شیمی کانی، زمین‌شیمی و سن پروتوسنجی سنگهای آذرین نفوذی منطقه کالته (شمال-غربی خوز)؛ شاهدی بر فعالیت ماگمایی تریاسی پسین در پهن‌های ساختاری ایران مرکزی

سولالمز بلوجی، ۱ محمدرضا صادقیان، ۲ حسین امیری، ۳ قاسمی، چاک مینگو، چیولو یلی، ۴ زاک می‌بانی

۱- دانشکده علوم زمین، دانشگاه صنعتی شهید رجایی، تهران، ایران
۲- موسسه زمین شناسی و زیرفزیک، انجمن علوم چین، پکن، چین

چکیده: توده‌های نفوذی دوربریت و دایک‌های آتولای فلدسپار، مدل‌های منتقله کالته (شمال غربی خوز)، سنگ‌های مجموعه پی سائی نوپروفونوتوئیتی یا چنده‌فازی - درون‌ریزی - عرسان را فطل کرده و بازده‌های سنگ‌های سنگ‌پوش و پی سائی زمین شیمی - شیمیایی بانگ‌ها ماهیت غیرمنتقله را دارد. این توده‌های نفوذی، برخی از هم‌ساختارهای آنها با یکدیگر و ماهیت آگی-غلایی پانزده جوان نامیده می‌شوند. تا پتانسیل بالای انرژی، ماکماژی سانسته آنها از دوپی‌های نوپروفونوتوئیتی یا چنده‌فازی - درون‌ریزی - عرسان، به‌دست آمده در فهرست این ساختاری ایرانی. تشکیلدهای Pb-U، ساختار Pb-U، نشانگر گل‌های سنگ‌های آذرین نفوذی معین دارد. این سنگ‌های آذرین نظارت‌ها و مقدمه

واژه‌های کلیدی: دوربریت، آتولای فلدسپار، ماگما، تریاسی پسین، عرسان، نفوذی، منطقه کالته، خوز

همچنین توده‌های غیرمنتقله در این مقاله از جمله بر شیمی کالته سانسته توده نفوذی کوچک دوربریت و دایک- های آتولای فلدسپار، زمین‌شیمی آنها برای نشان‌دهنده بار نانوی سنگ‌های آنها که روش اورانیم - سرب بر دانه‌های زیرکن جدا شده از آنها به دست آمده ارائه می‌شود. این توده‌ها و دایک‌ها، با کنون مورد بررسی زمین‌شیمی و سنگ‌شناسی قرار نگرفته و برگزای زمین‌شیمی‌سای سف و خاستگا ماکماژی آنها به شاخه‌بود.

روش پژوهش

پس از مرور نتایج پژوهش‌های پیشین و انجام پژوهش‌های صحرا، عدد آن ۱۱۰ نمونه سنگ‌یا کمترین درست‌رسای، جهت بررسی‌های سنگ‌شناسی بردشند، مقاطع نازک و تازه:

baluchi.solmaz@yahoo.com

*نویسنده مسئول، تلفن: ۶۰۹۱۴۰۷ ۷۶۸۰۹، پست الکترونیکی:
سیفیل تهیه شده از نمونه‌ها در آزمایشگاه میکروسکوپی داشته‌ایم، شامل شاهد بررسی شد. ۶ نمونه از دیورنت و آلکای فلزسپار-گرانتی های صورتی رنگ با کمترین دگرگویی جهت انجام تجزیه شیمیایی عناصر اصلی و کمیاب و تعیین نسبت‌های ایزوتیپی انتخاب و فرآیند خردایش و نرمایش آن‌ها در دانشگاه صنعتی شهید رضوی انجام شد. مقادیر عناصر اصلی به روش طیف‌سنجی فلتویلسپاس پرتو X (به روش قرص) و عناصر کم‌باین به روش تقطیر‌سنجی جرمی پلاسمای جفت شده قابلیت، نسبت‌های ایزوتیپی ICP-MS به روش دوب، نسبت‌های ایزوتیپی Sr-Nd سه کل به روش تقطیر‌سنجی جرمی پنکس لا، تقطیر‌سنجی U-Pb سه سنجشی و تقطیر‌سنجی تری‌تیپی ارائه شده از نمونه‌های دیورنتی و آلکای فلزسپار-گرانتی به روش طیف‌سنجی جرمی پنکس لا، تقطیر‌سنجی SIMS، و همچنین تجزیه فقط نقطه‌ای رزپیدشی، EPMA. تعدادی از کاهی (جدول ۶) نقطه در مؤسسه زمین‌شناسی و زمین‌شناسی آکادمی علوم چین انجام شد. نمونه‌های سنجشی پیشتر جهت بررسی ایزوتیپی Sr-Nd و HF + HNO3 + HClO4 تعبیه شده‌اند.

