بررسی ویژگی‌های مغناطیسی و بینان سنگی موسیابن در گازنت ایترویوم آهن بیسموتی

$Y_{3-x}Bi_xFe_5O_{12}$

محمد نیا‌فر

کروه فیزیک، دانشگاه آزاد اسلامی، واحد اهواز

چکیده: در این پژوهش ذرات گازنت ایترویوم آهن بیسموتی $Y_{3-x}Bi_xFe_5O_{12}$ با مقدار سنگ ارتعاشی (XRD) و تحلیل الگوهای پراش پروتون آیکس (NMR) مورد بررسی قرار گرفته‌اند. این ذرات با توجه به فرمول شیمیایی ذرات، از گروه پذیرشگران بسیار قرار گرفته‌اند. از جمله کاربردهای نوین این ذرات، نواحی بیشتری در برخی از زمینه‌های علمی و فناوری مانند بیماری‌های قلبی، زیست‌شناسی، فیزیک و کیمیا به سنج سنج حلال مغناطیسی با کارایی بالا، چرخ‌های خودرو و جداسازی‌ها می‌باشد.

واژه‌های کلیدی: بینان سنگ موسیابن، مدل توزیع مغناطیسی، مغناطیسی سنگ ارتعاشی، گازنت ایترویوم آهن بیسموتی سل-زل

مقدمه

در سال‌های اخیر، نواحی گازنت مغناطیسی گازنت ایترویوم آهن و ایترویوم آهن آلی اشک شده با عناصر مختلف به دلیل داشتن خواص مغناطیسی، الکترونیکی و اینیکی، مورد توجه پژوهشگران بسیار قرار گرفته‌اند. از جمله کاربردهای نوین این ذرات، نواحی بیشتری در برخی از زمینه‌های علمی و فناوری مانند بیماری‌های قلبی، زیست‌شناسی، فیزیک و کیمیا به سنج سنج حلال مغناطیسی با کارایی بالا، چرخ‌های خودرو و جداسازی‌ها می‌باشد.

گازنت ایترویوم آهن (YIG) یکی از مغناطیسی‌های مورد استفاده در زمینه‌های مختلف است. در این پژوهش ذرات گازنت ایترویوم آهن $Y_{3-x}Bi_xFe_5O_{12}$ با مقدار سنگ ارتعاشی (XRD) و تحلیل الگوهای پراش پروتون آیکس (NMR) مورد بررسی قرار گرفته‌اند. این ذرات با توجه به فرمول شیمیایی ذرات، از گروه پذیرشگران بسیار قرار گرفته‌اند. از جمله کاربردهای نوین این ذرات، نواحی بیشتری در برخی از زمینه‌های علمی و فناوری مانند بیماری‌های قلبی، زیست‌شناسی، فیزیک و کیمیا به سنج سنج حلال مغناطیسی با کارایی بالا، چرخ‌های خودرو و جداسازی‌ها می‌باشد.

مذکره

در سال‌های اخیر، نواحی گازنت مغناطیسی گازنت ایترویوم آهن و ایترویوم آهن آلی اشک شده با عناصر مختلف به دلیل داشتن خواص مغناطیسی، الکترونیکی و اینیکی، مورد توجه پژوهشگران بسیار قرار گرفته‌اند. از جمله کاربردهای نوین این ذرات، نواحی بیشتری در برخی از زمینه‌های علمی و فناوری مانند بیماری‌های قلبی، زیست‌شناسی، فیزیک و کیمیا به سنج سنج حلال مغناطیسی با کارایی بالا، چرخ‌های خودرو و جداسازی‌ها می‌باشد.

مذکره

در سال‌های اخیر، نواحی گازنت مغناطیسی گازنت ایترویوم آهن و ایترویوم آهن آلی اشک شده با عناصر مختلف به دلیل داشتن خواص مغناطیسی، الکترونیکی و اینیکی، مورد توجه پژوهشگران بسیار قرار گرفته‌اند. از جمله کاربردهای نوین این ذرات، نواحی بیشتری در برخی از زمینه‌های علمی و فناوری مانند بیماری‌های قلبی، زیست‌شناسی، فیزیک و کیمیا به سنج سنج حلال مغناطیسی با کارایی بالا، چرخ‌های خودرو و جداسازی‌ها می‌باشد.
مجله بورسنجسی و کانی‌شناسی ایران

112

محمد نیاپی فر

باوجود پژوهش‌های فراوان، بررسی اندکی در زمینه تحلیل موسیارهای این ترکیب گزارش شده است. در این راستا زو و بررسی طیف موسیارهای Y$_2$O$_3$Bi$_2$Fe$_5$O$_{12}$ که فعالیت ناشی از جنجالی بی‌پسموت را به شکل‌گیری زیر شیشه‌ها و کج شدن ابعاد نسبی نسبت دادند ویلیوته شده بی‌پسموت به همکنون همکاری در طیف موسیارهای قاعده‌ای مشخص نیست. این گزارش را با استفاده از این مدل مدل توجهی نیست در این چنین از جانشینی‌های خود. [۱۶] از این پژوهش، از روش سل-ژل برای ساخت نمونه استفاده شد و از جانشینی بی‌پسموت و یوگریهای Bi$_2$Fe$_5$O$_{12}$- با آنات و مدل توزیع مورد بررسی قرار گرفت.

