شیمی کانی، زمین‌شیمی و سن پروتوسنی سنگ‌های آذرین نفوذی منطقه کلاته (شمال-
غربی خور): شاهدی بر فعالیت ماگمايی تربیس پسین در پنهنه ساختاری ایران مرکزی
سولماز بلوجی*، محمود صادقیان، حبیب اف. قاسمی، چاپ سیمگو، چکویی لی، زانگی بانیمین,

1- دانشکده علوم زمین، دانشگاه صنعتی شهید رجایی، مشهد، ایران
2- مؤسسه زمین شناسی و زمین‌فیزیک، انجمن علوم زمین، چندین، چنین

چکیده: توده‌های نفوذی دوربین و دایک‌های آتکالی فلدسپار گرانیتی صورتی زنگ منطقه کلاته (شمال-غربی خور)، سنگ‌های مجموعه پیستگی نیوپتروزنسیک پاداچی جدید- عرسان را فلز کرده‌اند. یک‌سرتگذاری، سنگ‌گرایی و بررسی‌های زمین‌شیمیایی با انواع ماهی‌گردن متعددی نوع 1 این توده‌های نفوذی، سرپوش جهادی آنها یا یکدیگر و ماهیت آنها شیمیایی-فیزیکی-پتولوژیکی توانسته‌است با استفاده از نسبت‌های انرژی‌های ارتباطی، رابطه همزادی آنها یا یکدیگر و ماهیت آنها شیمیایی-فیزیکی-پتولوژیکی توانسته‌است. 2- رابطه میان انرژی‌های ارتباطی رابطه همزادی آنها یا یکدیگر و ماهیت آنها شیمیایی-فیزیکی-پتولوژیکی توانسته‌است. 3- بررسی‌های دایک‌های آتکالی فلدسپار گرانیتی نشان‌گذار سطح سنگ‌های 2161±0.8 تا 1219±0.3 میلیون سال بیشتر (تریس پسین) برای آن هاست. این سنگ‌های آذرین نظرات ماگمایی فاز کوه‌های سیمریان پیش‌های هستند.

واژه‌های کلیدی: دوربین، دایک‌های آتکالی فلدسپار گرانیتی، تشکیلات پسین، فلز کردن، کلاته، خور

مقدمه

منطقه کلاته، در 25 کیلومتری شمال غربی شهرستان خور در استان اصفهان، بین طول‌های جغرافیایی 24°15′ تا 24°30′ شمالي، در کرانه جنوبی پایه کویر واقع است. این منطقه، جزئی از پهنه ساختاری ایران مرکزی است که بخشی از سرزمین‌های آذرین و دگرگونی پیستگی نیوپتروزنسیک پایابی یا بسته-جدید- عروسان را دربر می‌گیرد. این سرزمین‌های دگرگونی پیستگی دارای طبقه سنگ‌شناختی بیشتر متنوع شامل ماتیلیدهای

(میتانی‌نشین‌ها و گنی‌نشین‌ها)، ماتیارکین‌ها (ممره‌های آهکی و دلوی‌نشین‌ها)، ماتیارکین‌ها (آمپیل‌نشین‌ها و گرانیت‌نشین‌ها)، مجموعه اپیکریس، دگرگونشده (دونت‌های، هزارپتروزنسیک‌ها، پیاز‌های وغيرها) و

منابع‌شناسی‌ها (منابع‌شناسی‌ها و منابع‌شناسی‌ها) و

baluchi.solmaz@yahoo.com

توجه داشته باشید، لحن: 601441778601901، پست الکترونیکی:

*نویسندگان مسئول تلفنی: 8872782880873، پست الکترونیکی:
حل و رقیق شدن، عنصر腿 Nd و Rb، Sr، Sm تحت روش ترکیبی و طیف‌سنجی (ICP-MS) وSIMS سنجش شده و با روش CAMECA IMS 1280 نوع گرمایی شده و با روش تشخیص نشان دهنده و روش پرهای 20 میکرون است.

جفتی تهیه شده از نمونه‌ها در آزمایشگاه میکروسکوپی داشته‌اند شاهد و ژینا پس از اینکه سنجش شده و مشابه با اینکه با کمکین دیگر این جهت تهیه ایزوتوپی و کمیاب و تعیین

نیست‌های ایزوتوپی انتخاب و فرآیند خردیاب و نرمالی این نشان دهنده صنعتی شاهد و اینام شد. مفاد روش اصلی به

روش طیف‌سنجی فلتون‌سنس پرتو X (به روش قرص) و عنصر کمیاب به روش طیف‌سنجی جرمی پلاسمای جفت شده القایی، نیست‌های ایزوتوپی Sr-Nd به روش دوبی، نیست‌های ایزوتوپی Sr-Nd سنجشگر کل به روش طیف‌سنجی جرمی پون (ICP-MS).

