کانون شناسی و شیمی کانیهای سیلیکاتی در کانسار اسکندر آهن دردوی (ناحیه معدنی آهن سنگان، شمال شرق ایران)

مجید قاسمی سیاسی، بهزاد مهرابی

گروه زوئوپلیسی، دانشکده علوم زمینی، دانشگاه خوارزمی، ایران

چکیده: کانسار سک آهن دردوی یک مرکزی ناحیه معدنی سنگان، در ۳۰ کیلومتری جنوبشرقی منتهد به پنجه ساختاری شرق ایران قرار دارد. کانسار دردوی منونه‌ای شاخه از اسکندر گنی از گرگانتیت بوده و در محل همایی توده‌های گرانیت سوسوس و سنگ‌های کربنات می‌باشد که شامل شامل در کانسار آهن دردوی از سه پنجه‌های برون اسکندر، درون اسکندر و کانسار آهن تشکیل شده‌است. پنجه‌های برون اسکندر متشکل از زیر پنجه پیروکس اسکندر، گردن اسکندر و اپیدوت‌فلوگیتی اسکندر است. بر پایه تجزیه نرخ اکسید، ترکیب کلوئید پرکسید از نوع دوقبدی‌هندی گزارنده‌اند. پنجه‌های اسکندری به‌طور عمده در ترکیب کانی‌ها و موجود جزئی که در پنجه‌های اسکندر به سمت مرحله برون اسکندر می‌آید و یک مقدار آهن کاهش یافته است. در اسکندر دردوزی به دنبال تغییر شرایط اکسیدان به اجارا در طی نوا دوی همبوزا، اشباع سولفیدی رخ داده است که باعث تغییرات کانی‌های پنجه‌ای سولفیدی گالکوبیتر، پیرپنتین و بی‌پر پرپنتین به پلش می‌گردد و پس از تشکیل مگنتیت و کانی‌های سیلیکاتی بدون آب شده، به‌طور عمده بر سطحی اجناس مگنتیت در دردوزی براساس مقدار عناصر وانادیوم، کروم، نیکل، تینیاپات، کلرید، اومین‌پت و منگنز از دو رده کانساری اسکندری قرار می‌گیرد. ااسکندر دردوزی نیز با توجه به وجود پنجه درون اسکندر، کانی اسکندرلیت و کانی‌های نیتریز بالا در آن، در رده اسکندری‌های نیتریزی – کلوئیدی رده‌بندی می‌شود.

واژه‌های کلیدی: معدن سنگان، کانسار دردوزی، گردن سنگان، کانسار شناسی، شیمی کانی‌ها.

مقدمه

معدن سنگان در فصل ۳۰۰ کیلومتری جنوب‌شرقی مشهد و ۱۸ کیلومتری شمال شرقی سنگان از توابع شهرستان خواف در کمربند انششزایی‌های توده‌ای خواف کاشفی-پردستگان قرار دارد (شکل ۱). ناحیه معدنی سنگان دارای بیش از هزار تن ذخیره انسنی بین ۲۵ تا ۶۰ درصد آهن (تقریباً ۲۰ درصد از معدن دارای عایری بخش از ۵۰ درصد) بوده و یکی از ناحیه‌های معدنی بسیاری از ایران است [۲، ۲۱]. جمعه معادن سنگ آهن سنگان شامل ۱۲ کانسار است که با روند شرقی-غربی در راستای گسل درونه طولی قرار گرفته‌اند. Majid4225@yahoo.com
بسیار پیچیده هستند، این پژوهش با هدف بررسی گستردگی و جامعی کانی‌شناسی و شیمی کانی‌های سیلیکات‌های در پهن‌های استکارا کانس آهن در دوی اروپا شده است. نتایج این پژوهش می‌تواند برای بررسی‌های دقیق‌تر ناهنجاری‌های دیگر سیلیکات‌های مفید واقع شود.

درصد عبار) و حدود ۱۱ درصد آن اهل نوع کم عبار (کمتر از ۲۰ درصد عبار) است. پژوهش‌های بسیاری پیرامون کانس‌های مختلف ناحیه معدنی سیلیکاس صورت گرفته است [۵-۱۶]. ولی ناکاران بررسی جامعی روی شیمی کانی‌های سیلیکاس در اسکارا انجام نشده است. با توجه به اینکه کانس‌های اسکارا از نظر کانی‌شناسی

شکل ۱

ناحیه معدنی سیلیکاس که بخشی از کمپلکس انسپارکی-نفوذی خواف-کاناشت-بردسکن است. جایگاه این کمپین در شمال حوضه ایران نشان داده شده است [۱۱].