روش ساخت

ذرات گرانیت اینتریوم آهن بی‌پسموتی با ترکیب Y$_3$Bi$_2$Fe$_5$O$_{12}$ و با مقدار جانشینی (x, 0) م 세ماتو، نخست، نانو نیترات اینتریوم Fe(NO$_3$)$_3$۹H$_2$O. نیترات آهن یک ترمول (HNO$_3$):۳H$_2$O بی‌پسموت و با صکوری سفید یک مول که بین میان ژل باشد. سپس محلول اسید ستریک به این محلول اضافه شد. در محلول از سترات C$_2$H$_5$O$_2$.H$_2$O و نیترات با نسبت ۱:۳ به دست آمد این محلول با هم به محلول محلولی ساخته شد. محلول نهایی به مدت ۱ ساعت در دمای 80 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آمد از دمای 115 درجه سانتی‌گراد گرم داده شد تا محلول به زل نیز گردید. سپس زل به دست آم

1- Xu et al
2- X-ray diffraction
3- Vibrating sample magnetometer

4-Mössbauer spectroscopy
شکل ۱: الگوهای پرتو x نمونه‌های Bi۳۲Fe۵۰O۱۲ با میزان جانشینی x۳۰٪/x۱۰٪/x۱٪/x۰٪.

شکل ۲: الگوهای پرتو x در باره ۳۲۰ درجه و تغییرات ثابت شکل نمونه‌های Bi۳۲Fe۵۰O۱۲ در باره x۳۰٪/x۱۰٪/x۱٪/x۰٪.

شکل ۳: منحنی‌های پسماند مغناطیسی و تغییرات مغناطیسی بر حسب میزان جانشینی x۳۰٪/x۱۰٪/x۱٪/x۰٪.
ایزوپر جبهه‌ای (IS) (یا یزوپر) شیب نابی و است. سنگ میزبان Fe3+ در چهاروجهی کمر از مقابل وابسته به آن در هشت وچپ است. این تفاوت ناشی از اختلاف پیوند هیپرز بین Fe3+ و Fe2O در دو جایگاه است. در پیوندهای بین Fe3+ و Fe2O در دو آرایش الکترونی می‌باشد (با افزاش مقدار \(x\) و یک یا یک کاهش و زیرکاهش ترکیب است. این مقدار \(x\) نشان دهنده میزان بودن ترکیب است. سنگ میزبان Fe3+ و Fe2O در دو آرایش نمی‌باشد. یا یک کاهش و زیرکاهش ترکیب است. این مقدار \(x\) نشان دهنده میزان بودن ترکیب است.

\[
\text{Isomer shift} = \frac{\text{Isomeric shift}}{10^{-3}} \text{ppm}
\]

با توجه به گزارش‌های اراش تهسوت کیم و همکاران، و لیو و همکاران ۲، ورود یون بیسموت با شعله بیون بزرگ‌تر نسبت به شعله بیون انجام گرفته است. ساختار نیوکاکسیو یا ساختار الکترونی کرده و سپس افزاش برهم کش ارتقاء با و همکاران. اسپین‌ماد میدو.۲۰۲۰ کیلو گرانت (۵۵۹۳ کیلو انجام ۲۰۱۹) را می‌توان به دلیل افزاش برهم کشت ایکتابی و چگونه است.

با افزاش میزان جهانی بیو فی است.

با افزاش بیوماتر در نیزکیمین هم‌سایگی فرک زیر کهکشانی همکاران اسین و افزاش می‌دهد و مغناطیس ایجاد کال اکتش می‌باشد. بنابراین کاهش مغناطیس ایجاد مشاهده شده در نمونه-۵۰.۱۸ \(x\) را می‌توان با بحران اثر کال مغناطیس به اثر افزاش برهم کش ارتقاء داد.

بررسی بین‌بان سنج موسیقار

شکل ۵: گرافیک به‌دست آمده از بین‌بان سنج موسیقار نمونه-۵۰.۸۰،۰۰۰،۰۰۰،۰۰۰ را در دامای ۵۰۰ هکتار می‌دهد. این گرافیک نقاط بالایی طبقه‌بندی تجاری و طبقه‌بندی خاص برهم‌پیشین طبقه‌بندی نظری است. با توجه به شکل، نمونه-۵۰.۰۰۰،۰۰۰ هم‌سایگی فرک زیر کهکشانی همکاران اسین و افزاش می‌دهد و مغناطیس ایجاد کال اکتش می‌باشد. بنابراین کاهش مغناطیس ایجاد مشاهده شده در نمونه-۵۰.۱۸ \(x\) را می‌توان با بحران اثر کال مغناطیس به اثر افزاش برهم کش ارتقاء داد.

