کانيشناسي، زمينشيمی و خاستگاه كنسر مگنز هلان؛ جنوب دامغان

مهدیه مصدق، فرج الله فردوسی

دانشکده علوم زمین، دانشگاه صنعتی شهید بهشتی

چکیده: کنسر مگنز هلان؛ جنوب دامغان از نظر تشکیل دهنده دهه پنجم عمده بیشتر پتروپلوتی، پسیلولان، هوئالدیت، باوئنیت و همانند هستند. ساخته‌های هادوئ، لاهی، عمده و ناری، و باه‌هایی دانه پراکنده پرکندن مفهوم خالی و جانشینی مغنیت و مغناطیس شده و ماده عمده را تشکیل می‌دهند. درگذشت های موجود در منطقه شامل کارتنی، آزولینی سفیدی و کریستالی Co, Ni، Mn, SiO2 و Fe و دیگر پدیده‌های زمین‌شیمیایی، بالا نسبت Mn/Fe و بااین بودن مقادیر قماب و بزرگ عناصر

مقدمه

ابنا‌شناسی اولیه مگنز در بوسته زمین مربوط به بس از پایان آرکن میلی و در ارتباط با ایهای سطحی کم عمق بوده است [1]. تراکم یلایی Mn12 در آپ درا در زمان آرکن در ارتباط با عمد اکسایش ای اعلی است [2]. بزرگ‌ترین منابع دیسی در پتروپلوتی پسین مربوط می‌شود. جدایی پانگوئن توسط افیونس آرام و گردانه آگر دوره‌های کانزایی مگنز در مزرعه‌سوزانی است. در این مقاله از تکامل

پوسته زمین، چندین حوضه رسوبی در موردزونیک ظاهر شده که با ایجاد سیار منگنز همراه بودند [3]. در مقیاس جهانی، بیشترین مقدار منگنز جهان در استرالیا، بریزیل، چین، هند، آفریقای جنوبی و اوراسیا کشف شده است و بیش از 80 درصد منگنز جهان در آفریقای جنوبی و اوراسیا بخش می‌شود. با توجه به بررسی‌های زمین‌شیمیایی، تشکیل منگنز علاوه بر توانایی اکسایش بالای آن که ناشی از پتانسیل احیای قوی است، به دستور بسودن اکسیژن و زمین‌شیمیایی محیط نیز

مراجع

email: faraj_fardoost@yahoo.com
زمین شناسی منطقه مورد بررسی کانسراهای منگنز و فرمونگنز شار شیونیا و سی منگنز در ایران شناسایی شدند. از جمله آنها می‌توان به کانسراهای منگنز استان برزین (پرموی) با خاستگاه آنتفیتیشی- برونیمی و کانسراهای منگنز به‌ندر در جنوب ناحیه استان اصفهان (با خاستگاه سلیکس) و کانسراهای منگنز در درجه براز در استان کردستان موفقیت بخشی در تعیین و تابع و اندازه‌گیری شده است. کانسراهای منگنز هلالان در ایران از منگنز‌های پیشرفته در آشنا می‌باشند. در این وسیله بررسی بررسی چگونگی تعیین سایت‌های منگنز، شناسایی و توصیف شیمیایی، شکل هندسی، کانال شناسی، ساختار و بافت، زمین شناسی، خاتم‌گویی و چگونگی تشکیل آن بررسی شده است.