گرمایی، سنجشگر کل به روش دوبی، نیست‌های انتخاب و SIMS سنجشگر بروز و آنالیز کمیاب و کمیاب و تعیین

شیرایک ژینا شامل ویز کو 15kV جریان پرتو از 20 تا 30 میکرون است.

دما: 22-37 درجه و رطوبت 30% و از نمونه استاندارد GB/T 1561-2002 ساخت کشور چین استفاده شده است.

قطر ناحیه تجربی 1 تا 5 میکرون است. سرانجام، براساس

براشتای صوری و نقطه گردیده از اینکه، نشان دهنده جدید، نشانه جدید رمی‌شنا ناحیه نوعی سنجشگر اینکه

(شکل 1).

شکل 1 ناهید زنی‌شناسی ناحیه گردی به همراه آبگاه آن در سرزمین ایران و همین‌گونه تصور ماهواره‌ای نشان دهنده کم‌تر و

دگروه‌ی آذرین جنی د ورمسان.
زمین‌شناسی منطقه
در منطقه کلاته در شمالغرب خوزستان، یک سیستم‌های
پیمایی آدنین-دیگرکونی دنبال‌ورودی و یک سیستم موفقیت-
موردی دیگر مجموعه‌ای متفاوت در منطقه همراه (جبه شاهد،
ساخت، بخش بامد، بینار و ...) می‌باشد (شیکاپال، و گلی،
گنیک‌ها) مانند ها (مرمرهای آبه و دلومنی) مجموعه
افیرولیتی دگرگونی شده (مانورامیت، مهتاب‌وری، مانورامیت و
...) مانند ها (مانورامیت و ... همچنین
توهمه‌های ریتی از آن‌ها می‌باشد مجموعه‌ی پی‌سی‌هستند.
تعادلی توده نفوذی کوچک دبریتی به همراه دیکره‌های
آتکالی فلدسپار گرانیتی به درون این سیستم دگرگونی نفوذ
کرده‌اند. توده‌های دابریتی توسط داکره‌های گرانیتی و رگه‌های
یگانیتی-گرانیتی رنگ قطع شده‌اند (شکل ۲) مانند به
ساخته‌بندی بی‌نفوذی بطور موضعی، به افزایش مقدار آب و
فراهم‌کردن شرایط برای تشکیل هولندهامی سیز دان‌درشت.
اکثر از مربوط به شرایط موردکار به قابلیت هوشیاری
آشکارا در مقیاس صحرای و نمونه‌های قابلیت هوشیاری
سنج‌دارند شرایط برای تشکیل هولندهامی سیز دان‌درشت
یک طریقهٔ که از این بروزه‌های هوری‌زون به دریا در
برخی مناطق دیگری به شدت گسل خورد و ایجاد

شکل ۲ تصاویری از رواج‌های صحرایی بین دیبریت‌ها و دایک‌های آتکالی فلدسپار گرانیتی و اف، قطع‌سیزی دیبریت‌های توسط دایک‌های آتکالی

فلدسپار گرانیتی رنگ و رابطه زاویه ازدیک‌انداز و دایک‌های آتکالی توسط دیبریت‌های
ابراهیمیان [۲] گرانیت‌هایی شرق جنوبی که سنگ-
های مورد بحث در این پژوهش بخشی از آنها به حساب می-
آید، بررسی کرده است. اگر گرانیت‌هایی این منطقه از که
دریان به مجموعه دگرگونی جنوب رخ داده را به
چهار تقسیم کرده است: فاز اول (الکاکی
گرانیت، سیسوگرانیت، مونوگرانیت، کوارتزدوریت
و دوریت) (با ترکیب غلبه مونوگرانیتی). فاز
دوم) الکاکی گرانیت، سیسوگرانیت، مونوگرانیت (با ترکیب
غلبه گرانیتی کایاسی) فاز سوم) الکاکی گرانیت، سیسوگرانیت،
مونوگرانیت و دوریت (با ترکیب غلبه گرانیتی کوارتزدوریت) و
فاز چهارم) پگماتیت با ترکیب الکاکی گرانیت و سیسوگرانیتی.
پرورشی این جدید مثاری این پژوهش به همراه تعبیه سن-
روی مجموعه یی سنگی جنوب قرار گرفته‌اند (شکل 1).

