بررسی زمین‌شناسی و کانه‌زایی آهن و آبی‌تیترا برای شناخت عنصر خاکی نادر در کانسار گزستان منطقه باقف (استان یزد)

به واسطه کلیدی‌های آهن و آبی‌تیترا؛ عنصر خاکی نادر، کانسار گزستان، مکانیک فلززایی باقف - بست باتم

نام کارشناسی ارشد آهن، مهندس منطقه‌ای، به عنوان گروه (IOA) 

کانسارهای اپیکشن آهن- آبی‌تیترا (AIA) به عنوان رده خاصی از منابع معدنی مطرح هستند که با دخیار برگز

همجین کانسارهای معدنی ابرنت در انگلیس، کانسارهای منطقه‌ای و کانسارهای اپیکشن آهن- آبی‌تیترا دارای اهمیتی هستند که با دخیار برگز

در زمین کامپیوتر، پیش‌بینی اسبابکاری، اسبابکاری، اسبابکاری و اسبابکاری دارای اهمیتی هستند که با دخیار برگز

در فرآیندهای به کانسارهای اپیکشن آهن- آبی‌تیترا برای تعیین روش‌های بهینه‌تری در کانسارهای اپیکشن آهن- آبی‌تیترا توصیف گردیده است.

* kohsary@yahoo.com
دیوربینی بیان شده است که این سنگ‌ها توسط توده‌های نفوذی دیوربینی قطع شده‌اند و در ارتباط با کانسارهای اهر-آبیاتی [11] مشاهده شده است. سپس در جریان سنگ‌هایی که در کانسار گستن به فراوانی باتفاق می‌شود (شکل 2) به دلیل وجود شبکه متراکمی از سیالهای ذخیره‌دار گروه‌های اول، دیوربینی نفوذی به صورت قطعات خرد شده سنتی و آبیاتی‌ها گستن‌ها مقاوم‌تر زیادی دارند که موثری‌های سنگ رنگ جوان‌تر، در بین شکاف‌های آبیات‌های چای گرفته‌اند [12].

واحدهای سنگی منطقه باستانه به سری ریزه هستند و از سنگ‌های کربناتی، تپه، ماسکنگ و سنگ‌های آنتفیشی تشکیل شده‌اند. افزون بر سنگ‌های رسوبی و آنتفیشی، سنگ‌های نفوذی به شکل استوک و دایک با ترکیب گراندوریت و گرالیت در پیش‌های مختلف رخ‌خورنده‌دارند. همچنین سنگ‌هایی با ترکیب اسیدی تا بازی (ریولیت، داسیت، ناپرات) در اثر درگیری به رنگ سیاه دیده می‌شوند و میزان کانسازی آهن و فسفات هستند [16-20].

با اینکه کانسارهای اهر در سنگ‌های پازنل-اِندزینی تشکیل شده، اما تشکیل آنها در ارتباط با توده‌های نفوذی

شکل 1. نقشه ساده زمین‌شناسی کربنات فارنازی بافق-پشت بادام همراه با کانسارهای اهر-آبیاتی

شکل 2. نمونه دستی از آبیات‌های منطقه گستن.
در این پژوهش، با استفاده از تحقیق صحرایی از منطقه سودان، و 
ارائه داده‌های مختلف سنگی (شکل 3)، با توجه به نقشه زمین 
شناسی (شکل 3)، تونعته سطح برداشت شد و در 9 مقطع 
نارک و 2 مقطع صیفی تهیه شد (شکل 3). نمونه و امکان‌های 
سیستم‌های گانژستن با واحدهای سنگ سیز (GRR)، مکنتینت (MG) 
و داده‌های (DAC) (جدی به سمت جنوب) می‌شود.