شکل ۱ نقشه زمین‌شناسی منطقه کلاته به همراه جایگاه آن در سرزمین ایران و همچنین توصیف ماهواره‌ای نشان دهنده گستره مجموعه دگرگونی - آذرین جنوبی عروسان.
شماره ۴، جلد ۲۶، سال ۱۳۹۷

زمره‌شناسی منطقه

در منطقه کلاتان در شمال غربی خوزستان از سرزمین‌های بیستون‌آباد - رودکوهی دنیورودوزی نسبی با گرافیک منطقه‌ای گرافیک اصلی - عرصه‌های مختلف در این منطقه وجود دارد. این جمعیت جنگی بتواند نسبی سایر منطقه‌های ساحلی است. همچنین این جمعیت جنگی با جوهر مناطق مراحل به دنبال آنها در طول مدت‌های مختلف ساخته‌شده است. در خواص تجهیزات گرافیکی و سایر مؤلفه‌های جغرافیایی این منطقه وجود دارد. توجه به کلیات جغرافیایی و روش‌های مختلف آپارتمان‌های زیست و حیات در منطقه ممکن است به درستی شناسایی شود.

شکل ۱: تصاویری از روابط جغرافیایی بین دورن و دایک‌ها در منطقه کلاتان

فلدسپار گرافیکی رنگ و راه‌راه زایشی نزدیک آنها با یکدیگر، ب) ساخت گماشتهای در گمکتانلی‌های دیوریدیها.

شیمی کالی، زمین‌شناسی و سنگ‌شناسی سنگ‌های آدرین نفوذی منطقه

[DOI: 10.29252/ijcm.26.4.827]
سووف [2] به روش‌های اثر شکافت ۱۷۶±۸ میلیون سال
 پیش و پناسم - آرگن ۱۷۶ و ۱۸۳ میلیون سال پیش برای
 این سنگ‌ها در نظر گرفته شده است. روش‌های است که با کارگری
 این دو روش به مجموعه‌های قدمی و چندفازی کامل‌اشتال
 ایست. سن سنجی جدید بر اساس روش U-Pb
 فلدسهیر تکنیکی، سن حدود ۲۱۲±۹ میلیون سال نشان
 می‌دهد که محصول درازکمانی است. در ادامه، نتایج سن-
 سنگی این سنگ‌ها به تفصیل توضیح داده می‌شود. علاوه بر
 توده‌های آذرین تریاس پایانی، شیش و ماسه سنگ‌های
 زوراسیک، آب‌های کرانه، ماره‌های میوسن و نهشت‌های
 کوارتز‌ری نیز در منطقه رخخومن دارند که در برخی نقاط بر
 روی مجموعه پی سنگی جدید قرار گرفته‌اند (شکل ۱).

سنگ‌گذاری و شیشه کا‌ها،

دیوریت‌های دارای پایه‌های دانه‌ای شکل دار، تا نیم‌یکن دار;
 analislique نا دانه‌زی و سبز تان (بی‌کاتیونی) هستند
 (شکل ۲). کلیات اصلی ساختن این سنگ‌ها شامل
 هورنی‌نامدر و پلاژیوکلاز هستند. بیوبیت به مقدار کم در این
 سنگ‌ها یافته می‌شود و با توجه به مقدار قرارده آن می‌توان
 بیوبیت را به طور مرکب در زمره کلیات اصلی با فرعی قرار
 داد. برخی از پلاژیوکلازها به سرتیپاس و کلیشت دگرسان
 شده‌اند. مگنتیت، آپاتیت، ایلمینیت، اسفن و زبرک جزء کلیت-
 های عارضه‌ای دوربری‌ها محور می‌شوند. اپیدوت، کلروت،
 کلسیت و هیدروکسی‌های آهن و منگنز نیز از جمله کلیت‌های
 ناحیه این سنگ‌ها هستند.

(الف)
(ب)

شکل ۲ (الف) فاکت دانه‌ای در دوربری‌ها به همراه حضور هورنی‌نامدر، پلاژیوکلاز، کوارتز و مگنتیت؛ ب) هم‌شیدی بین ارتوکلاز و آلیت و ایجاد
 بافت پریت در اکالیپت فلدپریت گرانت‌های صورتی نزدیک ام‌فیبول، Qz، کوارتز، Pl، پلاژیوکلاز، مگنتیت؛ علامت اختصاصی کانی‌ها از
 مرکز ۴۴ برگرفته شده است.