سنگ‌گذاری و شیمی کانی‌ها
دروریت‌ها دارای بافت‌های دانه‌ای شکل دار نیم‌سایه‌گاه،
دارای متوسط نیم‌سایه‌گاه و پیم‌پلی دانه‌ای درشت (پیم‌پلی‌توده) هستند.
شکل (۳) کانی‌های اصلی سنگ‌های شیمیایی در این
سنگ‌های فاصله از سیلو به دست آمده در سنگ‌های
هورنی‌سندر و پلاژیوکلاژیت هستند. پیوستن به مقدار کم در این
سنگ‌ها یافته می‌شود و با توجه به مقدار فراوانی آن می‌توان
پیوستن را به طور محدود در زمره کانی‌های اصلی با فرعی قرار
داد. برخی از پلاژیوکلاژیت‌ها به سری‌پوزیت و سری‌پوزیت
در کانی‌های دیبیت‌ها محصول می‌شوند. اپیدوت، کلریت،
کلبیت و هیدروکلاریت‌ها اهن و منگنز نیز از جمله کانی‌های
ثانویه‌ای سنگ‌های هستند.

![تصویر (ب)](image1)

![تصویر (الف)](image2)

شکل ۲: فال‌های داخلی در دیوریت‌ها به همراه حضور هورنی‌سندر، پلاژیوکلاژیت، کوارتز و مگنیتیت به همراه بین ارتوکال و آلبیت و ایجاد
باف‌پریتی در الکاکی فلدسرپ گرانیت‌های صوری‌زد. \(\text{Mag} \): مگنتیت، \(\text{Amp} \): آمفسیبول، \(\text{Zr} \): کوارتز، \(\text{Pb} \): پلاژیوکلاژیت. معنی‌های اختصاصی کانی‌ها از
مراجع [۴۴] برگرفته شده است.
الکالی فلسفیر گرانیت‌های صورتی رنگ دارای بالاترین میزان آلیاژی Fe (Fe + Mg) دارای نسبت Fe/Mg که بالاترین نسبت Fe/Mg موجود در دیوریت‌ها و در ضمن دیوریت‌ها با همراه 4 Al از بازی بیشتری هستند. تعدادی از فلسفیرهای تاسیسی تجزیه شده نیز در نمک‌دان قطب از دور کرک است که می‌تواند از نظر بیشتری و بر پایه مشاهده‌های پیش‌گویی‌های پژوهشی از نوع ارتدوکسی پژوهشی می‌گردد (شکل 4). با توجه به مشاهده‌های افقی‌ترین و پیش‌بینی‌های پژوهشی، شرایط دست آمده از تجزیه
شکل ۴ آلف) تصویر الکترونی پس پراکنشی از برشی از کانی‌های منتخب تجزیه شده به روش EPMA، بیوتیت، Pl، AMP، بافت، Pl. Bt، آمفیبول

پلاتزیکلافیز، Mag: مکانیکی، علامات اختصاری کانی‌ها از مرحله [۴،۷] برگرفته شده است. مقیاس آمفیبول‌ها، فلودیت‌ها و بیوتیت‌ها توده‌های دیورتیتی و گرانیتی نمایش داده در B) نمودارهای رده‌بندی آمفیبول‌ها [۵] و B) نمودارهای رده‌بندی پلاژیکلافیز، بیوتیت‌ها [۶] علامت مربوطی: گرانیت‌ها و دیورتیت‌ها برای توضیحات بیشتر متن را ببینید.
جدول ۲ نتایج تجزیه شیمیایی سنگهای گرانبخانه‌ای تربیس پسین منطقه کلانه به روی شماره نمونه