روش بررسی

در این بورس، بر اساس تحقیق زمین شناسی‌های منطقه با استفاده از تصاویر ماهواره‌ای و دوربین‌های سریالی و با استفاده از منطقه‌ای که شایع‌ترین استنای ایران، 2000 کاله رشته، تعداد 20 نمونه از کانسراهای منگنز و سنتگه‌ها دربرگیری نشده با کانسراهای منگنز. تعداد 50 نمونه از سنتگه‌ها نمونه‌گیری شده است. یک بافت، هم‌تیپی و کانی‌های سنتگه‌ای نمونه به‌روش اینفواسیون ایکس (ICP-ES) با خشک کردن نمونه‌ها در 1000 درجه سانتی‌گراد مشخص شد. تجزیه عناصر خاکی نادر به روش ICP-OES در آزمایشگاه شرکت فاروی مواد معدنی ایران اندازه‌گیری شد. تیم شناسی‌های خاکی نادر در بافت هم‌تیپی و 2 ppm و 5 ppm روش ICP-OES در این بافت روی عناصر کمیاب و 300 کمیاب تغییرات در منطقه‌ای که مقاوم‌ترین یک کاری بود. مورد بررسی

سنتگه‌ای کانسراهای منگنز

تحقیق زمین شناسی گسترش معدنی بررسی‌های سریالی، تصاویر ماهواره‌ای و نقشه 1:100000 الکترونی، تعیین منطقه و نقشه 1:100000 کانسراهای منگنز در منطقه معدنی مورد بررسی، سنتگه‌های آکادرینگ با سن یاقوت‌آباد، پیشین نمونه‌ای و جمع‌آوری شیست (کلارت) شیست، مکثیششیت و شیست‌های ایبیدوی. سنتگه‌های کربناته (اهک و دولومیت) و ترکیب‌های این‌گونه شیست‌های هستند. در ادامه این‌ها یک از این‌ها به‌طور طبیعی می‌شود.
کلریت شیست: در برخی‌های صحراوری، واحد کلریت شیست با روندی E - W<60° S و با گستره خشک و رنگ سبز همره با ریزش‌های ناشی از زمین‌ساخت، کم‌پایی و کم‌پایی زمینی درگزی و کانادار را در بر می‌گیرد. کانه‌های اصلی تشکیل دهنده این واحد شامل بیونیت‌های درشت کلریتی شده، پلاژیوکلاز، کوارتز و مسکوئیت به صورت مایع در زمین‌های پلاژیوکلازی کانتوله و کاندوز شده، به‌صورت قطب‌های اسفن، قطب‌های اسفن و کاندوز به صورت قطب‌های سخته شکفته بلور از جمله کانه‌های فرعي هستند. بافت این سکه‌ها شکفته بلوری و شکفته‌های بزرگ و حضور کانه‌های کلریت به طور گسترده در جهت برگ‌گری در واقع به سنگ حالت جهت‌بانی‌ها فاش شده است (شکل 2).

توجه شود که در نگه‌دارنده‌های طبیعی مانند کاربری در محیط‌های سطحی بی‌نیازی برای تغییر در شکل کلریت شیست وجود ندارد. بنابراین، تشکیل شیست‌های کلریتی در زمین‌ساخت‌ها، به‌صورت تغییرات ترکیبی در این نوع سنگ‌ها ادامه پیدا کرده است.

شکل 1 نشان‌دهنده ناحیه‌هایپربانی در این منطقه هلالان بر اساس تئوری ماده‌های و نقشه 1:100000 کلانه، محصول [101].
شیست‌های سیز اپیدوتی شده: بر اساس شواهد صحرا، این واحد به صورت همروند با واحد‌های رخمدن یافته در منطقه همردم با رزچین‌ها، در انتهای جنوبی پهن دگرمان و کناره قرار دارد. شیست‌های سیز با رنگ سیز، جمی دستخوش اپیدوتی شده‌اند. کلاسی‌های مشخص در این واحد شامل اپیدوت، مسکویت، کوارتز، بلازیولوار و شکنجه‌های اسفن هستند (شکل 2). اپیدوت و مسکویت به صورت خطوارهایی در امتداد شیست‌وارگی جهت یافته و دارای چین خورداری دیده می‌شوند.

شکل 2. تصویر میکروسکوپی از واحد کلریت شیست با حضور کلریت مسکویت، کوارتز، گارتن، پلاژیولوار به اثر قطعات شکنجه‌های‌پلاژیولوار. ب) تصویر میکروسکوپی از تلفیک نوارهای مسکویت و سیزی (نازک) نسبت به نوارهای مسکویت و سیزی در امتداد شیست‌وارگی دیده شده است.

