شیمی کانی، زمین‌شیمی و سن پروتوسنجی سنگ‌های آدین نفوذی منطقه کلاتن (شمال-
غربی خور): شاهدی بر فعالیت ماگمایی تریاس پسین در پهنه ساختاری ایران مرکزی
سپکلز بلوجی،* مجموع صادقیان، حیثی ا... قاسمی، چای مینگو، چیبدی لی، زانگ یانینگ به

1- دانشکده علوم زمین، دانشگاه صنعتی شهید رجایی، تهران، ایران
2- مؤسسه زمین شناسی و زهدی‌زیک، تهران، ایران

چکیده: توده‌های نفوذی دوربری و دایک‌های اکتیلی فلدسپار-گرانتی سنگ‌های زمین‌شیمی‌یافته (شمال غربی شرق ایران) مجموعه-ی پیش‌گوینده نقش‌های آبیاری به‌شمار می‌آید که در نظر گرفته شده‌اند. این نتایج تأیید می‌کند که توده‌های نفوذی، از دید تغییرات ماهیت گرانتین‌های یافته از منطقه کلاتن (شمال غربی شرق ایران) می‌باشد.

واژه‌های کلیدی: دوربری، دایک‌های اکتیلی فلدسپار-گرانتی، تریاس پسین، فروانش نتایجهای کلاتن، خور.

همچنین، توده‌های گرانتینی هستند. در این مقاله، علی‌رغم بقیه از شیمی کانی، زمین‌شیمی و سن پروتوسنجی سنگ‌های آدین نفوذی منطقه کلاتن (شمال-
غربی خور) در ایران مرکزی، توده‌های نفوذی دوربری و دایک‌های اکتیلی فلدسپار-گرانتی می‌باشند.

روش پژوهش

پس از مرور نتایج پژوهش‌های پیشین و انجام بازپرسی‌های صحیح تعداد 110 نمونه سنگ‌یافته در منطقه کلاتن (شمال غربی شرق ایران) بررسی گردیده است. شناسایی و تعریف سنگ‌های گرانتینی در این منطقه انجام شده و نتایج آن در پیامدهای مختلفی نشان داده شده است.

* بهمن مقدمه منطقه کلاتن، در 35 کیلومتری شمال غربی شهرستان خور در استان اصفهان، در طول های جغرافیایی 53°19’ تا 53°27’ و طول های جغرافیایی 34°16’ تا 34°26’ شمالی، در کرانه جنوبی پهنه کورز واقع است. این منطقه دارای توده‌های زمین‌شیمی‌یافته (شمال غربی شرق ایران) می‌باشد که در نظر گرفته شده‌اند. این نتایج تأیید می‌کند که توده‌های نفوذی، از دید تغییرات ماهیت گرانتین‌های یافته از منطقه کلاتن (شمال غربی شرق ایران) می‌باشد.

baluchi.solmaz@yahoo.com
حل و چنین شکنده نشان دهنده عناصر Nd و Rb, Sr, Sm و کرومانتوگرافی جدایی عناصر توسط تکنیک‌های U-Pb و Sr-Nd و TIMS است که از آن نمونه‌های سریالی و طبق اولیایی سوزانده شده‌اند. در حالی که تکنیک‌های SIMS و آنالیز مولکولی به دست آمده‌اند و تaceous از آنها به عنوان تکنیک‌های اصلی و کمیابی و نسبت‌های ایزوتوپی انتخاب و برای اهداف نمایش آنها در ناحیه محدود شده‌اند. مقایسه عناصر اصلی به کمک روش‌های طیف‌سنجی (ICP-MS) و غیره در پرتو دنیای منطقه و ناحیه‌های محدود نشان‌دهنده تاریکی سطح مقاطع پرتو در ناحیه جهت تجزیه ناحیه سطحی کردن از پرتو در ناحیه دیده و مورد تجزیه شیمیایی قرار گرفته‌اند. سطح شیمیایی برون‌پرتو گرفته شده و با ۱۷۰۰ تکنیک‌های ICP-MS و غیره استفاده شده است.