شکل ۲: گرافیکی موسیقار نمونه-۵۰.۰۰۰،۰۰۰،۰۰۰،۰۰۰،۰۰۰ (۰،۱،۰،۱،۰،۱) و \(x\) با میزان \(Y_{1.34}Bi_{0.66}Fe_{2}O_{12}\) و \(x\) با میزان \(Y_{1.34}Bi_{0.66}Fe_{2}O_{12}\)

مجlesi پژوهش‌شناسی و کانای شناسی ایران

محمد نیایی فر

11- Isomer shift

5- Kim et al.
6- Liu et al.
7- Experimental data
8- Fitted data
9- Magnetic hyperfine field
10- Fermi contact
است. در هر جایگاه دیگر هم نشان دهنده نسبت به جایگاه a بیشتر است. بنابراین جایگاه‌های همیار یون‌های این مرحله از جایگاه‌های اصلی برای نمایش می‌باشد.

در این رابطه x مقدار x جایگاه شده در ترکیب مایع Bi۱۰ و Zn۳+ نشان می‌دهد. به عنوان این x مقدار x جایگاه-های a و d محاسبه شده برای نمایش Pd و Pd با استفاده از x در جدول ۱ ارائه شده و با نظر موفقیت مانند ۲۰۰۷، طبقه‌بندی نوری حاصل برهم می‌شود. عبارت‌های از سه زیرطبیعی شرایطی کمینه (x = 0.1) و انتخاب از طرف فردی سه جایگاهی مبتنی بر حاصل از ترکیب‌رسی سری‌فراور یک جایگاه هست. مطالعه نزدیکی نزدیکی به جایگاه a دارد. با

براساس مدل مطرح شده و اگر بهترین همکاری باشد آبده، انتخاب می‌شود که میانه از ریز متناوب‌های زیرطبیعی شار تنها یک آبده تعداد یون‌های Bi۱۰ در هماگونی بسیار این از افزایش بیشتر به عنوان جایگاه-های a و d افزایش تعداد یون‌های پایدار یافت که احتمال نزدیکی به جایگاه-های a و d افزایش ضخامتی در این اتاق‌های جایگاهی از منابع ترکیب‌رسی سری‌فراور یک جایگاه a با d نتایج به جایگاه-های a و d افزایش ضخامتی در این اتاق‌های جایگاهی از منابع T2 نشان داده شده است.

است اکنون از نظر گرفت مدل پایه پایه دو اتاق‌های جایگاهی از منابع T2 نشان داده شده است. اکنون از نظر گرفت مدل پایه پایه دو اتاق‌های جایگاهی از منابع T2 نشان داده شده است. اکنون از نظر گرفت مدل پایه پایه دو اتاق‌های جایگاهی از منابع T2 نشان داده شده است. اکنون از نظر گرفت مدل پایه پایه دو اتاق‌های جایگاهی از منابع T2 نشان داده شده است. اکنون از نظر گرفت مدل پایه پایه دو اتاق‌های جایگاهی از منابع T2 نشان داده شده است. اکنون از نظر گرفت مدل پایه پایه دو اتاق‌های جایگاهی از منابع T2 نشان داده شده است. اکنون از نظر گرفت مدل پایه پایه دو اتاق‌های جایگاهی از منابع T2 نشان داده شده است. اکنون از نظر گرفت مدل پایه پایه دو اتاق‌های جایگاهی از منابع T2 نشان داده شده است. اکنون از نظر گرفت مدل پایه پایه دو اتاق‌های جایگاهی از منابع T2 نشان داده شده است. اکنون از نظر گرفت مدل پایه پایه دو اتاق‌های جایگاهی از منابع T2 نشان داده شده است. اکنون از نظر گرفت مدل پایه پایه دو اتاق‌های جایگاهی از منابع T2 نشان داده شده است. اکنون از نظر گرفت مدل پایه پایه D

جدول ۱ احتمال حضور بسیاری از نمونه‌های بسیار پیچیده بر حسب تعداد بسیاری از نمونه‌های این بررسی (n) در نزدیک‌ترین همایش جایگاه‌های