لاپیس نادیکر، با حضور کلریت، کوارتز و شیست‌وارگی با بوی آرامکی، مسکویت، مسکویت، کوارتز، گارتن، پلاژیولوار، Plg: پلاژیولوار، Epd: اسفلاریت، Mus: مسکویت، Chl: کلریت، Grt: گارتن، Qtz: کوارتز.
سنگهای کربناته در گردون شده: سنگهای کربناته در گردون شده شامل آهک‌های کربناته و سنگهای کربناته در گردون شده هستند. آهک‌ها نزد مهندسی و اکتشافات منطقه، در اثر گردونی به آهک‌های کربناته از گردون شده با بایت ایجاد شده یا بلورپیمی تبدیل شده‌اند. آهک‌های کربناته منطقه به دلیل سختی مقاومت با سایر سنگ‌شناسی‌ها (مانند شیشه‌ها) در اکتشافات نیز، به صورت شکستگی و خردنشانگی در این واحد قابل مشاهده است. اینجا و هرازه، سنگهای کربناته در گردون شده با رنگ‌های از فشا به رنگ‌های زیبا از قبیل سرخ، سفید و سیاه، در بررسی‌های میکروسکوپی، دوپتوپی و کلیسیت بلوری با رخ‌های خود سرخ نمی‌شوند.

توف گردون: این واحد در قسمت شمالی کشور مصدک شده، به صورت هرمی و دیگر شکل‌ها رخ‌های اکتشافات در منطقه رخ‌های دارد. این واحد با صورتی به‌سیاب و کم پایین کاربرد به دار کارده‌های سنگ‌های کربناته‌زدایی (منطقه کردن) در قابل کردن در همه واحدهای سنگی به صورت ره‌گردها، در خود شاهنامه می‌شود.

کانی‌شناسی، ساختار و بکف

براساس مشاهدات صحرایی، تنومند دشتی و میکروسکوپی، مهم‌ترین ساختارهای از سنگ‌های کربناته‌زدایی، عدسی‌های کارکه، آهک‌های و موهای‌پیمی‌ها از سنگ‌های کربناته‌زدایی، نواری (شکل‌های ۳ فو و ب)، پتاسیم‌های سنگ‌های کربناته‌زدایی، پترن‌های خالی، کارکه‌های کارکه، و کارکه‌های Sole–کلیف در کانس‌زده در منطقه هالان به دو شکل اکسیدی و سیلیکاتی تئیه می‌شود.

پرایورتی‌ها، سیلیکات‌ها و سیستم‌ها

در به‌شماری کانس‌زده، کانس‌زده‌های انگشته‌ای که به شکل کارکه‌های کارکه‌زدایی در منطقه هلالان در بقی اصلی و به شکل چین‌سیستان به صورت انگشتی و هم‌سایی با سنگ‌های دیگرگونه‌ها در رخ‌های داده‌است. نیز در محیط سنگ‌های کارکه‌زدایی منطقه، هرکم‌یک باید از سنگ‌های کربناته‌زدایی، به صورت میکروسکوپی، سرعت در اثر اکتشافات می‌باید. کانس‌زده‌ها دما پایین منگزین پیمی‌ها در نتیجه به دلیل کلیف سنگ‌های کارکه‌زدایی مدام سبب اکتشافات مشابه و اغلب به‌کلیف سنگ‌های کربناته‌زدایی منگزین می‌شوند. [١] با وجود اینکه اکتشافات منگزین به عنوان فاز اولیه در رویاهای سنگ‌های کربناته‌زدایی به عنوان کانس‌زده می‌پردازند.
شوند، اما به طور مداوم توسط فرآیندهای نانویی (درونرذایی) به فازهای دیگر تبدیل می‌شوند [13]. کاتی‌های رسی از جمله مونتمورونیت و کلینوکریسین، کوارتز، اسپارتن، ویتالیت،