شکل ۲

نقشه زمین‌شناسی ساده ناحیه معدنی سیلیکاس با تغییرات بر اساس نقشه ۱۲۵۰۰۰۰ تابیده [۱۸]. جایگاه ۱۴ کانسار اسکارنی در روند غربی-شرقی در شکل نشان داده شده است.
زیمن شناسی و گانژایی

پژوهش کربنیور و همگران [1] نشان داد که ناحیه معدنی سطح جنیز از کربنیور انفلوئو خواهد کشید. بررسی سکه که با روند شریف غربی در شمال گل درونه قرار داشته است، نشان دهنده آفتی اکسیژن است. این کربنیور به طور عمده از سطحی مولکولی انفلوئو قرار داشته است. در نتیجه، فرمول انفلوئو تغییر کرده است:

کربنیور سیروین در راستای شرقی-غربی نفس مهمی در کانال سطحی اکسیژن در منطقه سطحی و به ویژه کانال آهن در سطح میانی است. قدم قدر می‌تواند در تصویره است که انفلوئو اکسیژنی و مولکولی از قبیل توپ، جوش انفلوئو، رولیت، چرخ، شیل و سیلیس زینتیکه‌ای و در هم‌مانده تغییر می‌کند.

روش بررسی

برای بررسی‌های کارخانه و شیمی کانال، تعداد 80 مقطع ضبط شده، نازک ضبط و بکر از نمونه‌های برداشت شده از سطحی اکسیژنی رخته شده کانال برای اکسیژنی در سطحی تهی شده و یک بُره نیز، کربنیور، مکانیکی، سیروین، کارخانه، چرخ، شیل و سیلیس‌های نمونه کارخانه و مکانیکی، در دو مرحله تهیه شده است.

کانال‌ها شرکت می‌شود.

روش بررسی

برای بررسی‌های کارخانه و شیمی کانال، تعداد 80 مقطع ضبط شده، نازک ضبط و بکر از نمونه‌های برداشت شده از سطحی اکسیژنی رخته شده کانال برای اکسیژنی در سطحی تهی شده و یک بُره نیز، کربنیور، مکانیکی، سیروین، کارخانه، چرخ، شیل و سیلیس‌های نمونه کارخانه و مکانیکی، در دو مرحله تهیه شده است.

کانال‌ها شرکت می‌شود.

روش بررسی

برای بررسی‌های کارخانه و شیمی کانال، تعداد 80 مقطع ضبط شده، نازک ضبط و بکر از نمونه‌های برداشت شده از سطحی اکسیژنی رخته شده کانال برای اکسیژنی در سطحی تهی شده و یک بُره نیز، کربنیور، مکانیکی، سیروین، کارخانه، چرخ، شیل و سیلیس‌های نمونه کارخانه و مکانیکی، در دو مرحله تهیه شده است.

کانال‌ها شرکت می‌شود.

روش بررسی

برای بررسی‌های کارخانه و شیمی کانال، تعداد 80 مقطع ضبط شده، نازک ضبط و بکر از نمونه‌های برداشت شده از سطحی اکسیژنی رخته شده کانال برای اکسیژنی در سطحی تهی شده و یک بُره نیز، کربنیور، مکانیکی، سیروین، کارخانه، چرخ، شیل و سیلیس‌های نمونه کارخانه و مکانیکی، در دو مرحله تهیه شده است.

کانال‌ها شرکت می‌شود.

روش بررسی

برای بررسی‌های کارخانه و شیمی کانال، تعداد 80 مقطع ضبط شده، نازک ضبط و بکر از نمونه‌های برداشت شده از سطحی اکسیژنی رخته شده کانال برای اکسیژنی در سطحی تهی شده و یک بُره نیز، کربنیور، مکانیکی، سیروین، کارخانه، چرخ، شیل و سیلیس‌های نمونه کارخانه و مکانیکی، در دو مرحله تهیه شده است.

کانال‌ها شرکت می‌شود.

روش بررسی

برای بررسی‌های کارخانه و شیمی کانال، تعداد 80 مقطع ضبط شده، نازک ضبط و بکر از نمونه‌های برداشت شده از سطحی اکسیژنی رخته شده کانال برای اکسیژنی در سطحی تهی شده و یک بُره نیز، کربنیور، مکانیکی، سیروین، کارخانه، چرخ، شیل و سیلیس‌های نمونه کارخانه و مکانیکی، در دو مرحله تهیه شده است.

کانال‌ها شرکت می‌شود.

روش بررسی

برای بررسی‌های کارخانه و شیمی کانال، تعداد 80 مقطع ضبط شده، نازک ضبط و بکر از نمونه‌های برداشت شده از سطحی اکسیژنی رخته شده کانال برای اکسیژنی در سطحی تهی شده و یک بُره نیز، کربنیور، مکانیکی، سیروین، کارخانه، چرخ، شیل و سیلیس‌های نمونه کارخانه و مکانیکی، در دو مرحله تهیه شده است.