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>BJA-340-5</th>
<th>BJA-341-3</th>
<th>BJA-335</th>
<th>BJA-320-1</th>
<th>BJA-370</th>
<th>BJA-336-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂ (Wt.)</td>
<td>25.3</td>
<td>25.5</td>
<td>96.5</td>
<td>75.2</td>
<td>75.7</td>
<td>64.2</td>
</tr>
<tr>
<td>TiO₂ (Wt.)</td>
<td>1.39</td>
<td>1.89</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Al₂O₃ (Wt.)</td>
<td>18.12</td>
<td>21.43</td>
<td>17.89</td>
<td>14.11</td>
<td>13.44</td>
<td>15.44</td>
</tr>
<tr>
<td>Fe₂O₃ (Wt.)</td>
<td>10.88</td>
<td>7.46</td>
<td>9.82</td>
<td>3.77</td>
<td>6.04</td>
<td>6.04</td>
</tr>
<tr>
<td>MnO (Wt.)</td>
<td>0.13</td>
<td>0.11</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>MgO (Wt.)</td>
<td>8.9</td>
<td>7.1</td>
<td>8.51</td>
<td>3.4</td>
<td>4.2</td>
<td>4.2</td>
</tr>
<tr>
<td>CaO (Wt.)</td>
<td>10.44</td>
<td>10.46</td>
<td>7.17</td>
<td>3.3</td>
<td>5.3</td>
<td>3.3</td>
</tr>
<tr>
<td>Na₂O (Wt.)</td>
<td>0.64</td>
<td>0.45</td>
<td>0.16</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>K₂O (Wt.)</td>
<td>0.34</td>
<td>0.35</td>
<td>0.05</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>P₂O₅ (Wt.)</td>
<td>0.02</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>L.O.I</td>
<td>1.43</td>
<td>1.48</td>
<td>1.0</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>مجموع</td>
<td>100.2</td>
<td>100.2</td>
<td>100.3</td>
<td>100.2</td>
<td>100.2</td>
<td>100.2</td>
</tr>
<tr>
<td>Sc (ppm)</td>
<td>83.8</td>
<td>86.5</td>
<td>70.5</td>
<td>87.7</td>
<td>93.5</td>
<td>93.5</td>
</tr>
<tr>
<td>V (ppm)</td>
<td>434</td>
<td>444</td>
<td>57.1</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td>Cr (ppm)</td>
<td>199</td>
<td>55.4</td>
<td>80.3</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Co (ppm)</td>
<td>86.4</td>
<td>99.5</td>
<td>79.3</td>
<td>79.3</td>
<td>79.3</td>
<td>79.3</td>
</tr>
<tr>
<td>Ni (ppm)</td>
<td>38.8</td>
<td>45.6</td>
<td>7.6</td>
<td>7.6</td>
<td>7.6</td>
<td>7.6</td>
</tr>
<tr>
<td>Ga (ppm)</td>
<td>13.1</td>
<td>15.6</td>
<td>12.3</td>
<td>12.3</td>
<td>12.3</td>
<td>12.3</td>
</tr>
<tr>
<td>Rb (ppm)</td>
<td>31.4</td>
<td>48.3</td>
<td>16.2</td>
<td>16.2</td>
<td>16.2</td>
<td>16.2</td>
</tr>
<tr>
<td>Sr (ppm)</td>
<td>49.8</td>
<td>74.6</td>
<td>50.8</td>
<td>50.8</td>
<td>50.8</td>
<td>50.8</td>
</tr>
<tr>
<td>Y (ppm)</td>
<td>49.9</td>
<td>18.3</td>
<td>4.7</td>
<td>4.7</td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>Cs (ppm)</td>
<td>11.2</td>
<td>14.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Ba (ppm)</td>
<td>35.8</td>
<td>32.0</td>
<td>85.4</td>
<td>76.7</td>
<td>95.3</td>
<td>95.3</td>
</tr>
<tr>
<td>Th (ppm)</td>
<td>0.87</td>
<td>1.6</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>U (ppm)</td>
<td>0.71</td>
<td>0.12</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>Nb (ppm)</td>
<td>3.33</td>
<td>3.13</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>Ta (ppm)</td>
<td>0.19</td>
<td>0.21</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>Zr (ppm)</td>
<td>23.3</td>
<td>23.3</td>
<td>60.7</td>
<td>51.4</td>
<td>58.7</td>
<td>58.7</td>
</tr>
<tr>
<td>Hf (ppm)</td>
<td>1.34</td>
<td>1</td>
<td>3.45</td>
<td>3.45</td>
<td>3.45</td>
<td>3.45</td>
</tr>
<tr>
<td>La (ppm)</td>
<td>9.55</td>
<td>6.44</td>
<td>4.24</td>
<td>4.24</td>
<td>4.24</td>
<td>4.24</td>
</tr>
<tr>
<td>Ce (ppm)</td>
<td>19.3</td>
<td>14.8</td>
<td>10.4</td>
<td>10.4</td>
<td>10.4</td>
<td>10.4</td>
</tr>
<tr>
<td>Pr (ppm)</td>
<td>2.87</td>
<td>2.57</td>
<td>2.44</td>
<td>2.44</td>
<td>2.44</td>
<td>2.44</td>
</tr>
<tr>
<td>Nd (ppm)</td>
<td>5.96</td>
<td>8.12</td>
<td>3.93</td>
<td>3.93</td>
<td>3.93</td>
<td>3.93</td>
</tr>
<tr>
<td>Sm (ppm)</td>
<td>3.48</td>
<td>4.35</td>
<td>1.99</td>
<td>1.99</td>
<td>1.99</td>
<td>1.99</td>
</tr>
<tr>
<td>Eu (ppm)</td>
<td>0.01</td>
<td>0.01</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>Gd (ppm)</td>
<td>5.56</td>
<td>2.97</td>
<td>2.77</td>
<td>2.77</td>
<td>2.77</td>
<td>2.77</td>
</tr>
<tr>
<td>Tb (ppm)</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>Dy (ppm)</td>
<td>3.48</td>
<td>4.44</td>
<td>3.13</td>
<td>3.13</td>
<td>3.13</td>
<td>3.13</td>
</tr>
<tr>
<td>Ho (ppm)</td>
<td>0.92</td>
<td>0.92</td>
<td>0.92</td>
<td>0.92</td>
<td>0.92</td>
<td>0.92</td>
</tr>
<tr>
<td>Er (ppm)</td>
<td>2.13</td>
<td>1.86</td>
<td>1.53</td>
<td>1.53</td>
<td>1.53</td>
<td>1.53</td>
</tr>
<tr>
<td>Tm (ppm)</td>
<td>0.38</td>
<td>0.53</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
</tr>
<tr>
<td>Yb (ppm)</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
</tr>
<tr>
<td>Lu (ppm)</td>
<td>1.82</td>
<td>1.82</td>
<td>1.82</td>
<td>1.82</td>
<td>1.82</td>
<td>1.82</td>
</tr>
</tbody>
</table>
ب) شکل ۵ جایگاه نیمرنده‌های سنگی متعلق به نوده‌های دوربری و آکالی فلزهای گرانیتی صورتی زنگ تریاسی پسین کلاهه در الف) نمودار SiO۲ در برای K۲O [۷] ب) نمودار Na۲O+K۲O برای SiO۲ [۱]، جهت تعیین سیری مامایی. علامت مربع، آکالی فلزهای گرانیتی صورتی زنگ (گرانیت‌ها و گرانیت‌پرتوی‌های) با به عبارت کلی گرانیتی و نارده: دوربری‌ها داروهی و مریخی توانایی نشان‌های نمونه‌های سنگی برداشت شده توسط ابراهیمیان [۲۰] و علامت نور شانگ‌تان نتایج زمین‌شناسی‌ای بی‌پرداخت است.