(شکل 3) نمایی از منطقه گانژستن با واحدهای سنگ سیز (GRR)، مکنتینت (MG) 
و داده‌های (DAC) (جدی به سمت جنوب).
کاندزایی آهن در سنگ‌های سیز اصلی تنها میزان کاندزایی آهن در کانسار گزستان مجموعه سنگ‌های سیز بوده و به شکل‌های زیر قابل تفکیک هستند:

1. مگنتیت - آپاتیت: در این نوع، کانسار گزستان مگنتیت و آپاتیت به شکل‌های دارای یکدیگر می‌شوند که این خود شانه هم‌رندی مگنتیت و آپاتیت است که در سز روان داده است (شکل 5). بافت داری‌های در کانسارهای نوع کابر شامل معمولاً است و آرا یکی از ویژگی‌های کانسارهای آهن مانندی می‌دانند (شکل 4). بلورهای آپاتیت در این کانسار دارای میزان زیادی شیشه‌ای می‌باشند. خاکی نادر هستند (شکل 4).

2. مگنتیت - آپاتیت پیریت: در این نوع، کانسار گزستان مگنتیت و آپاتیت به شکل‌های دارای یکدیگر می‌شوند که این خود شانه هم‌رندی مگنتیت و آپاتیت است که در سز روان داده است (شکل 5). بافت داری‌های در کانسارهای نوع کابر شامل معمولاً است و آرا یکی از ویژگی‌های کانسارهای آهن مانندی می‌دانند (شکل 4). بلورهای آپاتیت در این کانسار دارای میزان زیادی شیشه‌ای می‌باشند. خاکی نادر هستند (شکل 4).
شکل ۵ کانه زاپی اهن به صورت مگنتیت (Mag) و آپتیت (Ap) به شکل دارای‌های.

شکل ۶ میان‌پارا مونازیت (Mnz) در بلورهای طولی آپتیت (Ap) در نزدیکی مگنتیت (Mag) در اطراف مگنتیت (Mag) و تبدیل شدن مگنتیت به همانتیت.

شکل ۷ بلورهای پیریت (Py) در اطراف مگنتیت (Mag) و تبدیل شدن مگنتیت به همانتیت.

مگنتیت سیلیس‌دار و کربناتی دار: سیلیس و کربنات در همراهی با مگنتیت و آپتیت وجود دارد. کانی کوارتز به شکل بلورهای ریز و پودری شکل با کانی آپتیت همراه بوده و کامی‌ای جانشین‌ان شده است که نشانگر اولیه بودن و نیز جانشینی در مراحل دگرسانی است. همانتیت: در این نوع کانه همانتیت بصورت اولیه بوده و به...
دکترین دگرسانی‌های موجود در منطقه بر شکستگی‌ها و گسل‌های محلی و از نوع سپیسی، کلرینی، آرژینی و سرسیتی است که در ارتباط با کانترلیک و در افق‌های آهن‌دار قابل مشاهده است (شکل‌های 9 و 11).

دکترین در منطقه گرستان در اغلب کانسارهای مگنتی - آپتیت منطقه باقی، دگرسانی شدید سنگ دیواره دیده می‌شود. شدت این دگرسانی در بعضی از مناطق به حدی است که ترکیب سنگ‌شناسی اولیه به طور کامل نحوه شده است. بر اساس بررسی‌های سطحی انجام شده،

(Shkl 9 دگرسانی آرژینی و تشکیل کانی رسی (Kln).)

(Shkl 10 دگرسانی سرسیتی و تشکیل کانی سرسیت (Ser).)
سنگ‌شناسی

به طور کلی سنگ‌های مورد بررسی در منطقه را می‌توان در ۵ گروه رده‌بندی کرد: ۱- سنگ‌های آتش‌شناختی که دارای ترکیب رپولیت، داسیت - روباسیت به همراه توف‌های اسیدی، ۲- سنگ‌های سنگ‌نفره و دارای رگه‌های مکنتین - همایه‌سنگ‌های دارای سنگ‌نفره و دارای رگه‌های مکنتین - رسوبی شامل ماسه‌سنگ توقفی، ۳- سنگ‌های آتش‌شناختی - رسوبی شامل ماسه‌سنگ توقفی، توف‌های اسیدی تا حد واسط با کانالزایی آهن، ۴- سنگ‌های رسوبی شامل آهک، ماسه‌سنگ و دولومیت آهون، ۵- سنگ‌های رسوبی شامل آهک، ماسه‌سنگ و دولومیت آهون در (آنکریت) با میان لایه‌های چرب، ۶- سنگ‌های رسوبی با ترکیب دیباژ و ۷- سنگ‌های دگرسان شده که دارای ترکیب متنوع از اسیدی تا