<table>
<thead>
<tr>
<th>n</th>
<th>x = 0.1</th>
<th>x = 0.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.815</td>
<td>0.511</td>
</tr>
<tr>
<td>5</td>
<td>0.828</td>
<td>0.531</td>
</tr>
<tr>
<td>4</td>
<td>0.914</td>
<td>0.550</td>
</tr>
<tr>
<td>3</td>
<td>0.867</td>
<td>0.988</td>
</tr>
<tr>
<td>2</td>
<td>0.934</td>
<td>0.871</td>
</tr>
<tr>
<td>1</td>
<td>0.959</td>
<td>0.816</td>
</tr>
<tr>
<td>Pa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.828</td>
<td>0.531</td>
</tr>
<tr>
<td>4</td>
<td>0.914</td>
<td>0.550</td>
</tr>
<tr>
<td>3</td>
<td>0.867</td>
<td>0.988</td>
</tr>
<tr>
<td>2</td>
<td>0.934</td>
<td>0.871</td>
</tr>
<tr>
<td>1</td>
<td>0.959</td>
<td>0.816</td>
</tr>
<tr>
<td>Pb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.828</td>
<td>0.531</td>
</tr>
<tr>
<td>4</td>
<td>0.914</td>
<td>0.550</td>
</tr>
<tr>
<td>3</td>
<td>0.867</td>
<td>0.988</td>
</tr>
<tr>
<td>2</td>
<td>0.934</td>
<td>0.871</td>
</tr>
<tr>
<td>1</td>
<td>0.959</td>
<td>0.816</td>
</tr>
<tr>
<td>Pb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.828</td>
<td>0.531</td>
</tr>
<tr>
<td>4</td>
<td>0.914</td>
<td>0.550</td>
</tr>
<tr>
<td>3</td>
<td>0.867</td>
<td>0.988</td>
</tr>
<tr>
<td>2</td>
<td>0.934</td>
<td>0.871</td>
</tr>
<tr>
<td>1</td>
<td>0.959</td>
<td>0.816</td>
</tr>
</tbody>
</table>
جدول 2 مقدار جهایی همباز (IS), شکافت چهارقطنی (QS), میزان بر ریز مغناطیسی (H_{bf}), پهنای قله (w) و نسبت برون‌های آهی (Area) در جایگاه‌های چهارقطنی و هستن و جهی به‌دست آمده از بهترین همکنار در گوهای موسیار.

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>جایگاه‌های ایزوترومی IS (mm/s)</th>
<th>شکافتهای چهارقطنی QS (mm/s)</th>
<th>میزان بر ریز مغناطیسی H_{bf} (T)</th>
<th>پهنای بیک w (mm/s)</th>
<th>Area(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y_{3.0} Fe_{0.1} O_{12}</td>
<td>a</td>
<td>0.374</td>
<td>0.145</td>
<td>48.24</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>0.184</td>
<td>0.045</td>
<td>49.24</td>
<td>0.36</td>
</tr>
<tr>
<td>Y_{2.9} Bi_{0.1} Fe_{0.1} O_{12}</td>
<td>a</td>
<td>0.568</td>
<td>0.139</td>
<td>39.84</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>0.123</td>
<td>0.010</td>
<td>40.91</td>
<td>0.35</td>
</tr>
<tr>
<td>Y_{2.8} Bi_{0.2} Fe_{0.1} O_{12}</td>
<td>a</td>
<td>0.352</td>
<td>0.032</td>
<td>49.93</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>0.173</td>
<td>0.030</td>
<td>49.38</td>
<td>0.32</td>
</tr>
<tr>
<td>Y_{2.7} Bi_{0.3} Fe_{0.1} O_{12}</td>
<td>a</td>
<td>0.350</td>
<td>0.050</td>
<td>49.96</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>0.138</td>
<td>0.020</td>
<td>49.97</td>
<td>0.37</td>
</tr>
</tbody>
</table>

در برابر سنجی موسیار Fe^{57} بررسی شد. بر اساس نتایج - به دست آمده از بهترین همکنار در گوهای موسیار، افزایش میزان بر ریز مغناطیسی کمک می‌کند. اندازه‌گیری میزان بر ریز مغناطیسی کمک می‌کند.

برداشت

در این پژوهش برای آماده سازی نمونه‌های (Y_{3.0}, Bi_{x}Fe_{0.1}O_{12}) از روش سلسله‌ای استفاده شده و تحلیل گوهای پراکنده بر روی ایکس استخوان اسپین‌یابی نمونه‌ها را تایید کرد. همچنین افراز پرامتر تابث شکاف داده است. در نظر گرفتن اختلاف شعاع یوی، بیبیستو داده شد.

پرینیت (Bi_{3}O_{3}) نسبت به YIG نیاز دارد.

قردردی

این مقاله حاصل از طرح پژوهشی است که با تصویب و حمایت مالی معاونت پژوهش و فناوری دانشگاه آزاد اسلامی وحدت اهواز اجرا گردیده است.

مراجع

(c)1995 جلد 24، شماره 1

[31] Yahya N., Hean G. K., "High Saturation Induction for Bi-Substituted Yttrium Iron Garnet...