ارابه‌مین [2] گرانت‌هایی شرق جنوب را که سنگ-
های مورد بحث در این پژوهش بشنوی از آنها به حساب می-
 آید بررسی کرده است. گرانت‌هایی آن منطقه که درون
 با مجموعه گرانت‌های جنوب رحیم درون را به
 چهار تقسیم کرده است که عبارتند از: فاز اول (اکالی-
 گرانت)، کوارتز، پلاژیوکلاز، سیبیوریت و
 کوارتز-پلاژیوکلاز و بوئینت (با تکیب گالب موزوگرانتی). فاز
 دوم (اکالی کرانت، جنوبی و سیبیوریت (با تکیب
 گالب گرانیت پیاناوی)، فاز سوم (اکالی گرانیت، سیبیوریت و
 موزوگرانت) و فاز سوم (با تکیب گالب گرانیت-پلاژیوکلاز) و
 فاز چهارم (پلاژیوکلاز با تکیب اکالی گرانیت و سیبیوریت‌گرانیتی
 بررسی مجدد ریز فشرده این پژوهش به همراه تعریف سن-
 یابد. ایزوتیپی به روش U-Pb

ب) اکالی فلدسپار گرانت‌های سوزنی رنگ‌داری بافت‌های...

د) داده‌های شکل‌داهنده نموداری که نشان می‌دهد گروه‌های فلدسپارهای پلاژاکلر را می‌تواند از فلدسپارهای دیگر از جمله فیلیت و بورنیت جدا کند.

در نتیجه، نمودارهای آنالیزهای شکل‌دار در تصویرسازی مناسب تر از نمودارهای دیگر است.

6) نتایج میانگین تجزیه نقاطی (EPMA) کانالهای سوزنی گرانت‌های دیویت و اکالی فلدسپار گرانیت‌های کلاته.

| جدول 1 نتایج میانگین تجزیه نقاطی (EPMA) (کانالهای سوزنی گرانت‌های دیویت و اکالی فلدسپار گرانیت‌های کلاته) |
|---------------------------------|---|---|---|---|---|
| | آنالیزهای EPMA | گرانیت | بورنیت | پلاژاکلر | گرانیت | بورنیت | پلاژاکلر |
| SiO₂ | 45.25 | 42.48 | 39.22 | 31.32 | 30.23 | 28.59 | 27.56 |
| Al₂O₃ | 14.33 | 7.89 | 13.39 | 16.33 | 18.32 | 22.31 | 21.35 |
| MgO | 9.32 | 9.91 | 8.76 | 10.76 | 11.76 | 10.76 | 10.76 |
| CaO | 10.19 | 11.86 | 10.86 | 17.46 | 16.46 | 15.46 | 15.46 |
| Na₂O | 2.19 | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 |
| K₂O | 0.64 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 |
| TiO₂ | 0.55 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 |
| MnO | 0.28 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 |
| Cr₂O₃ | 0.05 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
| NiO | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
| مجموع | 96.55 | 96.55 | 96.55 | 96.55 | 96.55 | 96.55 | 96.55 |
شکل ۴ این تصاویر الکترونی پس پراکنشی از برخی از کانی‌های منتخب تجزیه شده به روش EPMA از پژوهشگران سایر اینستیتوها ارائه شده است. مگنتیت، نام اختصاصی کانی ها از مرجع [۴] برگرفته شده است. مفاهیم مغفیول‌ها، تیتانیوم‌ها و بیوتیت‌های توده‌های دیوریتی و گرانیتی تریاس پسین کلاته در پ.[۵] و ب.[۶] نمودارهای رده‌بندی پلازیوکلاژها و بیوتیت‌ها [۷] علامت مربوط: گروه‌ها و دایره‌های دیوریت‌ها برای توضیحات بیشتر متن را ببینید.
جدول ۲ نتایج تجزیه شیمیایی سنگهای گرانیتولیدی تریاس پسین منطقه کلانه به روش ایکس رافی و فیکس