جدول ۱ درصد وزنی اکسیدهای عناصر اصلی در سنگ‌های سطحی میزان کانسار گَرستان

<table>
<thead>
<tr>
<th>عنصر</th>
<th>نیترات</th>
<th>داسیت</th>
<th>رپولیت</th>
<th>برالت</th>
<th>توفق</th>
<th>مکنتین</th>
<th>رپولیت</th>
<th>مکنتین</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO۲</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
</tr>
<tr>
<td>TiO۲</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
</tr>
<tr>
<td>Al۲O۳</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
</tr>
<tr>
<td>Fe۲O۳</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
</tr>
<tr>
<td>MgO</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
</tr>
<tr>
<td>MnO</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
</tr>
<tr>
<td>CaO</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
</tr>
<tr>
<td>Na۲O</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
</tr>
<tr>
<td>K۲O</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
</tr>
<tr>
<td>P۲O۵</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
</tr>
<tr>
<td>S</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
</tr>
<tr>
<td>L.O.I</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
<td>۱۹۹۹</td>
</tr>
</tbody>
</table>

(Chl) به همراه کلریت، (Ep) به همراه کلوارتنز، (Qtz) به همراه کلریت و کلسیت (Cal)
درجه اشباع از آلومین

بر اساس شاخص اشباع آلومینیوم [42] بیشتر نمونه‌های سنگ‌های آذرین اسیدی منطقه در گروه پرآلوین و متا آلومین قرار دارند (شکل 12 و 13).

نمونه‌های تغییرات عناصر اصلی یکی از بیشترین نمونه‌های برای نمایش تغییرات مقدار عناصر نسبت به سیلیس در سنگ‌سنای سنگ‌های آذرین نمونه‌های هارک هستند که تغییرات درصد وسیعی اکسیدهای عناصر نسبت به تغییرات درصد وسیعی سیلیس را نشان می‌دهند [27]. روندهای پیوسته تغییرات اکسیدهای عناصر اصلی را می‌توان به‌عنوان گروهی بروند تحلیل شیمیایی ماکا در نظر گرفت و روند پراکندگی سنگ اکسیدهای نسبت به سیلیس ممکن است ناشی از وجود بیش از یک نوع ماکا، روش نمونه‌برداری و تجزیه همراه با خطا و عدم تأثیرپذیری نسبت به اکسید نسبت به تغییرات سیلیس، درگیری بودن نمونه و تغییرات حجمی در اثر این روند تغییرات اکسید عناصر اصلی نسبت به سیلیس در نمونه‌های سطحی در شکل 14 نشان داده شده است. این نمونه‌ها بانگر افزایش اکسیدهای آلومینیوم و پتاسیم است که می‌تواند ناشی از رخدادری درگیری پتاسیمی در منطقه باشد. وجود روند نزولی در نمونه‌های تغییرات اکسید عناصر آهن و

Molar Na₂O – Al₂O₃ – K₂O plot

![Diagram](image-url)

شکل 12 نمودار درجه اشباع از آلومین Na₂O-Al₂O₃-K₂O برای تعیین درجه اشباع از آلومین [46].
شکل ۱۲ تغییرات اکسیدهای عنصر اصلی نسبت به سبیل (نمودار هاکر).

شکل ۱۳ نمودار A/CKNK نسبت به A/CNK برای تعیین درجه اشباع از آلومین [۱۶].
نتایج بررسی عناصر خاکی نادر در نمونه‌های سطحی منطقه گرزنگان در جدول ۲ و نمونه‌های عنبیک‌یاری در شکل‌های ۱۵ و ۱۶ آمده است. جنگله که دیده می‌شود، بیشترین مقدار عناصر خاکی نادر در مکنتینه‌های آپاتیتیتر و سنگ سیزی وجود دارد. بیشترین مقدار مجموع عناصر خاکی در نمونه‌های سطحی ۰.۹ و کمترین مقدار ۰.۲۵ درصد است. میزان همبستگی فسفر و مجموع عناصر خاکی نادر در نمونه-های سطحی در شکل ۱۷ آمده است. این همبستگی می‌تواند...
شکل ۱۶ نمودار عضویت عناصر خاکی نادر بر اساس نوع سنگ و بهنگارش با کندروت.