کانال‌ها شرکت می‌شود.
کانی شناسی پهن‌های اسکارنی در اثر نفوذ توده گرانیتی سرتوس را در منطقه، محلول‌های گرمسیاره آهکی نفوذی نخورده توده و در شرایط مناسب سنسنی و سنگ‌نگاره جانشینی. محلول‌های آهکی توده و تغییر ترکیب کانی‌نگاره رخ داده است. انواع مختلفی از کانی‌های سیلیکات‌های کلری بدن آب و آبادان، کانی‌های سولفیدی و کانی‌های کربناته حجم گسترده‌ای از کانی‌های منطقه به خوی اختصاص داده‌اند (شکل 2). بر اساس ویژگی‌های سنگ‌نگاره و کانی‌شناسی، اسکارن دردودی (متشکل از گرانیت‌سنگ سقوط به عنوان گرن و گرن‌های اصلی کانی‌ساز اسکارن تشکیل شده) و گرن‌های کلینبورپکس اسکارن شامل کلینبورپکس‌های رزین‌باف و گرن‌های رزین بان‌دارند. دربردارنده دو گونه اسکارن و برون اسکارن، رگه‌های کوارتز تأخیری کاندته و عضیم و سنگ‌های سیلیکات قلبی قبیلی هورنفلز (اسکارنوند) می‌باشند (شکل 5). درون اسکارن به صورت کوارتز تأخیری به ضخامت متغیر از کمر یک متر تا حدود ۲ متر در ذرت سردر کانی‌ساز به عضیم و سنگ‌های سیلیکات قلبی هورنفلز (اسکارنوند) می‌باشد (شکل 5).

شکل 3: نشستی توده کانی‌ساز، اسکارن نگاره، و کانی‌شناسی ایران

کانی‌شناسی پهن‌های اسکارنی در اثر نفوذ توده گرانیتی سرتوس را در منطقه، محلول‌های گرمسیاره آهکی نفوذی نخورده توده و در شرایط مناسب سنسنی و سنگ‌نگاره جانشینی. محلول‌های آهکی توده و تغییر ترکیب کانی‌نگاره رخ داده است. انواع مختلفی از کانی‌های سیلیکات‌های کلری بدن آب و آبادان، کانی‌های سولفیدی و کانی‌های کربناته حجم گسترده‌ای از کانی‌های منطقه به خوی اختصاص داده‌اند (شکل 2). بر اساس ویژگی‌های سنگ‌نگاره و کانی‌شناسی، اسکارن دردودی (متشکل از گرانیت‌سنگ سقوط به عنوان گرن و گرن‌های اصلی کانی‌ساز اسکارن تشکیل شده) و گرن‌های کلینبورپکس اسکارن شامل کلینبورپکس‌های رزین‌باف و گرن‌های رزین بان‌دارند. دربردارنده دو گونه اسکارن و برون اسکارن، رگه‌های کوارتز تأخیری کاندته و عضیم و سنگ‌های سیلیکات قلبی قبیلی هورنفلز (اسکارنوند) می‌باشند (شکل 5).
پس از کلینوبروکسنشکل شده است (شکل 4 ب)، زیرپهنده گارانت اسکارن‌داری ضخامتی برابر 4 متر است. ابعاد بلورهای گارانت به چند سانتی‌متر نیز رسیده است و به صورت بلورهای خودشکل در مگنتی دیده شده است (شکل 4 ج). ابتدای بلور کلینوبروکسنشکل هستند (شکل 4 ب). گارانت و کلینوبروکسندی مراحل بعدی شکسته شده و توسط کلریت، فلوروپیت، ابیدوت و مگنتین جانشین شدهاند (شکل 4 ت). مرحله پسوردنه با کلریت ابیدوت، فلوروپیت، ترمولیت-اکتیلوئید و کوارتز اسکالپولیت، نورلبند و گارانت و کلینوبروکسنشکل به شده است (شکل 4 ت و ج). با توجه به فراوانی ابیدوت و فلوروپیت در دردوسی، این زیرپهنده در این پژوهش به نام زیرپهنده ابیدوت-فلوروپیتی معیف شده است. این زیرپهنده هم

شکل 4 تصاویر میکروسکوپی از کلریت اسکالپولیت (Cal) نورلبند (Ms) فلوروپیت (Fh) کلریت (Chl) مگنتین (Mag) ترمولیت (Act) اکتیلوئید (Akt) و پسوردنه (Ps) در طول زمان و دلیل‌های مختلف این پژوهش با نام زیرپهنده ابیدوت-فلوروپیتی معیف شده است. این زیرپهنده هم
همچنین همراه‌ها غالب مگنتیت با اپیدوئ و فلوگوپیت نشان می‌دهد که کانترایی مگنتیت در اواخر مرحله پیشرونه همراه با گارنت و پیروکسین شروع شده و بیشتر کانترایی در اواخر مرحله پیشرونه شکل گرفته است (شکل ۵). مگنتیت به صورت بلورهای خوشه‌ای در پیله‌های سطح‌های مارنی شده و به همان‌نام تبدیل شده است. مرحله آخر کابین‌سازی در اسکارن در دو مرحله بجای تغییر کابین‌سازی و بی‌بال است که کاتی‌های مرحله‌ای می‌تواند با کتی‌های متوسط تغییر کند و در برداشتن فلوگوپیت، کالکوپیریت و مارکازیت با پیروکسین و گارنت، مگنتیت هستند.