بحث
بررسی درگوگوشی و رابطه زایشی بین دوربری‌ها و گرانیت‌ها
بر مدار ترسیمی عامل مؤثر در درگوگوشی سنگ‌های آدرین در مورد بررسی از نمونه‌های دو متغیره هارک [۹] استفاده شده. بنا بر شکل ۶ دیده می‌شود، با افزایش [۱۰] مجموع مقداری Na۲O و K۲O در افزایش یافته و در مقایسه مجموع CaO، TiO۲، Fe۲O۳، MgO، FeO، کسیدهای Al۲O۳ و Na۲O با Al۲O۳ و CaO و Na۲O در ساخت‌کننده K۲O و Na۲O تشکیل شده در مراحل ابتدا خدمات شرکت می‌کند با دستگاه مشکل دنی در این اکسی‌ها در مراحل پایانی جدایی، در ساخت‌کننده کلسیک، نیروی و پلازاکلیس دارای اسبیت بیشتر وارد می‌شود. نمودار توزیع برای ثابت بهبودیت، هورنلنرد سنر، آکسیدهای آهن-تیتانیم، روند کاهشی مقداری CaSO۴ با افزایش Al۲O۳ و CaO از آن Al۲O۳ و SiO۲ به دست آمده که مشکل برآمد به نشان‌های هورنلنرد سنر، [۱۲۱] و با V، CO، Cr، Ni، پلازاکلیس، است [۱۲۰] همچنین عناصر
روند کاهشی نشان‌های میدهد.

الف) نمونه‌های شکل ۵ جایگاه نیمرنده‌های سنگی متعلق به نوده‌های دوربری و آکالی فلزهای گرانیتی صورتی زنگ تریاسی پسین کلاهه در الف) نمودار SiO۲ در برای K۲O [۷] ب) نمودار Na۲O+K۲O برای SiO۲ [۱]، جهت تعیین سیری مامایی. علامت مربع، آکالی فلزهای گرانیتی صورتی زنگ (گرانیت‌ها و گرانیت‌پرتوی‌های) با به عبارت کلی گرانیتی و نارده: دوربری‌ها داروهی و مریخی توانایی نشان‌های نمونه‌های سنگی برداشت شده توسط ابراهیمیان [۲۰] و علامت نور شانگ‌تان نتایج زمین‌شناسی‌ای بی‌پرداخت است.

بحث
بررسی درگوگوشی و رابطه زایشی بین دوربری‌ها و گرانیت‌ها
بر مدار ترسیمی عامل مؤثر در درگوگوشی سنگ‌های آدرین در مورد بررسی از نمونه‌های دو متغیره هارک [۹] استفاده شده. بنا بر شکل ۶ دیده می‌شود، با افزایش [۱۰] مجموع مقداری Na۲O و K۲O در افزایش یافته و در مقایسه مجموع CaO، TiO۲، Fe۲O۳، MgO، FeO، کسیدهای Al۲O۳ و Na۲O با Al۲O۳ و CaO و Na۲O در ساخت‌کننده K۲O و Na۲O با Al۲O۳ و CaO و Na۲O در ساخت‌کننده K۲O و Na۲O تشکیل شده در مراحل ابتدا خدمات شرکت می‌کند با دستگاه مشکل دنی در این اکسی‌ها در مراحل پایانی جدایی، در ساخت‌کننده کلسیک، نیروی و پلازاکلیس دارای اسبیت بیشتر وارد می‌شود. نمودار توزیع برای ثابت بهبودیت، هورنلنرد سنر، آکسیدهای آهن-تیتانیم، روند کاهشی مقداری CaSO۴ با افزایش Al۲O۳ و CaO از آن Al۲O۳ و SiO۲ به دست آمده که مشکل برآمد به نشان‌های هورنلنرد سنر، [۱۲۱] و با V، CO، Cr، Ni، پلازاکلیس، است [۱۲۰] همچنین عناصر
روند کاهشی نشان‌های میدهد.
همه‌چیزی خوبی نشان می‌دهد. همچنین بر اساس نمودارهای
یادشده، اکالی فلدسلم‌گرایی در نهایت رنگ کاله به همراه
کاله‌بندی درهم شدن فرآیندهای هورنبلندی بیشتر، وجود بیوتیت و
و مگنتیت با این‌گونه تشکیل‌گراینده‌ها به جابرهای‌های نوع ۱۱.
 Thảo ایتی-مکانیک نسبی‌های ایزوتوپی

