eu مقدار معکوبی (شکل ۶ الف) [۲۵] یه‌هم‌ریا منی از Ce در مورد به‌هم‌ریا منی Ce در کانسارهای منگنز تری‌هایهای متعددی ارائه‌شده است که در تفسیر محفظهٔ تکامل این

جدول ۱: توالی همبازی کتی‌ها در کانسار منگنز هلالان.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Volcano-Sedimentary</th>
<th>Diagenesis</th>
<th>Metamorphism and deformation</th>
<th>Weathering (Supergene)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrolusite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psilomelan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Braunit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hollandite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hematite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gypsum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Textures				

Massive				
Banded-Laminated				
Disseminate				
Replacement				
Vain- Veinlet				
Colloform				

جدول ۲: مقداری درصدی آسیب‌های اصلی بر حسب درصد ونی بر دست‌آمده از روش XRF

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>23.6</td>
<td>21.9</td>
<td>24.6</td>
<td>22.3</td>
<td>23.1</td>
<td>24.2</td>
<td>24.9</td>
<td>24.3</td>
<td>15.8</td>
</tr>
<tr>
<td>TiO₂</td>
<td>11.7</td>
<td>13.6</td>
<td>11.4</td>
<td>13.9</td>
<td>14.9</td>
<td>13.9</td>
<td>14.9</td>
<td>14.9</td>
<td>11</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>12.9</td>
<td>13.6</td>
<td>13.6</td>
<td>13.6</td>
<td>13.6</td>
<td>13.6</td>
<td>13.6</td>
<td>13.6</td>
<td>11</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>22.4</td>
<td>21.4</td>
<td>22.4</td>
<td>21.4</td>
<td>22.4</td>
<td>21.4</td>
<td>22.4</td>
<td>21.4</td>
<td>22.4</td>
</tr>
<tr>
<td>MnO</td>
<td>11.1</td>
<td>11.1</td>
<td>11.1</td>
<td>11.1</td>
<td>11.1</td>
<td>11.1</td>
<td>11.1</td>
<td>11.1</td>
<td>11.1</td>
</tr>
<tr>
<td>MgO</td>
<td>11.1</td>
<td>11.1</td>
<td>11.1</td>
<td>11.1</td>
<td>11.1</td>
<td>11.1</td>
<td>11.1</td>
<td>11.1</td>
<td>11.1</td>
</tr>
<tr>
<td>CaO</td>
<td>43.0</td>
<td>43.0</td>
<td>43.0</td>
<td>43.0</td>
<td>43.0</td>
<td>43.0</td>
<td>43.0</td>
<td>43.0</td>
<td>43.0</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>K₂O</td>
<td>15.5</td>
<td>15.5</td>
<td>15.5</td>
<td>15.5</td>
<td>15.5</td>
<td>15.5</td>
<td>15.5</td>
<td>15.5</td>
<td>15.5</td>
</tr>
<tr>
<td>LOI</td>
<td>11.9</td>
<td>11.9</td>
<td>11.9</td>
<td>11.9</td>
<td>11.9</td>
<td>11.9</td>
<td>11.9</td>
<td>11.9</td>
<td>11.9</td>
</tr>
</tbody>
</table>

[DOI: 10.29252/ijcm.26.4.945]
جدول ۲: مقادیر عناصر فرعی و کمیاب بر حسب ppm

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>0.01</td>
</tr>
<tr>
<td>Pb</td>
<td>0.01</td>
</tr>
<tr>
<td>Cu</td>
<td>0.01</td>
</tr>
<tr>
<td>Cr</td>
<td>0.01</td>
</tr>
<tr>
<td>Mo</td>
<td>0.01</td>
</tr>
<tr>
<td>Bi</td>
<td>0.01</td>
</tr>
<tr>
<td>Fe</td>
<td>0.01</td>
</tr>
<tr>
<td>Co</td>
<td>0.01</td>
</tr>
<tr>
<td>Ni</td>
<td>0.01</td>
</tr>
<tr>
<td>Ti</td>
<td>0.01</td>
</tr>
<tr>
<td>Zr</td>
<td>0.01</td>
</tr>
<tr>
<td>Na</td>
<td>0.01</td>
</tr>
<tr>
<td>K</td>
<td>0.01</td>
</tr>
<tr>
<td>Ca</td>
<td>0.01</td>
</tr>
<tr>
<td>Mg</td>
<td>0.01</td>
</tr>
<tr>
<td>Mn</td>
<td>0.01</td>
</tr>
<tr>
<td>Al</td>
<td>0.01</td>
</tr>
<tr>
<td>Cr</td>
<td>0.01</td>
</tr>
<tr>
<td>V</td>
<td>0.01</td>
</tr>
<tr>
<td>Mn/Fe</td>
<td>0.01</td>
</tr>
</tbody>
</table>