<table>
<thead>
<tr>
<th>شیمیایی</th>
<th>BJA-340-5</th>
<th>BJA-341-3</th>
<th>BJA-335</th>
<th>BJA-320-1</th>
<th>BJA-370</th>
<th>BJA-336-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2 (Wt.)</td>
<td>64.26</td>
<td>63.55</td>
<td>64.56</td>
<td>64.14</td>
<td>63.25</td>
<td>63.22</td>
</tr>
<tr>
<td>TiO2 (Wt.)</td>
<td>1.39</td>
<td>1.39</td>
<td>0.4</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Al2O3 (Wt.)</td>
<td>18.12</td>
<td>18.43</td>
<td>18.89</td>
<td>18.11</td>
<td>18.44</td>
<td>18.44</td>
</tr>
<tr>
<td>Fe2O3 (Wt.)</td>
<td>10.88</td>
<td>7.46</td>
<td>9.82</td>
<td>7.77</td>
<td>7.77</td>
<td>7.77</td>
</tr>
<tr>
<td>MnO (Wt.)</td>
<td>0.10</td>
<td>0.11</td>
<td>0.22</td>
<td>0.11</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>MgO (Wt.)</td>
<td>8.9</td>
<td>7.1</td>
<td>8.51</td>
<td>1.5</td>
<td>0.13</td>
<td>2.75</td>
</tr>
<tr>
<td>CaO (Wt.)</td>
<td>10.14</td>
<td>10.46</td>
<td>7.17</td>
<td>1.19</td>
<td>3.33</td>
<td>3.33</td>
</tr>
<tr>
<td>Na2O (Wt.)</td>
<td>0.10</td>
<td>0.25</td>
<td>0.59</td>
<td>0.48</td>
<td>0.48</td>
<td>0.48</td>
</tr>
<tr>
<td>K2O (Wt.)</td>
<td>1.35</td>
<td>1.34</td>
<td>1.79</td>
<td>3.34</td>
<td>3.34</td>
<td>3.34</td>
</tr>
<tr>
<td>P2O5 (Wt.)</td>
<td>0.66</td>
<td>0.4</td>
<td>0.8</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>L.O.I</td>
<td>2.14</td>
<td>2.55</td>
<td>3.9</td>
<td>1.1</td>
<td>2.19</td>
<td>2.19</td>
</tr>
<tr>
<td>مجموع</td>
<td>100.3</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Sc (ppm)</td>
<td>82.8</td>
<td>66.3</td>
<td>75.6</td>
<td>68.8</td>
<td>83</td>
<td>83</td>
</tr>
<tr>
<td>V (ppm)</td>
<td>622</td>
<td>455</td>
<td>57.1</td>
<td>3.77</td>
<td>3.77</td>
<td>3.77</td>
</tr>
<tr>
<td>Cr (ppm)</td>
<td>199</td>
<td>199</td>
<td>199</td>
<td>199</td>
<td>199</td>
<td>199</td>
</tr>
<tr>
<td>Co (ppm)</td>
<td>57.6</td>
<td>21.1</td>
<td>22.3</td>
<td>7.93</td>
<td>7.93</td>
<td>7.93</td>
</tr>
<tr>
<td>Ni (ppm)</td>
<td>1.38</td>
<td>2.5</td>
<td>1.61</td>
<td>6.49</td>
<td>6.49</td>
<td>6.49</td>
</tr>
<tr>
<td>Ga (ppm)</td>
<td>7.19</td>
<td>7.19</td>
<td>7.19</td>
<td>15.6</td>
<td>14.2</td>
<td>14.2</td>
</tr>
<tr>
<td>Rb (ppm)</td>
<td>27.1</td>
<td>21.7</td>
<td>46.3</td>
<td>46.3</td>
<td>46.3</td>
<td>46.3</td>
</tr>
<tr>
<td>Sr (ppm)</td>
<td>49.8</td>
<td>46.2</td>
<td>20.1</td>
<td>93.5</td>
<td>93.5</td>
<td>93.5</td>
</tr>
<tr>
<td>Y (ppm)</td>
<td>41.9</td>
<td>16.3</td>
<td>15</td>
<td>23.5</td>
<td>23.5</td>
<td>23.5</td>
</tr>
<tr>
<td>Cs (ppm)</td>
<td>10.2</td>
<td>14.2</td>
<td>13.4</td>
<td>13.7</td>
<td>13.7</td>
<td>13.7</td>
</tr>
<tr>
<td>Ba (ppm)</td>
<td>348</td>
<td>320</td>
<td>380</td>
<td>564</td>
<td>564</td>
<td>564</td>
</tr>
<tr>
<td>Th (ppm)</td>
<td>1.6</td>
<td>1.87</td>
<td>1.35</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>U (ppm)</td>
<td>0.199</td>
<td>0.217</td>
<td>0.244</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>Nb (ppm)</td>
<td>0.302</td>
<td>0.55</td>
<td>0.13</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Ta (ppm)</td>
<td>0.171</td>
<td>0.173</td>
<td>0.264</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
</tr>
<tr>
<td>Zr (ppm)</td>
<td>41.2</td>
<td>41.2</td>
<td>41.2</td>
<td>61.4</td>
<td>61.4</td>
<td>61.4</td>
</tr>
<tr>
<td>Hf (ppm)</td>
<td>1.66</td>
<td>1.44</td>
<td>1</td>
<td>3.49</td>
<td>3.49</td>
<td>3.49</td>
</tr>
<tr>
<td>La (ppm)</td>
<td>5.92</td>
<td>6.18</td>
<td>5.44</td>
<td>7.81</td>
<td>7.81</td>
<td>7.81</td>
</tr>
<tr>
<td>Ce (ppm)</td>
<td>19.2</td>
<td>14.1</td>
<td>14.1</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Pr (ppm)</td>
<td>2.33</td>
<td>2.7</td>
<td>1.94</td>
<td>2.77</td>
<td>2.77</td>
<td>2.77</td>
</tr>
<tr>
<td>Nd (ppm)</td>
<td>13.2</td>
<td>10.6</td>
<td>8.25</td>
<td>15.6</td>
<td>15.6</td>
<td>15.6</td>
</tr>
<tr>
<td>Sm (ppm)</td>
<td>3.6</td>
<td>2.77</td>
<td>1.99</td>
<td>2.49</td>
<td>2.49</td>
<td>2.49</td>
</tr>
<tr>
<td>Eu (ppm)</td>
<td>1.1</td>
<td>0.94</td>
<td>0.94</td>
<td>0.84</td>
<td>0.84</td>
<td>0.84</td>
</tr>
<tr>
<td>Gd (ppm)</td>
<td>3.55</td>
<td>3.78</td>
<td>3.78</td>
<td>3.27</td>
<td>3.27</td>
<td>3.27</td>
</tr>
<tr>
<td>Tb (ppm)</td>
<td>0.349</td>
<td>0.349</td>
<td>0.87</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
</tr>
<tr>
<td>Dy (ppm)</td>
<td>2.23</td>
<td>3.74</td>
<td>3.74</td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>Ho (ppm)</td>
<td>0.848</td>
<td>0.98</td>
<td>1.054</td>
<td>1.047</td>
<td>1.047</td>
<td>1.047</td>
</tr>
<tr>
<td>Er (ppm)</td>
<td>2.23</td>
<td>1.86</td>
<td>1.53</td>
<td>2.39</td>
<td>2.39</td>
<td>2.39</td>
</tr>
<tr>
<td>Tm (ppm)</td>
<td>0.349</td>
<td>0.349</td>
<td>0.349</td>
<td>0.349</td>
<td>0.349</td>
<td>0.349</td>
</tr>
<tr>
<td>Yb (ppm)</td>
<td>3.15</td>
<td>1.86</td>
<td>1.86</td>
<td>2.81</td>
<td>2.81</td>
<td>2.81</td>
</tr>
<tr>
<td>Lu (ppm)</td>
<td>1.39</td>
<td>0.73</td>
<td>0.35</td>
<td>2.39</td>
<td>2.39</td>
<td>2.39</td>
</tr>
</tbody>
</table>
بحث