شکل ۱۷ همبستگی بین فسفر و عناصر خاکی نادر در نمونه های سطحی در کاکاس گریستن.

جدول ۳ مقدار میزان عناصر خاکی نادر (ppm) در آبایین مکتیت‌های کاکاس گریستن و کایرونا سودن [۷۷].

<table>
<thead>
<tr>
<th>عناصر</th>
<th>La</th>
<th>Ce</th>
<th>Pr</th>
<th>Nd</th>
<th>Sm</th>
<th>Eu</th>
<th>Gd</th>
<th>Dy</th>
<th>Ho</th>
<th>Er</th>
<th>Tm</th>
<th>Yb</th>
</tr>
</thead>
<tbody>
<tr>
<td>کایرونا</td>
<td>۲۵۴</td>
<td>۷۸۲</td>
<td>۱۰۶</td>
<td>۵۲۴</td>
<td>۱۲۲</td>
<td>۱۴۹</td>
<td>۱۶۷</td>
<td>۲۵۳</td>
<td>۷۵۸</td>
<td>۹۱۱</td>
<td>۳۳۳</td>
<td>۸۴۱</td>
</tr>
<tr>
<td>گریستن</td>
<td>۳۱۰۸۴</td>
<td>۷۷۲</td>
<td>۲۵۲۰</td>
<td>۵۲۵۸</td>
<td>۱۴۱</td>
<td>۲۴۵</td>
<td>۵۶۵۹</td>
<td>۸۱۲</td>
<td>۴۲۷</td>
<td>۲۸۳</td>
<td>۱۸۰۹</td>
<td>۲۱۵</td>
</tr>
</tbody>
</table>
برداشت
گتانزیایی آهن به طور غالب در مجموعه سنگ سیز بوده و به شکل‌های کاسنتگ مکتیت-آپاتیت، کاسنتگ مکتیت-پریتیت، کاسنتگ مکتیت سیلیس‌دار، کاسنتگ هماینی و کاسنتگ مکتیت هماینی شده قابل تفکیک است. در این کاسنار، مکتیت به صورت توده‌ای و پراکنده دیده می‌شود. هماینی به صورت اولیه و نیز در نتیجه فراوری مارتنی شده و بر اثر تبدیل مکتیت به هماینی وجود دارد. همچنین نتایج بررسی‌های کلی نشانی انجام شده در کاسنار گتانزیایی آهن نشان می‌دهد که سنگ‌های تداخل‌میزبان کاسنار گتانزیایی آهن را بازالت است. نمونه‌ها در گستره نیمه قلبی قرار می‌گیرند (شکل 19). روند کاملاً آهن، فسفور و تپتانیوم نشان دهنده جدایی فازهای غنی از اکسید اهنه به همراه آپاتیت است.

مکتیت-آپاتیت به شکل رگ‌ریزی و عدسی‌های
بررسی آلودگی توزیع عناصر خاکی نادر بیانگر این است که
پراکندگی عناصر خاکی نادر در نمونه‌های آپاتیت‌دار و مگنتیت مشابه هستند که نشانه تشکیل‌گذاری ممکن می‌باشد.

مراجع

[22] Yousefi M., "Basic and Detailed Exploration of Iron Ore Anomalies of the Central Plateau of
Brecciated Se-Chahun Iron Oxide-Apatite deposit, Bafq District, Iran, Insights from Paragenesis and Geochemistry”, Chemical Geology 281(2011)253-269.

[34] Moghaddasi S.J., "Geochemistry and Petrology of Iron Ore Deposit, Relying on the Rare Earth Elements Geochemistry, A Case Study; Chadormalu Mining, Bafq, Yazd Province, Iran", Geodynamics Research International Bulletin 3 (2015) 9-21.


[33] Bonyadi Z., Davidson G.J., Mehrabi B., Meffire S., Ghazban F., "Significance of Apatite REE Depletion and Monazite Inclusions in the

...the Northern Qaidam Basin, Northwest China", Chemie Der Erde - Geochemistry 72 (2012) 245-252.