عناصر به شدت میانی (HSFE)

<table>
<thead>
<tr>
<th>(REE)</th>
<th>La</th>
<th>Ce</th>
<th>Sc</th>
</tr>
</thead>
<tbody>
<tr>
<td>132</td>
<td>132</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>172</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>237</td>
<td>237</td>
<td>237</td>
<td></td>
</tr>
</tbody>
</table>

عناصر خاکی نادر

<table>
<thead>
<tr>
<th>(REE)</th>
<th>Y</th>
<th>Zr</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>132</td>
<td>132</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>172</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>237</td>
<td>237</td>
<td>237</td>
<td></td>
</tr>
<tr>
<td>237</td>
<td>237</td>
<td>237</td>
<td></td>
</tr>
</tbody>
</table>

زمین‌شیمی عناصر آهن - منگنز - عناصر کمیاب کانسک

منکن نسبي: مولی نسبت [Mn] به کانتورَزی منکنِ در کنارِ مولی منکن نسبت [Mn/Fe] نسبت این منکن در pH ۸.۴. این سیستم به هدف کنترَزیِ مولی منکن به یک سایه منکن یا مولی منکن به یک سایه منکن بررسی می‌شود. این سیستم به هدف گسترشِ منکن‌های کانسک در کانسک‌های کانسک است. این سیستم به هدف کنترَزیِ مولی منکن به یک سایه منکن بررسی می‌شود. این سیستم به هدف گسترشِ منکن‌های کانسک در کانسک‌های کانسک است.
نمودار زیربرداری از کانسار گرمایی Co و Ni, Zn در Co/Zn - (Co+Ni+Cu) ppm تایی Co - Ni - Zn تایی 250 و 600 ppm مورد بررسی در آن موارد متغیر می‌باشد. آب دریا و حدود 2.8 است. اما سایر کانسارها نسبت به آب دریا Ce در گروه شناخته شده در کانسارها با برای 125,000 است. در نمونه‌های تجزیه شده، مدل زباشی و چگونگی تشکیل کانسار منگنز هلالان با توجه به اینکه کانسارها منگنز در محیط‌های متنوع ساختی مختلف شکل می‌شوند، بررسی شرایط تشکیل آنها مهم و همواره موضوع بحث بوده است [24]. براساس بررسی‌های صحرایی و آزمایشگاهی انجام شده، کانسار منگنز هلالان با دو سازوکار ترکیبی و رسوبی تشکیل شده است و ساختارهای گسیلی در مرحله ترکیبی نقش مجزای انتقال را داشته‌اند. نسبت Ce به La به La/Ce نسبت Ce در کانسارها گرمایی مشابه آب دریا دارد و حدود 2.8 است. اما سایر کانسارها نسبت به آب دریا Ce در Ce به Ce 2.5 است. در نمونه‌های تجزیه شده، کانسارها برای 125,000 است. در نمونه‌های تجزیه شده،
مرحله درون‌زایی: در مرحله بعد، بر اساس رنگ‌های اندازه‌گیری صورت گرفته و لاپاهایی از گزاره‌های آن‌دستی - برای تولید، توف
لایلی و سنگ، اگر بر ماده معنی تکامل شده‌اند (شکل 5
ب درون‌زایی شعله فشرگی، مسیبی، شدن اغلب، جانشینی
و دگرگونی) توجه پیش از دگروزی است. در این مرحله،
کلیه توانایی نواحی سیستمی می‌شوند. به این صورت که
کلیه اندام‌ها درون‌زایی مشترک می‌شوند و هم‌روزی بین
درون‌زایی به کلیه بیابان پیروزی و البته می‌شود.
هاچی‌یکن با افزایش دما و فشار ضمن درون‌زایی شرایط بار
مشکلی کلیه برانوش فراهم می‌شود. برای روش از راجع
ترین کلیه در کلاستر فرود رنگ‌های دهند. در اینتکس
کلیه گرفت که برانوش به نمونه یک فراوردن درون‌زایی اولیه رخ می‌دهد [113]. از اینجا که
کلیه را ممکن است این شکل نواحی مشترک می‌شوند و
هم‌روزی بین شکل درون‌زایی مشترک می‌شوند و شکل گیری
شکل‌های نواری و عدسی ماده معنی می‌شود. (شکل
مرحله دگروزی: به دام مده ماهی نشان داده در دچار
یک فاز دگروزی در جد رخگذار شیست سیز شده است (شکل
5 ب). در این دگروزی مغزی تأثیر خوری می‌شود و شدت. در این مرحله که در
اثر دگروزی کلیه به بی‌اسم مگزین مشترک پیروزی مشترک بین
کلیه درون‌زایی مشترک می‌شوند. در این دگروزی کلیه
هم‌روزی بین این آگاهی مجمعی از راهگیری کلیه
و کلیه کلیه که چک می‌شود که کاخ معنی را از دگرخورد.
بررسی کلیه کلیه شناسی، بافت و ساخت صورت گرفته در
کلیه هلاکت هیز بینار تکامل کلیس شدن هلاکت بیش از
دگروزی کوچک و به جلو در بکار رفته و مراکز اولیه اکثریت
אות گروهی در مرحله اندازه‌گیری - رسمی و صورتی ازگن
زیبردری اصول گرفتن است، و در این دگروزی دگروزی بهدی
بی‌اسم بستگی به امکان فعالیت معنی و
سه شکل‌های مشترک بین شکل درون‌زایی مشترک می‌شوند و
سینگهای دچار درگروزی آن شده است. براساس بررسی‌های کلیه -
شاپکی، دندان، بافت و القا تکامل کلیس شدن سیستم مگزین
و توانای می‌شود که خواندن مراکز بوتومی، رسمی
درون‌زایی، دگروزی و پیشنهاد (هورودلگی) در جدول 1 نشان
داده شده است.