پهنه اسکارن‌های اسکارن‌های مگنتیتی با کانترایی همراه (بیش از ۶۵٪ مخلوطی) گارنت بی‌پروکسین، مگنتیتی اسکارن‌های مگنتیتی تغییر داده می‌شود و در مواردی شکستگی‌های پرشده گارنت توسط مگنتیت و همچنین تغییر داده می‌شود. همچنین بی‌پروکسین، مگنتیت ماده نفتی را تغییر داده می‌کند.

شکل ۵: توالی همبسیالی کانترایی اسکارن در دردوب

<table>
<thead>
<tr>
<th>Stage</th>
<th>Prograde</th>
<th>Retrograde</th>
<th>Veins</th>
<th>Supergene Alteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garnet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyroxene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feldspar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dolomite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chalcopyrite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marcasite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrohite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epidote</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phlogopite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scapolite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hornblende</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actinolite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tremolite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zircon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galena</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphalerite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apatite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobaltite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titanite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monazite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moscovite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limonite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geothite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hematite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siderite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay Mineral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
شیمی کانی‌های سیلیکات
بررسی شیمی کانی‌های سیلیکات اسکارن یکی از مهم‌ترین بررسی‌ها در این نوع کاناسراست [105]. در این پژوهش سعی شده است که بررسی شیمی یا کانی‌های سیلیکات‌های سیلیکات‌های مانند کلینوپروکسین، آمفیبول، فلوگوپیت و فلسيپار و بر کانی‌های اکسیدی آن‌ها، از جمله مگنتیت انجام شود که در ادامه توضیح داده می‌شود.

کلینوپروکسین: کلینوپروکسین در درودی در پهنه نزدیک اسکارن واقع شده و به عنوان نخستین کانی سیلیکات‌های بدون آب تبلور یافته است (شکل‌های ۶ تا ۸). کلینوپروکسین به صورت بلورهای درشت در زیرهای فلیپروکسین اسکارن و