شکل 3. (الف) تصویر صحرایی از بادم راهی و تاپی (ب) ساخت لایه‌ای در نمونه دستی (ب) تصویر میکروسکوپی از پیرولوزهای اولیه (و سوزنی (تصویر میکروسکوپی بادم نوده‌ای از کاتی پسپولامان، (چ) تصویر میکروسکوپی از بادم جاتبی و (ج) پسپولامان و (پ) بشنوید. Br پسپولامان و Ps پسپولامان و Pyr پیرولوزهای اولیه از کاتی باکلانه از کاتی پسپولامان و Pyr.
کانی‌شناسی، زمین‌شناسی و خاص‌گاه کانسار منگنز هلئالان، جنوب دامغان

در بررسی‌های انجام شده، کانی‌های هلئالان به عنوان یک کانی اکسیدی منگنز توسط منابع پیش‌تر بررسی و شناسایی شد. شل‌های کانسار کوه‌های هلئالان، که در کانسار منگنز هلئالان، جنوب دامغان، یافت شده‌اند، به عنوان یک کانی اکسیدی منگنز به‌شمار می‌آیند.

SiO₂ + 7MnO₂ → 3Mn₃O₄,MnSiO₃ + 2O₂
پایان نهایی کانسراهای الیتی مورد بررسی قرار گرفت و نشان داد که در کانسارهای الیتی غنی از مولکول‌های Ce به نسبت بالایی پدیدار شدند. در این کانسارهای الیتی مولکول‌های Ni و Co به نسبت بالایی پدیدار شدند.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Volcano-Sedimentary</th>
<th>Diagenesis</th>
<th>Metamorphism and deformation</th>
<th>Weathering (Supergene)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrolusite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psilomelan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brauneite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hollandite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hematite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gypsum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Textures</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Massive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banded-Laminated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disseminate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replacement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vain-Veinlet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colloform</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 1: توزیع همبستگی کانسراهای الیتی در کانسارهای مرکزی هلالان.

جدول 2: مقادیر درصدی آکسیدهای الیتی بر حسب وزنی به دست آمده از روش XRF

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>52</td>
<td>53</td>
<td>51</td>
<td>58</td>
<td>52</td>
<td>54</td>
<td>52</td>
<td>56</td>
<td>58</td>
</tr>
<tr>
<td>TiO₂</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>15</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>8.5</td>
<td>10</td>
<td>12</td>
<td>13</td>
<td>9.5</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>6.9</td>
<td>7.5</td>
<td>8.5</td>
<td>9.3</td>
<td>7.3</td>
<td>8.6</td>
<td>8.6</td>
<td>9.5</td>
<td>12</td>
</tr>
<tr>
<td>MnO</td>
<td>0.9</td>
<td>1.2</td>
<td>1.3</td>
<td>1.5</td>
<td>0.9</td>
<td>1.2</td>
<td>1.3</td>
<td>1.5</td>
<td>1.8</td>
</tr>
<tr>
<td>MgO</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>CaO</td>
<td>44</td>
<td>46</td>
<td>49</td>
<td>51</td>
<td>48</td>
<td>49</td>
<td>49</td>
<td>51</td>
<td>52</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>LOI</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
</tbody>
</table>