بطور کلی می‌توان برای فرانک‌کاتین سازی سه مرحله زیر را در
نظر گرفت:

مرحله پروتوم - رسمی: در این مرحله در اثر فعالیت‌های
اندازه‌گیری - پروتوم، سیالی - گرایی، بوتوم، داغ، اسیدی
و آبیاری، انرژی ملی کلمیز راه یافته دو فرآیند، ملیک
منگزین سیستمیک کلیس شدن منگزین به قضا‌ساز
رنسیسی (شکل 6) شسته و از طریق کلیسیوهای و قضا –
حوضه رنسیسی. در واقع گردش آب در این مانند
کلیه اندازه‌گیری تولید سالین حاصل بر جای گرمایی می‌کند. که اکسید و
هم‌روزی دگروزی منگزین را تشکیل می‌دهد [73]. از اینجا که
به روش کلیه می‌شود که به منابع بیشتر است. در این مرحله
کلیه اندازه‌گیری تولید سالین حاصل بر جای گرمایی می‌کند. که اکسید و
هم‌روزی دگروزی منگزین را تشکیل می‌دهد [73]. از اینجا که
به روش کلیه می‌شود که به منابع بیشتر است. در این مرحله
کلیه اندازه‌گیری تولید سالین حاصل بر جای گرمایی می‌کند. که اکسید و
هم‌روزی دگروزی منگزین را تشکیل می‌دهد [73]. از اینجا که
به روش کلیه می‌شود که به منابع بیشتر است. در این مرحله
کلیه اندازه‌گیری تولید سالین حاصل بر جای گرمایی می‌کند. که اکسید و
هم‌روزی دگروزی منگزین را تشکیل می‌دهد [73]. از اینجا که
به روش کلیه می‌شود که به منابع بیشتر است. در این مرحله
کلیه اندازه‌گیری تولید سالین حاصل بر جای گرمایی می‌کند. که اکسید و
هم‌روزی دگروزی منگزین را تشکیل می‌دهد [73]. از اینجا که
به روش کلیه می‌شود که به منابع بیشتر است. در این مرحله
کلیه اندازه‌گیری تولید سالین حاصل بر جای گرمایی می‌کند. که اکسید و
هم‌روزی دگروزی منگزین را تشکیل می‌دهد [73]. از اینجا که
به روش کلیه می‌شود که به منابع بیشتر است. در این مرحله
کلیه اندازه‌گیری تولید سالین حاصل بر جای گرمایی می‌کند. که اکسید و
هم‌روزی دگروزی منگزین را تشکیل می‌دهد [73]. از اینجا که
به روش کلیه می‌شود که به منابع بیشتر است. در این مرحله
کلیه اندازه‌گیری تولید سالین حاصل بر جای گرمایی می‌کند. که اکسید و
هم‌روزی دگروزی منگزین را تشکیل می‌دهد [73]. از اینجا که
به روش کلیه می‌شود که به منابع بیشتر است. در این مرحله
کلیه اندازه‌گیری تولید سالین حاصل بر جای گرمایی می‌کند. که اکسید و
هم‌روزی دگروزی منگزین را تشکیل می‌دهد [73]. از اینجا که
به روش کلیه می‌شود که به منابع بیشتر است. در این مرحله
کلیه اندازه‌گیری تولید سالین حاصل بر جای گرمایی می‌کند. که اکسید و
هم‌روزی دگروزی منگزین را تشکیل می‌دهد [73]. از اینجا که
به روش کلیه می‌شود که به منابع بیشتر است. در این مرحله
کلیه اندازه‌گیری تولید سالین حاصل بر جای گرمایی می‌کن
شکل ۵ مدل زنتیکی فرازند کانترالی کانسی مانگنز هالاژن (الف) مرحله برون‌گونه (ب) مرحله درون‌زایی (ب) مرحله دگ‌گونه.
مقایسه کانسار-مکنز هلالون با نوع مکنز