بررسی دگرگونی و رابطه زایشی بین دیوریت‌ها و گرانت‌های، با منظور شناسایی عوامل مؤثر در دگرگونی سنگ‌های آدرن در مورد دیوریت‌های سنگ‌هایی دو متفاوت مارکز (۹) استفاده شد. چنان که در شکل ۶ دیده می‌شود، با افزایش CaO مجموع مقداری از SiO۲، K۲O و SiO۲ ظاهر گرانت‌های K۲O و Na۲O و Al۲O۳ به مقداری در سایر کانی‌ها در CaO و SiO۲ و Na۲O، و در سایر کانی‌ها است. تحلیل مداوم شرکت‌های دیوریت و گرانت با استفاده از مقادیر نسبی CaO و Al۲O۳ این دیوریت همچنین عناصر Fe۲O۳ Cr، Mn، Ni و Co در افزایش CaO به صورت سیلیسی، بوئنیت و سایر کانی‌های SiO۲ و CaO در سایر کانی‌ها است. شکل ۷ نشان‌دهندهٔ شرکت‌های دیوریت و گرانت با استفاده از مقادیر نسبی CaO و Al۲O۳ این دیوریت همچنین عناصر Fe۲O۳ Cr، Mn، Ni و Co در افزایش CaO به صورت سیلیسی، بوئنیت و سایر کانی‌ها است. شکل ۷ نشان‌دهندهٔ شرکت‌های دیوریت و گرانت با استفاده از مقادیر نسبی CaO و Al۲O۳ این دیوریت همچنین عناصر Fe۲O۳ Cr، Mn، Ni و Co در افزایش CaO به صورت سیلیسی، بوئنیت و سایر کانی‌ها است.
بررسی ماهیت زمین‌شیمیایی به‌منظور تفکیک گرانیته‌های نوع A، I و S از نمودارهای بیشته‌دای کولینز و هم‌کاران [19] و چیل و وایت [20] استفاده شده است (شکل 8). گرانیته‌های نوع I دارای ناهنجاری منفی نسبتاً بالا (بیش‌تر از 20 درصد وزنی) و Na2O ضعیف مقدار نسبتاً بالا (بیش‌تر از 10000*Ga/Al) با داشتن H است. این ویژگی‌ها با مشخصه‌های گرانیته‌های کلاته بالا می‌باشد [15، 16] و با مطلق قیمت متقابلی ماهیت اکسی‌گسوش زیر وقوع قرار ای است که توسط سیال‌های مشتق‌شده از ورق فروورده‌های ناهنجاری شده است [17]. همچنین ناهنجاری Ti و Nb به تناور فرایند تبدیل‌های هم‌سازی آسفن و ایلامینت نسبت داده می‌شود [18، 19].