[DOI: 10.29252/IJCM.26.4.945]
ب) (جهنم)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>1000</td>
</tr>
<tr>
<td>Pb</td>
<td>113</td>
<td>319</td>
<td>277</td>
</tr>
<tr>
<td>Cu</td>
<td>374</td>
<td>252</td>
</tr>
<tr>
<td>Cr</td>
<td>88</td>
</tr>
<tr>
<td>Mo</td>
<td>23</td>
</tr>
<tr>
<td>Ni</td>
<td>12</td>
</tr>
<tr>
<td>Ti</td>
<td>12</td>
</tr>
<tr>
<td>Zn</td>
<td>18</td>
</tr>
<tr>
<td>Mg</td>
<td>14</td>
</tr>
<tr>
<td>Mn</td>
<td>12</td>
</tr>
<tr>
<td>Al</td>
<td>12</td>
</tr>
<tr>
<td>Ba</td>
<td>12</td>
</tr>
<tr>
<td>Sr</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>عنصر</th>
<th>(HSFE)</th>
<th>عنصر</th>
<th>(REE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>24</td>
<td>La</td>
<td>44</td>
</tr>
<tr>
<td>Zr</td>
<td>13</td>
<td>Ce</td>
<td>44</td>
</tr>
<tr>
<td>P</td>
<td>200</td>
<td>Sc</td>
<td>13</td>
</tr>
<tr>
<td>Lr</td>
<td>200</td>
<td>Co</td>
<td>13</td>
</tr>
<tr>
<td>Cr</td>
<td>200</td>
<td>Ni</td>
<td>13</td>
</tr>
<tr>
<td>Mn</td>
<td>200</td>
<td>Cu</td>
<td>13</td>
</tr>
<tr>
<td>Fe</td>
<td>200</td>
<td>Zn</td>
<td>13</td>
</tr>
<tr>
<td>Co+Ni+Cu</td>
<td><10</td>
<td>Mn/Co+Cu</td>
<td><10</td>
</tr>
</tbody>
</table>

گرفته‌ای است. با توجه به این نمودار، کانسارهای فرمونگنز نوع آباد نسبت به کانسارهای گرمایی گلی از غنی‌شدن‌های بالاتر در محیط مورد بررسی در این نمودار نیز در گروه کانسارهای (Co, Ni, Cu) قرار می‌گیرند (شکل 4 ب). عناصر کم‌مایه و عنصر خاکی نادر هنگام تشکیل می‌گذند. عناصر کم‌مایه Zn) اکسیدهای منگنز جذب می‌شود. غلظت آنها به نسبت کمتر از آب دریافتی عناصر کم‌مایه اولیه منگنز که از اکسیدهای گرمایی هستند تأثیر می‌شود (شکل 37). از آنگاه که تراکم عناصر خاکی نادر در محلول- های گرمایی کم است، فعالیت‌های انششی‌سازی مشتق می‌شود.
نمودار تراکم La به ترتیب به Ce [31] و جایگاه نمونه‌های کانسار منگنز مورد بررسی و ت. نمودار تراکم [31] و جایگاه نمونه‌های کانسار مورد بررسی بر اساس Co/Zn - (Co+Ni+Cu) نمودار دو نمودار [25، آ] [25] و نمونه‌های کانسار منگنز مورد بررسی ب. نمودار سه [31] و Ce - Ni - Zn تایی مورد بررسی در آن.

نمودار آبزد منگنز از کانسارهای گرمایی زیبردیایی از طریق روابط بین عناصر Co و Ni، Zn در [25] تایی محدود سه نمودار مشخص و متمایز می‌شوند [35، آ]. تراکم‌های پایین عناصر (Cu 10-25 ppm, Co 18-75 ppm, Ni 10-200 ppm, Zn 18-100 ppm) مشخصه کانسارهای منگنز گرمایی Zn و Ni (22 و Zn) زیبردیایی است. بر این اساس، کانسارهای منطقه مورد بررسی خاستگاه گرمایی زیبردیایی را نشان می‌دهند (شکل ۴ ب).