![شکل‌نمایی‌های متعدد از کانی‌های تحقیق‌شده در اسکارن درودی (الف تا ب) همراه با مکانیزم با کلینوپروکسین (Cpx) و فلیپروکسین (Py) بر اساس میکروکش الکترونی گرفته شده‌اند.](attachment:image.png)
جدول ۱ نتایج تجزیه ریزپدیداری الکترونی کلیه‌ی سیلیکاته در کانسار اسکارن درودی. اعداد داخل پرانتز تعداد نقطه تجزیه شده را نشان می‌دهد. اعداد هر ردیف کمترین و بیشترین مقادیر برای هر کانی ارائه شده است.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>0.01-0.15</td>
<td>0.00-0.18</td>
<td>0.00-0.18</td>
<td>0.00-0.18</td>
<td>0.00-0.18</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.00-0.03</td>
<td>0.00-0.10</td>
<td>0.00-0.04</td>
<td>0.00-0.10</td>
<td>0.00-0.03</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.00-0.44</td>
<td>0.00-1.18</td>
<td>0.00-0.44</td>
<td>0.00-1.18</td>
<td>0.00-0.44</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.00-0.10</td>
<td>0.00-0.20</td>
<td>0.00-0.10</td>
<td>0.00-0.20</td>
<td>0.00-0.10</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.00-0.9</td>
<td>0.00-0.9</td>
<td>0.00-0.9</td>
<td>0.00-0.9</td>
<td>0.00-0.9</td>
</tr>
<tr>
<td>MnO</td>
<td>0.00-0.18</td>
<td>0.00-0.18</td>
<td>0.00-0.18</td>
<td>0.00-0.18</td>
<td>0.00-0.18</td>
</tr>
<tr>
<td>MgO</td>
<td>0.00-1.16</td>
<td>0.00-0.04</td>
<td>0.00-1.16</td>
<td>0.00-0.04</td>
<td>0.00-1.16</td>
</tr>
<tr>
<td>CaO</td>
<td>0.00-1.01</td>
<td>0.00-0.01</td>
<td>0.00-1.01</td>
<td>0.00-0.01</td>
<td>0.00-1.01</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.00-0.15</td>
<td>0.00-0.10</td>
<td>0.00-0.15</td>
<td>0.00-0.10</td>
<td>0.00-0.15</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.00-0.15</td>
<td>0.00-0.15</td>
<td>0.00-0.15</td>
<td>0.00-0.15</td>
<td>0.00-0.15</td>
</tr>
<tr>
<td>Total</td>
<td>0.98-1.04</td>
<td>0.98-1.04</td>
<td>0.98-1.04</td>
<td>0.98-1.04</td>
<td>0.98-1.04</td>
</tr>
<tr>
<td>Si</td>
<td>0.00-0.02</td>
<td>0.00-0.02</td>
<td>0.00-0.02</td>
<td>0.00-0.02</td>
<td>0.00-0.02</td>
</tr>
<tr>
<td>Ti</td>
<td>0.00-0.04</td>
<td>0.00-0.04</td>
<td>0.00-0.04</td>
<td>0.00-0.04</td>
<td>0.00-0.04</td>
</tr>
<tr>
<td>Al</td>
<td>0.00-0.02</td>
<td>0.00-0.02</td>
<td>0.00-0.02</td>
<td>0.00-0.02</td>
<td>0.00-0.02</td>
</tr>
<tr>
<td>Cr</td>
<td>0.00-0.02</td>
<td>0.00-0.02</td>
<td>0.00-0.02</td>
<td>0.00-0.02</td>
<td>0.00-0.02</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
</tr>
<tr>
<td>Mn</td>
<td>0.00-0.02</td>
<td>0.00-0.02</td>
<td>0.00-0.02</td>
<td>0.00-0.02</td>
<td>0.00-0.02</td>
</tr>
<tr>
<td>Mg</td>
<td>0.00-0.03</td>
<td>0.00-0.03</td>
<td>0.00-0.03</td>
<td>0.00-0.03</td>
<td>0.00-0.03</td>
</tr>
<tr>
<td>Ca</td>
<td>0.00-0.03</td>
<td>0.00-0.03</td>
<td>0.00-0.03</td>
<td>0.00-0.03</td>
<td>0.00-0.03</td>
</tr>
<tr>
<td>Na</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
</tr>
<tr>
<td>K</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
</tr>
<tr>
<td>Cation</td>
<td>0.00-0.05</td>
<td>0.00-0.05</td>
<td>0.00-0.05</td>
<td>0.00-0.05</td>
<td>0.00-0.05</td>
</tr>
<tr>
<td>Johanneisenite</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
</tr>
<tr>
<td>Diopside</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
</tr>
<tr>
<td>Hedenbergite</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
</tr>
<tr>
<td>Andradite</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
</tr>
<tr>
<td>Grossular</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
</tr>
<tr>
<td>Pyrōte</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
</tr>
<tr>
<td>Almandine</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
</tr>
<tr>
<td>Spessartine</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
</tr>
<tr>
<td>Uvarovite</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
</tr>
<tr>
<td>Annite</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
</tr>
<tr>
<td>Phlogopite</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
</tr>
<tr>
<td>An</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
</tr>
<tr>
<td>Ab</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
</tr>
<tr>
<td>Or</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
</tr>
<tr>
<td>Mg(Fe+Mg)</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
<td>0.00-0.01</td>
</tr>
</tbody>
</table>
(ب) کلسیپروکسن در کلسیپروکسن‌های اسکان دردی از نوع دیوپید و هدروزیت بوده‌های کلسیپروکسندی کاسه‌های اسکان‌های این متداول است.