شکل 6 چاپ‌گره نمونه‌های توده‌های دوربینی و گرانتی‌تیز بیسابن کلان‌کلاه در شکل 6. اصل در برای درصد وزنی D2O، TFMM و TFM است. نمودار نسبت مجموع عناصر فرعی NaK = Na2O+K2O و SiO2 در برای درصد وزنی SiO2 با درک بهتر نسبت‌ها، با توجه به ویژگی‌های زمین‌شیمیایی، مجموع تعدادی از اکسیدهای عنصر فرعی به‌طور همزمان به عنوان شاخصی محور قائم این نمودارها در نظر گرفته شده است. علامت همانند شکل 5 است.

شکل 7 چاپ‌گره نمونه‌های توده‌های دوربینی و گرانتی‌تیز بیسابن کلان‌کلاه در شکل 7. نمودار نمودار عناصر خاکی نادر به‌عنوان شکل 7 است.
سنگ‌های دیوریتی و گرانیتی این بیوهای ناگفته تأکید به خویی بررسی شناسایی و معرفی سن‌سنجی و شناسایی سن‌سنجی آن‌ها براساس شواهد چیپ‌شناسی یا روش‌های سن‌سنجی نامناسب، تعیین و تفسیر شده است. بنابراین که در برخی موارد آن‌ها جزء مجموعه افرادی وابسته به پی‌سنگ نمایشگر پژوهشی پایانی است. [۲۴] و با مربوط به زوراسیک‌شناسی [۲۵] به حساب اوردها. براساس شواهد صحرایی، توده‌های دیوریتی به درون مجموعه داگوگنه نمایشگر پژوهشی پایانی نمود کردها و در مقابل کلید‌ها شل و سازگاری سن‌سنجی زوراسیک‌پایانی و آهنگ‌های کرتاسه را قطع نکرده‌اند. در نتیجه از نظر شناسایی، جایگاه سنی این توده‌های نفوذی از زوراسیک پسین قیدمی‌تر است. نتایج سن‌سنجی U-Pb بر یژین‌های جدا شده از این توده‌ها به وقوع درستی در نیاز داده است. چنان‌که دیده می‌شود این سنگ‌ها به فازهای مانگ‌یاپی تریاس پسین تعلق دارند. ژیرگن‌های جدا شده بیشتر هستند.

یک گروه از توده‌های دیوریتی و گرانیتی که نزدیک به بنای قم و در منطقه توسط SIMS شناسایی شدند، برای بررسی ساختار آن‌ها استفاده شد. این توده‌ها از گروه دیوریتی و گرانیتی در منطقه قم و در نزدیکی بنای قم قرار دارند. توده‌های این گروه از گروه دیوریتی و گرانیتی در منطقه قم و در نزدیکی بنای قم قرار دارند.

دستگاه توده‌های دیوریتی و گرانیتی، بیش از سه هزار تایی می‌باشد. در اینجا، توده‌های دیوریتی و گرانیتی به روش‌های معمول در شناسایی سن‌سنجی استفاده می‌شود.

آمکان‌بند هر گروه از توده‌های دیوریتی و گرانیتی به روش‌های معمول در شناسایی سن‌سنجی استفاده می‌شود.

در اینجا، توده‌های دیوریتی و گرانیتی به روش‌های معمول در شناسایی سن‌سنجی استفاده می‌شود.

در اینجا، توده‌های دیوریتی و گرانیتی به روش‌های معمول در شناسایی سن‌سنجی استفاده می‌شود.
جدول ۲: نتایج تجزیه ایزوتیپی U-Pb به روش SIMS بر اساس نمونه‌های دورانی و گرانیتی کلانه.