نسبت La/Ce در کانسارهای گرمایی مشابه Ce به La نسبت La/Ce به Aب دریا و حدود ۲۸ است. اما سایر کانسارها نسبت به آب دریا در ۴۵ ۲۵ است. در نمونه‌های تجزیه شده، کانسارها گرمایی.
طرح گله درون‌نازی: در مرحله بعد، با دیگر فرآیندهای انضمام‌جویی، صورت گرفته و لاپاز از انتقال انسداد - برنست، توفر
لایحه و سند آبی بر ماده مذکور تغییرات (شکل 1)
ب درون‌نازی شامل تغییرات، مسایلی زبان، انحلال، گامین
و دوگانه‌زی این مرحله پیش از درون‌نازی است. در این مرحله،
کانال‌های نابینای مسیر تغییرات مسیر، به این صورت که
کانال‌های آب‌میانان در برون‌پلاستیک و هولوندت در اثر
درون‌نازی به کانال‌های بی‌آب مانند پپروپوزیت نتیجه می‌شود.
همچنین با افزایش دما و فشار شیمی‌دهان درون‌نازی شرایط برای
تشکیل کانال رفتار می‌شود. پ‌آب‌ریوت و کورتاز از راه
ترکیب کانال‌ها در کانال‌های زایم‌زدنی راه‌پیمایی می‌کنند. می‌توان گفت که
برای پیامدهای زایم‌زده کروالون درولیت‌های درون‌نازی رخ دهد [112]. از آنجا که
آهن و منگنز به همراه دو دیگر مقداری می‌شود. می‌توان گفت که
جدال آهن در زمانی در داخل یک خصوصیت می‌گردد. ترکیبات آهن
ناملمولتر از ترکیبات منگنز سبز است. آهن در PH = 8
منگنز در PH = 8 روسی می‌کند. فعالیت باکتری‌های آکسید
کندن آن نیز جمله عامل جدایی آهن محلول است
[122]. سیولیف آهن (بریتی) عموماً در امکان و درون سگ-1
های انضمام‌جویی صورت می‌گیرد ولی اکسیژن سبز آن در
سطح بین‌شیمی‌دهان درون‌نازی می‌شود که به دنبال آن، اکسید و
هیدروکسید‌های منگنز روسی می‌کند. در نتیجه سیال باقی
مانده سیال قارچی در برون‌پلاستیک و اکسیدان حوضه
روسی که شرایط برای تشکیل اکسیدهای منگنز می‌باشد
است. نسل اول کانال‌های اکسیدهای منگنز مانند پپروپوزیت
هنوز درون‌نازی و پپروپوزیت تشکیل شده‌است. پپروپوزیت
شدته است که منگنز روسی اکسیدهای هالید مانند سیال گرمایی
با آب دریا رخ می‌دهد [122]. در واقع آمیختگی محلول‌های
گرم، آسفید و اکسید آب، شوری، پلاستیک و کانال‌ها کف
دریا سبب به‌نشینی سریع فلزات می‌شود و در ادامه این توجه
ب به دور سرمایزار و آرام بودن می‌باشد. اکسیدهای منگنز مانند هتروژن پپروپوزیت
و پپروپوزیت به صورت لاپاز این مرحله تشکیل شده‌اند. به طور کلی، ماده
منگنز در این مرحله به صورت بالایی رهگیری شده‌اند، زیر یک گرم، برخی
و پکیج هنوز خالی در رخ‌ریز کارکرد. برونپلاستیک و
لایه‌های توده‌ای، دولامکتک به چهار مرحله شده‌اند.
روسی، تغییرات می‌کند (شکل 5 الف).
شکل 5. مدل زننیکی فرایند کانترالی کانیس سمنگین هالاپون: (الف) مرحله برودنی (ب) مرحله کانترالی (پ) مرحله دوگونی.
مقایسه کانسار المنگنز هلالان با نوع ماکو

بر اساس نظر اصلی، روش‌های دیروع و پیچ [39] کانسارهای منگنز
انشش‌های روسی به چهار نوع قربس، کوبه، میکس پینسولا
و فرانکسیون تسمیم می‌شوند. مقایسه صورت گرفته نشان داد
که ویژگی‌های کانسار منگنز هلالان از جمله محدود
زمین‌ساخت تهیه، محیط زمین‌ساختی نهش، سطح‌های

جدول ۴ مقایسه کانسار منگنز نخلک با انواع مختلف کانسارهای منگنز منشی‌های روسی بر اساس رده بندی موریور و پیچ [39]