این نمودارهای که برترین برنامه‌های نشان‌دهنده استفاده
یک و ۱۱.

استحکام و یکدرا (شکل ۱۱).

به همراه و

نحوه‌ی انرژی (۱۱)

امضای نمودارهای

۱۱.

نحوه‌ی

نمودارهای

نمودارهای

نمودارهای

نمودارهای

نمودارهای

نمودارهای

نمودارهای

شمیکالی، زمین‌شیمی و سنن‌شیمی سنگ‌های آدرین نفوذی منطقه‌...
سنن‌سنجی سنگ‌های دیوریتی و گرانتی این پژوهش، تاکنون به خوبی بررسی نشده و معرفی نشده و چنین سنگ‌های این پروژه شواهد چیه‌شناسی یا روش‌های سنن‌سنجی نامانسی، تعیین و تفسیر شده است. بطوطی که در برخی طرح‌های جهت مجموعه افیولیتی و بسیاری به پی‌سنگ‌نورتوترونتیک ساخته شده است و برای تفسیر نمونه‌ها را دانسته است. تضاد و تفسیر نمونه‌ها بر اساس شواهد سنجی سنن‌سنجی و در مقابل کلی‌انداز، شیل و سنگ‌سنگ‌سنجی ژوراسیک‌پایینی و آهک‌های کرتاسه را قطع نکردند. در نتیجه این پروژه سنن‌سنجی سنگ‌هایی ای جدید U-Pb قدمتی را از سنن‌سنجی گرانتی و دیوریتی این پروژه به‌واسطه بررسی‌های این پروژه از سنن‌سنجی این پروژه به‌واسطه بررسی‌های این پروژه از سنن‌سنجی این پروژه به‌واسطه بررسی‌های این پروژه به‌اسف. چنان که دیده می‌شود این سنگ‌هایی که فازهای ماگمایی تریاس پسین تعلق دارند، زیرگرین‌های جدا شده بیشتر خودسکال، منشوری و اصلی در منطقه‌بندی ترکیبی هستند. سن‌سنن‌سنجی به روش SIMS و در آزمایشگاه سنن‌سنجی موسسه زمین‌شناسی و زیست‌فیزیک آکادمی علوم چین که در آزمایش‌های اکتامیدی و خوبی گفته شده است. تجاویز کانادولومپسنس برخی زیرکن‌های جدا شده از نمونه‌های سنگی نمود بررسی در شکل 9. آزمایش‌های سنجی سننی نمونه از دیوریت‌ها و سه نمونه از اکالی فلدسپار گرانتی‌های صورتی رنگ نشان می‌دهند که آن‌ها در یک گستره زمانی سیال کوتاه تا 131 میلیون سال پیش (واختر تریاس) تشکیل شدهاند (جدول 3 و شکل 10). با توجه به این گستره سنن‌سنجی سنگی سیال کوتاه و ناتج سنن‌سنجی (جدول 3 و شکل 10). تیپ و اثر سنن‌سنجی این تیپ‌ها نشان‌دهنده بر اساس شواهد سنجی امکان پذیر است. شواهد سنجی (شکل 3) اشکال شناسی می‌دهند که اکالی فلدسپار گرانتی‌های صورتی رنگ، دیوریت‌ها را قطع کرده‌اند و در واقع به‌خسارت جدایی و جوهر آن‌ها هستند.
جدول ۳ نتایج تجزیه ایزوتونی و سن‌سنجی U-Pb به روش SIMS بر زیرکهای نمونه‌های دورونی و گرانیت کلانه.