<table>
<thead>
<tr>
<th>نقطه</th>
<th>۲۰۷Pb ±σ</th>
<th>۲۰۶Pb ±σ</th>
<th>ρ</th>
<th>۲۰۷-corr ±σ</th>
<th>نقطه</th>
<th>۲۰۷Pb ±σ</th>
<th>۲۰۶Pb ±σ</th>
<th>ρ</th>
<th>۲۰۷-corr ±σ</th>
<th>age (Ma)</th>
<th>%</th>
<th>%</th>
<th>age (Ma)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>336</td>
<td>0.29</td>
<td>0.19</td>
<td>0.67</td>
<td>0.88</td>
<td>336</td>
<td>0.29</td>
<td>0.19</td>
<td>0.67</td>
<td>0.88</td>
<td>2.3</td>
<td>3.3</td>
<td>3.3</td>
<td>2.3</td>
<td>3.3</td>
</tr>
<tr>
<td>337</td>
<td>0.29</td>
<td>0.19</td>
<td>0.67</td>
<td>0.88</td>
<td>337</td>
<td>0.29</td>
<td>0.19</td>
<td>0.67</td>
<td>0.88</td>
<td>2.3</td>
<td>3.3</td>
<td>3.3</td>
<td>2.3</td>
<td>3.3</td>
</tr>
<tr>
<td>338</td>
<td>0.29</td>
<td>0.19</td>
<td>0.67</td>
<td>0.88</td>
<td>338</td>
<td>0.29</td>
<td>0.19</td>
<td>0.67</td>
<td>0.88</td>
<td>2.3</td>
<td>3.3</td>
<td>3.3</td>
<td>2.3</td>
<td>3.3</td>
</tr>
<tr>
<td>339</td>
<td>0.29</td>
<td>0.19</td>
<td>0.67</td>
<td>0.88</td>
<td>339</td>
<td>0.29</td>
<td>0.19</td>
<td>0.67</td>
<td>0.88</td>
<td>2.3</td>
<td>3.3</td>
<td>3.3</td>
<td>2.3</td>
<td>3.3</td>
</tr>
<tr>
<td>340</td>
<td>0.29</td>
<td>0.19</td>
<td>0.67</td>
<td>0.88</td>
<td>340</td>
<td>0.29</td>
<td>0.19</td>
<td>0.67</td>
<td>0.88</td>
<td>2.3</td>
<td>3.3</td>
<td>3.3</td>
<td>2.3</td>
<td>3.3</td>
</tr>
<tr>
<td>341</td>
<td>0.29</td>
<td>0.19</td>
<td>0.67</td>
<td>0.88</td>
<td>341</td>
<td>0.29</td>
<td>0.19</td>
<td>0.67</td>
<td>0.88</td>
<td>2.3</td>
<td>3.3</td>
<td>3.3</td>
<td>2.3</td>
<td>3.3</td>
</tr>
<tr>
<td>342</td>
<td>0.29</td>
<td>0.19</td>
<td>0.67</td>
<td>0.88</td>
<td>342</td>
<td>0.29</td>
<td>0.19</td>
<td>0.67</td>
<td>0.88</td>
<td>2.3</td>
<td>3.3</td>
<td>3.3</td>
<td>2.3</td>
<td>3.3</td>
</tr>
<tr>
<td>343</td>
<td>0.29</td>
<td>0.19</td>
<td>0.67</td>
<td>0.88</td>
<td>343</td>
<td>0.29</td>
<td>0.19</td>
<td>0.67</td>
<td>0.88</td>
<td>2.3</td>
<td>3.3</td>
<td>3.3</td>
<td>2.3</td>
<td>3.3</td>
</tr>
</tbody>
</table>

جدول ۳: نتایج تجزیه ایزوتیپی Zircon و سن سنگ‌های آدرین نفوذی منطقه...

شیمی کانی، زمین‌شناسی و سن سنگ‌های سنگ‌های آدرین نفوذی منطقه...
دمافارسنجی
امفیبولیکی از کانی‌های رایج سنگ‌های آهکی-فلیزی‌ای ابدار است که برای برآوری فشار به‌کیکی از شیوه‌های رایج دما- فشارسنجی استفاده می‌شود [25-26] با استفاده از دما- فشارسنجی امفیبولیک، می‌توان عقق گاز‌گذاری مادگی و اتانهای ماگمایی را تعیین کرد [31]. در بررسی سنگ‌نگاری، امفیبول و پلاژیوکلاز باعث همبستگی و در کاری‌های باشند [27]. فشارسنجی براساس مقدار Al کل موجود در هورنیلند، [27] انجام می‌پذیرد. زیرا مقدار Al موجود در سنگ‌های موجود در ساختار ماده مربوط به تغییرات دما [25،30].

محط زمین ساختنی و خاتمه‌گذاری

بر اساس نمودار سه تابی

[28]

Th - Nb/3-TiO2

[29] Zr/Y-Nb/Y

گونه (شکل 12) و توجه به نمودار Y

از یک خاتمه‌گذاری که در این شرایط صرفه جویی می‌گردد (شکل 12).

با توجه به حضور هورمون‌های کنار‌آمدن در سرچشمه، گونه از یک ماده ای آب در [40] و همچنین حضور فراوان بیوتین و آمینه‌ها، می‌توان ماهیت درگیرهای گوشته معلول می‌شود. تا این تاپید کرده، عملکرد انتقالی (JrE) [41] نسبت‌های ازورنشی و ازورنشی‌های این ماده گوشته و آنها استفاده از نمودار دیتیم و هارت [41] نیز ماهیت گوشته و آنها محل منبع ماده‌گذاری سیستم‌های در این بسته می‌کند.