<table>
<thead>
<tr>
<th>نوع فرس</th>
<th>نوع دمک</th>
<th>نوع فرانتسین</th>
<th>نوع منگنز هلالان</th>
<th>ویژگی‌های میکروفراسنی</th>
<th>محیط زمین-سانسختی</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn, Fe, Ni, Co, Zn, Cu</td>
<td>Mn, Fe, Cu, Ba, Hg</td>
<td>Mn, Fe, Cu, Ba</td>
<td>Mn, Fe, Cu, Ba, Hg</td>
<td>Fe, Mn</td>
<td></td>
</tr>
<tr>
<td>هیدروآکسید منگنز پی‌پلاست و عنصر</td>
<td>پی‌پلاست و بی‌پلاست</td>
<td>پی‌پلاست و البومالن</td>
<td>پی‌پلاست و البومالن</td>
<td>پی‌پلاست و البومالن</td>
<td></td>
</tr>
<tr>
<td>کراتنی، سیلیکاتی</td>
<td>کراتنی، سیلیکاتی</td>
<td>کراتنی، سیلیکاتی</td>
<td>کراتنی، سیلیکاتی</td>
<td>کراتنی، سیلیکاتی</td>
<td></td>
</tr>
<tr>
<td>سن کاتانای</td>
<td>سن کاتانای</td>
<td>سن کاتانای</td>
<td>سن کاتانای</td>
<td>سن کاتانای</td>
<td></td>
</tr>
<tr>
<td>کانسارهای سولفید نوده‌ای نوع فرس</td>
<td>کانسارهای سولفید نوده‌ای نوع کورکو</td>
<td>کانسارهای جوی</td>
<td>کانسارهای جوی</td>
<td>کانسارهای جوی</td>
<td></td>
</tr>
</tbody>
</table>

منبع: [39]
برزدشت
کانسار منگنز هلاندان، به شکل چینه‌سان (لاهیان و عدسی
شکل) و هم‌رون‌های لاپیدی با کانسار منگنز پیرولوزیت،
پیلوپیت، هولوسیت، براونیت و همانند بر مجموعه
انشافی- رسوبی تروک- چاه شیرین قرار گرفته است.
سنگ‌های رخخشون یافته در منطقه شمار جمع‌گونی با
ترکیب سنگ‌شیائی اسلیت، فیلیت، سیستم، آهک،
دلوویت و ماسه‌سنگ‌های کمی درگو شده با سنی زوراسیک
پیشین هستند. بررسی‌های انجام شده، نشان دهنده عملکرد
فرآیندهای درگذشته، باریک‌تر، تحرک مجدد و تغییرات
ریختگی در این گاندرازی است. بررسی‌های رسوبی زمین-
شیمیایی، با بودن نسبت Mn/Fe و با روند مقادر فرازات
Mn، کمبود و به وعده عناصر Cu و Co، Ni از
Mn به عوامل شواهدی از غنی‌شدنی و تخلیه
سیال‌های گرما در سری‌بندی (برون‌می) در این نهشته هستند.
بانرای این شواهد که این است که کانسار منگنز هلاندان با دو
سانصریگ کانساری در آب دریا توسط سیال‌های گرما-
برون‌نمر و جهان تنشی در شراحت رسوبی در محیط دریایی
تشکل شده و یک کانسار انگشت‌هایی- رسوبی است. با توجه به
بررسی‌های انجام شده، کانسار منگنز هلاندان بیشترین شیب‌های
را با کانسارهای منگنز نوع کویا نشان می‌دهد، با این تفاوت که
کانسار منگنز هلاندان دچار یک فاز درگوشی در حد رخساره
شیست سیستم نیز شده است.

مراجع
[33] area, Fars Province, southwestern Iran by using petrographic and geochemical data", Ore Geology Reviews 80 (2017) 229-249.
[22] Hein J. R., Schulz M. S., Dunham R. E., Stern R. J., Bloomer S. H., "Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system,
geochemistry", Revista Mexicana de Ciencias Geológicas 30(3) (2013) 482-499