بر اساس تحقیقاتی موریب و بیج [35]. کانسار-مکنز

انتشافی-رسوی به چهار نوع کورس، کوب، المیک، پنیسولوا

و فرانکسین تقییم نموده و مقدار مصرف غذای ناشان

می‌دهد. با این تفاوت که کانسار-مکنز هلالون دست‌خوشی که ویژگی‌های کانسار-مکنز هلالون از جمله می‌باشد

زمان‌ساختی تشکیل، محیط زمین‌شناسی نه‌ش، سنگ‌های

جدول 4. مقایسه کانسار-مکنز هلالون با نوع مختلف کانسار-مکنز-انتشافی-رسوی بر اساس رده بندی موزی و بیج [39].

<table>
<thead>
<tr>
<th>نوع قبرس</th>
<th>نوع مکنز</th>
<th>نوع فرانکسین</th>
<th>کانسار-مکنز هلالون</th>
<th>ویژگی‌های شاخص</th>
</tr>
</thead>
<tbody>
<tr>
<td>پنیسولوا</td>
<td>پنیسولوا</td>
<td>پنیسولوا</td>
<td>پنیسولوا</td>
<td>محیط زمین‌ساختی</td>
</tr>
<tr>
<td>بیش‌ترین یافت را با کانساراتی‌های نوع کوب نشان</td>
<td></td>
</tr>
</tbody>
</table>
| می‌دهد. با این تفاوت که کانساز-مکنز هلالون دست‌خوشی که ویژگی‌های کانساز-مکنز هلالون از جمله می‌باشد.

شناختی نه‌ش، سنگ‌های

می‌باشد.

جدول 4. مقایسه کانساز-مکنز هلالون با نوع مختلف کانساز-مکنز-انتشافی-رسوی بر اساس رده بندی موزی و بیج [39].

<table>
<thead>
<tr>
<th>نوع قبرس</th>
<th>نوع مکنز</th>
<th>نوع فرانکسین</th>
<th>کانساز-مکنز هلالون</th>
<th>ویژگی‌های شاخص</th>
</tr>
</thead>
<tbody>
<tr>
<td>پنیسولوا</td>
<td>پنیسولوا</td>
<td>پنیسولوا</td>
<td>پنیسولوا</td>
<td>محیط زمین‌ساختی</td>
</tr>
</tbody>
</table>
| Bیش‌ترین یافت را با کانساز-مکنز هلالون دست‌خوشی که ویژگی‌های کانساز-مکنز هلالون از جمله می‌باشد.

شناختی نه‌ش، سنگ‌های

می‌باشد.
برداشت
کانسار منگنز هلالان، به شکل چینه‌سان (لاهیانی و عدسی) شکل و هموار و لاشه‌بعدی با کانسار منگنز پیروزیت، پیلوله، هولاندی، پرولین به مجموعه آنتشانی- رسوبی تند- چاه شیرین قرار گرفته است. سنگ‌های رخت‌هنگ بافت‌های منطقه شامل مجموعه درگگوئی با تركیب سنگ‌شناختی است. فیلیت، شیست، مرمر، آهک، دولومیت و ماسه‌سنگ‌های کمی درگوئی-بان سی زوازیک پیشین هستند. بررسی‌های انجام شده، نشان‌دهنده عملکرد فراناوتور درگشک‌کل، بازتاب، تحرک مجدد و تغییرات ریختاری در این کانسارت ایست. براساس بررسی‌های زمین‌شیمیایی، با پوندن نسبت Mn/Fe و پایین نشانگر فلاتر Mn، کمبود و به‌ویژه عنصر Cu و Co، نشان‌دهنده آنن از Mn به عنوان شاخصی از شیمی و تخلیه سنگ‌های گرمایی زیر دریایی (بروندمی) در این نهضت هستند. بیان‌برداری‌ها و شناخت‌های این است که کانسار منگنز هلالان با دو سنگ‌ریزی آب، در این دو سطح‌سنگ‌های گرمایی-بولونی و نه تنها در شرایط رسوبی در محلی دریایی تنک گردیده و یک کانسار آنتشانی- رسوبی است. با توجه به بررسی‌های انجام شده، کانسار منگنز هلالان بیشترین شیب‌های را با کانسار‌های منگنز نوع کوکا نشان می‌دهد، با این تفاوت که کانسار منگنز هلالان دچار یک فاز درگگوئی در حد رخساره شیست سیزی نیز شده است.

مراجع
[33] area, Fars Province, southwestern Iran by using petrographic and geochemical data", Ore Geology Reviews 80 (2017) 229-249.
[22] Hein J. R., Schulz M. S., Dunham R. E., Stern R. J., Bloomer S. H., "Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system,