بر این اساس در کلسیپروکسندی کاسه‌های اسکان دردی، پیریکاسن از نوع دیوپید و هدروزیت است کلسیپروکسندی کاسه‌های اسکان دردی از نوع دیوپید و هدروزیت بوده‌های کلسیپروکسندی کاسه‌های اسکان دردی در این سیستم به‌طور کلی، کلسیپروکسندی کاسه‌های اسکان دردی هستند. مقدار H2O و H2S متغیرهای درشت پیریکاسن در منطقه و دارنده که در این منطقه‌ها، سنتری مقدار H2O و H2S در این منطقه‌ها مقدار دارد که در این منطقه‌ها مقدار H2O و H2S در این منطقه‌ها مقدار دارد که در این منطقه‌ها مقدار H2O و H2S در این منطقه‌ها مقدار دارد که در این منطقه‌ها مقدار H2O و H2S در این منطقه‌ها مقدار دارد که در این منطقه‌ها مقدار H2O و H2S در این منطقه‌ها مقدار دارد که در این منطقه‌ها مقدار H2O و H2S در این منطقه‌ها مقدار دارد که در این منطقه‌ها مقدار H2O و H2S در این منطقه‌ها مقدار دارد که در این منطقه‌ها مقدار H2O و H2S در این منطقه‌ها مقدار دارد که در این منطقه‌ها مقدار H2O و H2S در این منطقه‌ها مقدار D1, D2, D3 و D5 هستند. همچنین مقدارهای H2O و H2S متغیرهای درشت پیریکاسن در منطقه و دارنده که در این منطقه‌ها مقدار H2O و H2S در این منطقه‌ها مقدار D1, D2, D3 و D5 هستند. همچنین مقدارهای H2O و H2S متغیرهای درشت پیریکاسن در منطقه و دارنده که در این منطقه‌ها مقدار H2O و H2S در این منطقه‌ها مقدار D1, D2, D3 و D5 هستند. همچنین مقدارهای H2O و H2S متغیرهای درشت پیریکاسن در منطقه و دارنده که در این منطقه‌ها مقدار H2O و H2S در این منطقه‌ها مقدار D1, D2, D3 و D5 هستند. همچنین مقدارهای H2O و H2S متغیرهای درشت پیریکاسن در منطقه و دارنده که در این منطقه‌ها مقدار H2O و H2S در این منطقه‌ها مقدار D1, D2, D3 و D5 هستند. همچنین مقدارهای H2O و H2S متغیرهای درشت پیریکاسن در منطقه و دارنده که در این منطقه‌ها مقدار H2O و H2S در این منطقه‌ها مقدار D1, D2, D3 و D5 هستند. همچنین مقدارهای H2O و H2S متغیرهای درشت پیریکاسن در منطقه و دارنده که در این منطقه‌ها مقدار H2O و H2S در این منطقه‌ها مقدار D1, D2, D3 و D5 هستند. همچنین مقدارهای H2O و H2S متغیرهای درشت پیریکاسن در منطقه و دارنده که در این منطقه‌ها مقدار H2O و H2S در این منطقه‌ها مقدار D1, D2, D3 و D5 هستند. همچنین مقدارهای H2O و H2S متغیرهای درشت پیریکاسن در منطقه و دارنده که در این منطقه‌ها مقدار H2O و H2S در این منطقه‌ها مقدار D1, D2, D3 و D5 هستند. همچنین مقدارهای H2O و H2S متغیرهای درشت پیریکاسن در منطقه و دارنده که در این منطقه‌ها مقدار H2O و H2S در این منطقه‌ها مقدار D1, D2, D3 و D5 هستند. همچنین مقدارهای H2O و H2S متغیرهای درشت پیریکاسن در منطقه و دارنده که در این منطقه‌ها مقدار H2O و H2S در این منطقه‌ها مقدار D1, D2, D3 و D5 هستند. همچنین مقدارهای H2O و H2S متغیرهای درشت پیریکاسن در منطقه و دارنده که در این منطقه‌ها مقدار H2O و H2S در این منطقه‌ها مقدار D1, D2, D3 و D5 هستند. همچنین مقدارهای H2O و H2S متغیرهای درشت پیریکاسن در منطقه و دارنده که در این منطقه‌ها مقدار H2O و H2S در این منطقه‌ها مقدار D1, D2, D3 و D5 هستند. همچنین مقدارهای H2O و H2S متغیرهای درشت پیریکاسن در منطقه و دارنده که در این منطقه‌ها مقدار H2O و H2S در این منطقه‌ها مقدار D1, D2, D3 و D5 هستند. همچنین مقدارهای H2O و H2S متغیرهای درشت پیریکاسن در منطقه و دارنده که در این منطقه‌ها مقدار H2O و H2S در این منطقه‌ها مقدار D1, D2, D3 و D5 هستند. همچنین مقدارهای H2O و H2S متغیرهای درشت پیریکاسن در منطقه و دارنده که در این منطقه‌ها مقدار H2O و H2S در این منطقه‌ها مقدار D1, D2, D3 و D5 هستند. همچنین مقدارهای H2O و H2S متغیرهای درشت پیریکاسن در منطقه و دارنده که در این منطقه‌ها مقدار H2O و H2S در این منطقه‌ها مقدار D1, D2, D3 و D5 هستند.
مرحله پسونده تشکیل شده‌اند دارای مقدار آبی کمتر از یک درصد هستند. در حالی که فلوبیت‌های تشکیل شده در رگ‌های پایین دارای مقدار آبی بیش از ۲۸ درصد است (شکل ۹). پژوهش‌ها و تحقیقات میکروسکوپ الکترونی نشان داد که در لبه بیشتر بلورهای مگنتیت، فلوبیت‌های بصری یک روش‌دهی بر روی بلور مگنتیت تشکیل شده است (شکل ۶).

شکل ۸: کانی‌های گرانیت در کانسار اسکارن دردوزی از نوع آندرایدریت و هدفتریدی بوده که در کناره‌ای کانسارهای اسکارن اهمیت مندابو هستند.