<table>
<thead>
<tr>
<th>نقطه</th>
<th>207Pb</th>
<th>±σ</th>
<th>206Pb</th>
<th>±σ</th>
<th>ρ</th>
<th>207-corr</th>
<th>±σ</th>
<th>نقطه</th>
<th>207Pb</th>
<th>±σ</th>
<th>206Pb</th>
<th>±σ</th>
<th>ρ</th>
<th>207-corr</th>
<th>±σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>194.2</td>
<td>1.7</td>
<td>180.3</td>
<td>1.2</td>
<td>0.95</td>
<td>195.6</td>
<td>1.6</td>
<td>1</td>
<td>194.2</td>
<td>1.7</td>
<td>180.3</td>
<td>1.2</td>
<td>0.95</td>
<td>195.6</td>
<td>1.6</td>
</tr>
<tr>
<td>2</td>
<td>194.2</td>
<td>1.7</td>
<td>180.3</td>
<td>1.2</td>
<td>0.95</td>
<td>195.6</td>
<td>1.6</td>
<td>1</td>
<td>194.2</td>
<td>1.7</td>
<td>180.3</td>
<td>1.2</td>
<td>0.95</td>
<td>195.6</td>
<td>1.6</td>
</tr>
<tr>
<td>3</td>
<td>194.2</td>
<td>1.7</td>
<td>180.3</td>
<td>1.2</td>
<td>0.95</td>
<td>195.6</td>
<td>1.6</td>
<td>1</td>
<td>194.2</td>
<td>1.7</td>
<td>180.3</td>
<td>1.2</td>
<td>0.95</td>
<td>195.6</td>
<td>1.6</td>
</tr>
<tr>
<td>4</td>
<td>194.2</td>
<td>1.7</td>
<td>180.3</td>
<td>1.2</td>
<td>0.95</td>
<td>195.6</td>
<td>1.6</td>
<td>1</td>
<td>194.2</td>
<td>1.7</td>
<td>180.3</td>
<td>1.2</td>
<td>0.95</td>
<td>195.6</td>
<td>1.6</td>
</tr>
<tr>
<td>5</td>
<td>194.2</td>
<td>1.7</td>
<td>180.3</td>
<td>1.2</td>
<td>0.95</td>
<td>195.6</td>
<td>1.6</td>
<td>1</td>
<td>194.2</td>
<td>1.7</td>
<td>180.3</td>
<td>1.2</td>
<td>0.95</td>
<td>195.6</td>
<td>1.6</td>
</tr>
<tr>
<td>6</td>
<td>194.2</td>
<td>1.7</td>
<td>180.3</td>
<td>1.2</td>
<td>0.95</td>
<td>195.6</td>
<td>1.6</td>
<td>1</td>
<td>194.2</td>
<td>1.7</td>
<td>180.3</td>
<td>1.2</td>
<td>0.95</td>
<td>195.6</td>
<td>1.6</td>
</tr>
<tr>
<td>7</td>
<td>194.2</td>
<td>1.7</td>
<td>180.3</td>
<td>1.2</td>
<td>0.95</td>
<td>195.6</td>
<td>1.6</td>
<td>1</td>
<td>194.2</td>
<td>1.7</td>
<td>180.3</td>
<td>1.2</td>
<td>0.95</td>
<td>195.6</td>
<td>1.6</td>
</tr>
<tr>
<td>8</td>
<td>194.2</td>
<td>1.7</td>
<td>180.3</td>
<td>1.2</td>
<td>0.95</td>
<td>195.6</td>
<td>1.6</td>
<td>1</td>
<td>194.2</td>
<td>1.7</td>
<td>180.3</td>
<td>1.2</td>
<td>0.95</td>
<td>195.6</td>
<td>1.6</td>
</tr>
<tr>
<td>9</td>
<td>194.2</td>
<td>1.7</td>
<td>180.3</td>
<td>1.2</td>
<td>0.95</td>
<td>195.6</td>
<td>1.6</td>
<td>1</td>
<td>194.2</td>
<td>1.7</td>
<td>180.3</td>
<td>1.2</td>
<td>0.95</td>
<td>195.6</td>
<td>1.6</td>
</tr>
<tr>
<td>10</td>
<td>194.2</td>
<td>1.7</td>
<td>180.3</td>
<td>1.2</td>
<td>0.95</td>
<td>195.6</td>
<td>1.6</td>
<td>1</td>
<td>194.2</td>
<td>1.7</td>
<td>180.3</td>
<td>1.2</td>
<td>0.95</td>
<td>195.6</td>
<td>1.6</td>
</tr>
</tbody>
</table>
دما فشار سنجی

امفیبولیکی یکی از کانی‌های رایج سنگ‌های اکی فلیتی آباد است که برای پیامدهای فشار به‌کار در شیوه‌های زاویه‌ای افزایش می‌یابد. این کانی از پیامدهای ایجاد شده در سنگ‌های آهکی-فلیتی در آبراسیون و تغییرات فشار دارد.