(شکل 12). [20] بیانگر نگرش در برای La/Sm

نمودار درباره دوبی‌کشی در دو خاتمه‌گذاری اسپیلین لزولیت و گونته

بر اساس نمودار 3 (شکل 12) VA3،

کودک‌هایی از شرایط اولیه شاخص در calmly شاخص قرن Q0 0 شاخص. کرده، عمق یزدگردانی حوزه فراوانی

زوراسیک پیشین، یکی با عمق و شاخص، اولیه بالغ است. به اعتقاد

ویلمن و همکاران [41] [20] نزدیک حوزه‌های کاله با بست

کمی از فرآیند پیش‌روده سنگ‌های ایکسیا لزولیتی در سیستم

در [62] این گردنبذاری ها در کالمه، با دستگی‌شده بر روی خستگی‌های مکانیکی درون و رقاق در توط کرده گونه گرفته که در اواخر نسبت ۴سین، بخشی از گونه گوشته

دگرگاههای واقع در این قسمت اکسیتابیس دیابت دوار، در بخشی شاخص و ماهیت ازدیاد از که در اعمال خصوصی درون سنگ‌های دگرگاههای سرمزین- های پس‌سک نیوتروپروتکسی پسین جای گرفته و دست‌کش

تبلیغ جدایی‌گذاری است. بر اساس معاین‌های زمین‌شناسی‌ای

(شکل 13) نزدیک دیپ‌کشی حدود ۱۰ دی‌یا ۱۵ دیر و بوده است.
جدول ۴: نتایج تجزیه ایزوتوپی نمونه‌های دیوریتی و گرانیتی کلانه

<table>
<thead>
<tr>
<th>نمونه</th>
<th>143Nd/144Nd</th>
<th>143Nd/144Nd</th>
<th>87Sr/86Sr</th>
<th>87Sr/86Sr</th>
<th>سن (Ma)</th>
<th>87Sr/86Sr</th>
<th>87Sr/86Sr</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۲۰۱</td>
<td>۰٫۵۱۲۴۳۲</td>
<td>۰٫۵۱۲۴۳۲</td>
<td>۰٫۷۳۲۵۵</td>
<td>۰٫۷۳۲۵۵</td>
<td>۲۲۱/۱۸/۱۹</td>
<td>۰٫۷۸۵۸۸</td>
<td>۰٫۷۸۵۸۸</td>
</tr>
<tr>
<td>۱۳۵۱</td>
<td>۰٫۵۱۲۳۷۳</td>
<td>۰٫۵۱۲۳۷۳</td>
<td>۰٫۷۱۰۱۶</td>
<td>۰٫۷۱۰۱۶</td>
<td>۲۱۵/۶/۴۶</td>
<td>۰٫۷۸۵۸۸</td>
<td>۰٫۷۸۵۸۸</td>
</tr>
<tr>
<td>۱۲۳۴</td>
<td>۰٫۵۱۲۴۳۲</td>
<td>۰٫۵۱۲۴۳۲</td>
<td>۰٫۷۳۲۵۵</td>
<td>۰٫۷۳۲۵۵</td>
<td>۲۲۱/۱۸/۱۹</td>
<td>۰٫۷۸۵۸۸</td>
<td>۰٫۷۸۵۸۸</td>
</tr>
</tbody>
</table>

الف

شکل ۱۴: الگوی نمادین از شیوه تشکیل مذاب‌هایی که سرچشمه به تشکیل سنگ‌های آذرین درونی منطقه کلانه در زمان تریاس پسین منجر شده است. موقعیت تقریبی یاده سندج سیرجان. SSZ.
دیده‌گان سنی‌سنجی مربوط به ان فاز مامگامیه اوایل تریاس تا زوراسیک میانی بر نوعی جوانگری از جنوب به شمال در گستره زمانی مورد نظر دلته می‌کند.

مراجع

[53] Dadpour M., “Petrology and geochemistry of basaltic rocks in the Jurassic sedimentary sequence in Jamil region in eastern Sahl (south
Alborz zone” Iranian Journal of Geology. 27 (2013) 17-29.

east of Shahrud) and their geodynamic setting”, Msc thesis, Shahrood University of Technology, Shahrood, Iran (2014), (in Persian).
[56] Hemmati A., “Petrology, geochemistry of SW Mayamey granitoids” Msc thesis, Shahrood University of Technology, Shahrood, Iran (2013), (in Persian)
[58] Jamshidi KH., “Study of mafic magmatism in the base of the Shemshak Formation, the eastern Alborz zone” Msc thesis, Shahrood University of Technology, Shahrood, Iran (2010), (in Persian).
[60] Ghasemi H., Jamshidi KH.,” Investigation of source region properties of alkaline basic rocks in the base of Shemshak Formation in the eastern