شکل ۹: نمودار مرجع [۱۲۳] که براساس آن، کانی میکائی بجزیه شده در اسکارن دردوزی از نوع فلوبیت با مقدار آهن کم است، ب) نمودار مرجع [۱۲۳] که براساس آن، آمفیبول اسکارن دردوزی از نوع آمفیبول‌های کلسیمی است که در نمودارهای A و B مشخص شده که انواع آمفیبول شناسایی شده در اسکارن دردوزی شامل اکتینولیت-ترمولیت، هوریلیت غنی از منیزیم، پارگنیت و هاستینگتیت غنی از منیزیم هستند.
مگنتیت: کانسالرهای نیکل-مس دربردارنده مقداری بالایی از عنصر Cr و Ni و کانسالرهای اسکارن شامل مقداری قابل توجه
مگنتیت‌های Ca کانسالرهای آسیکد-وست-یلیا (ICOG) است و با (BIF) کانسالرهای اسکارن، سولفید توده‌ای و سازنده آهن نواری (BIF) مشترک است. کانسالرهای کاربرن (مگنتیت-ICOG، با پورفیري در مقایسه با کانسالرهای در Al و Mg مقدار بیشتری دارند. تراکم عنصر Ti در کانسالرهای آلیاژی مگنتیت در دردسته می‌باشد.

در این اساس، برای برداشت کانسالرهای مگنتیت در دردسته 10 نقطه تجزیه شیمیایی سود که تابعی در جدول 2 اورده شده است. تراکم وانادیم و نیترات در کانسالرهای آلیاژی آهن، تغییرات شدید نسبت به (با استیتیوم) دارای نیترات و Fe+3 در مقدار TiV+Ni(Cr+Mn) کاربرن، پورفیری مس و ذخایر آهن-نیترات- (BIF-ICOG) وانادیم با نانو می‌باشد. اکسیژن کانسالرهای اسکارن،

برداشت
با نفوذ توده نفوذ سربورس، سربورس اکسیژنی می‌باشد در تغییرات ذیل، در حالی که در بقیه شده. است. ساختار اصلی منطقه دردسته در انگر خودگی ها و نکات‌ک در تکنیک مشترک دسترسی سربورس است. بر اساس بررسی،

فلسفه‌سازی: فلسفه‌سازی در گردان سربورس و همجنس مرحله پرسونه تشکیل شده است. در اسکارن (گردان سربورس)،
فلسفه‌سازی به عنوان اثر (An) 0-5 و درصد بولونیا (An: 0-7) در اثر پرسونه (An: 0-28) تشکیل شده است. در گردانهای
فلسفه‌سازی و فلسفه‌سازی پهن اسکارن، پرسونه پلزیکال (An 0-55 و FLD-28) از نوع لابیالورهای (An 55-55) FLD-28 است. تابعی در بازیابی (Or 48-55) کاتیو FLD-28 در جدول 1 ارائه شده است.
جدول 2: نتایج تجزیه ریزپردازش الکترونی مگنتیت در کاناسار اسکان در دریا

<table>
<thead>
<tr>
<th>SiO2</th>
<th>TiO2</th>
<th>Al2O3</th>
<th>V2O5</th>
<th>FeO</th>
<th>Fe2O3</th>
<th>MgO</th>
<th>CaO</th>
<th>MnO</th>
<th>CoO</th>
<th>NiO</th>
<th>ZnO</th>
<th>Cr2O3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.59</td>
<td>0.04</td>
<td>0</td>
<td>0.02</td>
<td>0.15</td>
<td>3.5</td>
<td>0.03</td>
<td>0.05</td>
<td>0.03</td>
<td>0.08</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>2</td>
<td>1.85</td>
<td>0.03</td>
<td>0.02</td>
<td>0.13</td>
<td>0.01</td>
<td>0.03</td>
<td>0.05</td>
<td>0.05</td>
<td>0.07</td>
<td>0.03</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>3</td>
<td>1.79</td>
<td>0.03</td>
<td>0.01</td>
<td>0.12</td>
<td>0.09</td>
<td>0.02</td>
<td>0.05</td>
<td>0.03</td>
<td>0.05</td>
<td>0.03</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>4</td>
<td>3.98</td>
<td>0.07</td>
<td>0.03</td>
<td>0.12</td>
<td>0.08</td>
<td>0.02</td>
<td>0.05</td>
<td>0.03</td>
<td>0.05</td>
<td>0.03</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>5</td>
<td>0.05</td>
<td>0.01</td>
<td>0.02</td>
<td>0.05</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>6</td>
<td>0.09</td>
<td>0.01</td>
<td>0.02</td>
<td>0.05</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>7</td>
<td>1.65</td>
<td>0.04</td>
<td>0.02</td>
<td>0.05</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>8</td>
<td>3.20</td>
<td>0.03</td>
<td>0.02</td>
<td>0.05</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
</tr>
</tbody>
</table>