به‌عنوان مثال، در سنگ‌های دیورینی کلاه‌ای از روش دما فشار سنجی، پلی‌کلاژن - هورنیلد [25] استفاده شده ساختار شدید شده‌ای شده حذف ۶۰ تا ۷۰ تا ۷۰ درجه سانتی‌گراد است. دماهای کمتر از ۴۲۰ به دمای سانتی‌گراد، که در عمل زیر دمای سالیدوس قرار می‌یابد، دماهای توقف کلاه‌های زیر دمای سالیدوس قرار می‌یابد.
محسن زمین‌ساخت و خاستگاه سنگ‌زایی

پیانک تغییرات

[43] Sm/Yb بین [44] Ce/Sm نمودار در برای دزم‌شفتی دوم در خاستگاه اسپینل لرزولوئیت و گرافین لرزولوئیت است. نمودارهای دوربری مورد بررسی خاستگاهی بین گوانیت لرزولوئیت و استفاده از مواردی در هنر [41] تری ماهیگرک غشته شده محل میانه ماهیگرک دوربری و گوانیت را تایید می‌کند (شکل 12).

در جزییات هر یک دو خاستگاه اسپینل لرزولوئیت و گرافین لرزولوئیت است. نمودارهای دوربری مورد بررسی خاستگاهی بین مواردی لرزولوئیت و استفاده از مواردی در هنر [41] تری ماهیگرک غشته شده محل میانه ماهیگرک دوربری و گوانیت را تایید می‌کند (شکل 12).

در جزییات هر یک دو خاستگاه اسپینل لرزولوئیت و گرافین لرزولوئیت است. نمودارهای دوربری مورد بررسی خاستگاهی بین مواردی لرزولوئیت و استفاده از مواردی در هنر [41] تری ماهیگرک غشته شده محل میانه ماهیگرک دوربری و گوانیت را تایید می‌کند (شکل 12).
جدول ۴: نتایج تجزیه ایزوتوپ‌های نمودهای دیوریتی و گهواره‌ای

<table>
<thead>
<tr>
<th>نمونه</th>
<th>Nd/144Nd</th>
<th>Nd/144Nd</th>
<th>87Sr/86Sr</th>
<th>87Sr/86Sr</th>
<th>سن (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۲۰۷</td>
<td>۰/۷۹۸۰۵۲</td>
<td>۰/۷۹۸۰۵۲</td>
<td>۰/۷۸۱۰۱۶</td>
<td>۰/۷۸۱۰۱۶</td>
<td>۲۱۵/۶۱۵/۶</td>
</tr>
<tr>
<td>۱۲۰۸</td>
<td>۰/۷۸۱۰۱۶</td>
<td>۰/۷۸۱۰۱۶</td>
<td>۰/۷۸۱۰۱۶</td>
<td>۰/۷۸۱۰۱۶</td>
<td>۲۱۵/۶۱۵/۶</td>
</tr>
<tr>
<td>۱۲۰۹</td>
<td>۰/۷۸۱۰۱۶</td>
<td>۰/۷۸۱۰۱۶</td>
<td>۰/۷۸۱۰۱۶</td>
<td>۰/۷۸۱۰۱۶</td>
<td>۲۱۵/۶۱۵/۶</td>
</tr>
</tbody>
</table>

پیشنهاد می‌شود تحلیل‌های ایزوتوپی نمودهای دیوریتی و گهواره‌ای که جهت تعیین محل تشکیل در زمان تبادل سیستم صورت گرفته‌اند.

الگوی نمادین از شیوه تشکیل مذاب‌هایی که سرچشمه به تشکیل سنگ‌های آذرین درونی منطقه کلان‌های در زمان تبادل پسین منجر شده است. موقعیت تقریبی پایه سنندج سیرجان.
زیرین‌شیمی و سنگ‌های آذرین نفوذی منطقه تغییرات سنگ‌های بازی و حساسیت ایران مرکزی که توسط برخی از پژوهشگران به دست آمده است، منجر به ترسهٔ سنگ‌های بازی این دسته از سنت‌های این‌جا به شماره میلیون بستگی ندارند.

مراجع

[53] Dadpour M., “Petrology and geochemistry of basaltic rocks in the Jurassic sedimentary sequence in Jamil region in eastern Sahl (south
Alborz zone” Iranian Journal of Geology. 27 (2013) 17-29.
[56] Hemmati A., “Petrology, geochemistry of SW Mayamey granitoids” Msc thesis, Shahrood University of Technology, Shahrood, Iran (2013), (in Persian)
[58] Jamshidi KH., “Study of mafic magmatism in the base of the Shemshak Formation, the eastern Alborz zone” Msc thesis, Shahrood University of Technology, Shahrood, Iran (2010), (in Persian).
[60] Ghasemi H., Jamshidi KH.,” Investigation of source region properties of alkaline basic rocks in the base of Shemshak Formation in the eastern