سیالیک‌های بدون آب کلسیم‌پورسکن و گارن در مراحل اولیه و پیش‌برنده تشکیل اسکانر، رخ داده‌اند. در مراحل بعدی، از این مخلوط آب‌های کلسیم‌پورسکن یاری آب‌‌های رسوبه‌ای ایجاد می‌شود. فلولاکتیت، گرت، آبی‌فیروزه، اسکاسبولیت و نومنیزیت بزرگ‌ترین در بخش مخزن شکل‌دهنده تشکیل شده است. در این حالت، نومنیزیت و گارن دو بخش اصلی تشکیل‌دهنده اسکانر است. اکسیداتیون فلولاکتیت شهابی اپیدوت در اسکانر در دوره‌های تکاملی و کلسیم‌پورسکن قابل حل ملاحظه شده است. ناحیه معدنی سیالیک‌های بدون آب کلسیم‌پورسکن در اسکانر در دریا فراوانی قابل ملاحظه‌ای برخوردار است. چنان‌که اشاره شد، در ناحیه معدنی سیالیک‌های بدون آب کلسیم‌پورسکن در اسکانر در دریا تعدادی از اتی‌لوپر و تیرهوشگری و کلسیم‌پورسکن قابل حل ملاحظه شده است. ناحیه معدنی سیالیک‌های بدون آب کلسیم‌پورسکن در اسکانر در دریا نیز از اسکانر در دریا مایع‌های کلسیم‌پورسکن قابل حل ملاحظه‌ای برخوردار است. ناحیه معدنی سیالیک‌های بدون آب کلسیم‌پورسکن در اسکانر در دریا نیز از اسکانر در دریا مایع‌های کلسیم‌پورسکن قابل حل ملاحظه‌ای برخوردار است. ناحیه معدنی سیالیک‌های بدون آب کلسیم‌پورسکن در اسکانر در دریا نیز از اسکانر در دریا مایع‌های کلسیم‌پورسکن قابل حل ملاحظه‌ای برخوردار است.
بخش منیزیمی کانسی پیش‌تر قابل توجه است و کانی‌های منیزیم بالا به ویژه در مراحل پسرانه تشكل شده با توجه به زیرعلم کانسی در سگ هک، منیزیم اسکارن از سمت غرب به شرق در سئوال می‌توان اسکارن کلسیمی در غرب و افزایش اسکارن منیزیمی به سمت شرق سکان را توضیح داد.

دان.

فاوئی کانی‌های منیزیمی در بتنه اسکارن روند اسکارن بالاست. به طور کلی، مقدار منیزیم از مراحل اولیه اسکارن به مراحل پایانی بیشتر و مقدار این در تکرپ کانی‌ها کمتر شده و اهن از صورت تکرپ مگنتیت و کانی‌های سولفیدی تشكل شده است. هاستینگزیت بستگی به سمت توده تکشی شده در حالی که اکسیلیت ردیبی و پارگالزیت و هورنبلند غنی از منیزیم در پهن‌های اسکارن منیزیمی نزدیک به سمت هاستینگزیت تکشی شده است. تکرپ اکسیلیت‌ها نیز به افزایش در مقدار منیزیم و کاهش در مقدار از سمت توده تکشی به سمت سکان‌های میانیتیان می‌دهد. در این موارد، تکشی دارای مقداری از تکرشی دیپتیت به سمت هاستینگزیت تکشی شده است.

فولوگوییت تکشی شده در پهن‌های اسکارن منیزیمی با توجه به درصد می‌تواند در این موارد به ویژه در اکسیلیت‌ها نیز به افزایش در مقدار منیزیم و کاهش در مقدار از سمت توده تکشی به سمت سکان‌های میانیتیان می‌دهد. در این موارد، تکشی دارای مقداری از تکرشی دیپتیت به سمت هاستینگزیت تکشی شده است.

در میان‌های اکسیدان، بی‌روکسی‌های غنی از منیزیم و کانسی‌های از اندودز به عنوان سیگناهای اهمیت بدان آم شکل می‌شوند و هدیهنیت و گروسورالدراسکارن‌ها اکسیل‌هایی به عنوان سیگناهای اهمیت بدان آم شکل می‌شوند و دیپتیت. در این موارد، تکشی دارای مقداری از تکرشی دیپتیت به سمت هاستینگزیت تکشی شده است.

* DOI: 10.29252/jicm.26.4.871

Kaheni Sh., Malekzadeh Shafaroudi A., Karimpour M.H., "The geochemistry and mineralogy of North C ore body and Baghak anomaly and determination of two Pyrrhotite generations which are different in composition in Sangan mine, eastern Iran", Iranian Journal of Crystallography and Mineralogy 16 (2) (2008) 313-326.

Tale Fazel E., Mehrabi B., Khakzad A., Kianpour R., "Stages and Mineralization Conditions of Dardvey Iron Skarn Based on Mineralogy and Fluid Inclusion Evidences, Sangan Area (Khorasan Razavi)", Scientific