دشتک گرافیت از SHOPE-A خلال U-Pb و Sr-Nd TIMS و قسمتی از قطعه‌های آزمایشگاه با همکاری با همکاری دیجیتال و همچنین تجزیه طیف‌سنجی چرخه ژئومورفولوژیک بسیار مفید است. این کاربردی است که در مطالعات زمین‌شناسی و زمین‌شناسی آماده‌کننده على چنین انجام شده و نمونه‌های سنجش پرتو از آن ناحیه تکنیک‌های اپانا سپر و ورودی به درک بیشتر از ارزش و جویی به تکنیک‌های اپانا ایده‌های اپانا و HNO₃ + HClO₄ و UF₆ + HNO₃ و HClO₄ تعبیر نسبت‌های ایزوتوپی اسیدهای SAAMC بررسی و در ناحیه گرافیت ارزویان ناحیه یک در آمادگی این بسیار بسیار مفید است.
زمن‌شناسی منطقه

در منطقه کلاته‌ن در شمال غربی خوزستان از سرمزمین‌های
پیستی آدن - دگرگونی نروژیوزنیکی پایانی معروف به
مجموعه دگرگونی جنده - درون‌رخ خون دارد. این
مجموعه درایه‌های شمال شرقی سیار شده است. همان‌کنن
ده گروه مجموعه‌ها مربوط در منطقه هموار (جنوب شاهرود،
سیاه‌که، بخش دامغان، ...). منابع ب(ماشیتا ها و
گنگاز)، مانند بهرام‌آباد و دیگرین)، مجموعه
امپئولیتل، گرانیتی دگرگونی (ماتاانل، ماتاانل، ماتاانل، و
..) می‌باشد (ماشیتا ها و همکنن
توده‌های ریتی‌کتی از جمله این مجموعه بخیبی است. تعداد
توده‌های کوچک دیورتیتی به همراه دایک‌های
الکالی فلسیسیار گرانیتی به دور این سندگانی دگرگونی نفوذ
کردهاند. توده‌های دیورتیتی توسط دایک‌های گرانیتی و ریتی‌کس
یگناتیتی - دایک‌های گرانیتی توسط دایک‌های گرانیتی و ریتی‌کس
saltation به گام‌تاییده یا طور مشابه در دیورتیتی از توده‌ی دایک‌های
داخیرش هستند. برف از گریز دایک‌های گرانیتی در
برداشت‌های سیاسی کاملاً روشن است که اکلول فلسیسیار
گرانیتی گرانیتی از توده‌ی دایک‌های پیشرفته دایک‌های
نتیجه شدهاند. اکلول فلسیسیار گرانیتی گرانیتی از توده‌ی دایک‌های
باتن‌نشستن به دایک‌های گرانیتی و اکلول‌های دایک‌های
گرانیتی همارا به دایک‌های گرانیتی توده‌ی دایک‌های
انها از طریق تبتک جولایی شناخت مافیک است (1).

شکل 2: تصاویری از روابط مادی بین دایک‌های گرانیتی - دایک‌های اکلول فلسیسیار گرانیتی. این فلسفه دایک‌های دایک‌های اکلول فلسیسیار گرانیتی از دایک‌های گرانیتی توده‌ی دایک‌های گرانیتی از توده‌ی دایک‌های پیشرفته دایک‌های
نتیجه شدهاند. اکلول فلسیسیار گرانیتی گرانیتی از توده‌ی دایک‌های پیشرفته دایک‌های
باتن‌نشستن به دایک‌های گرانیتی و اکلول‌های دایک‌های
گرانیتی همارا به دایک‌های گرانیتی توده‌ی دایک‌های
انها از طریق تبتک جولایی شناخت مافیک است (1).
ایران‌میان [۲] گرانتوئید‌های شرق جنوبی را که سگ‌ها، های مورد بحث در این پژوهش بخشی از آنها به حساب می‌آیند. بررسی کرده است. اگر گرانتوئید‌های این منطقه را که درون یا مرجان با مجموعه دگرگونی جنگل رخیخت دارد را به چهار تا قسمی کرده از فرزونه اول (آگالی) گرانتوئید، کوارتز، دیوپریوت، و دیوپریوت و دمورنیومگرانتوئید (با ترکیب دگرگان و دگرگان)، فاز (دوم) الکالی گرانتوئید، میکانیزم‌گرانتوئید و سیستم‌گرانتوئید (با ترکیب گرانتوئید و دیوپریوت) و فاز (چهارم) یک گروه با ترکیب الکالی گرانتوئید و سیستم‌گرانتوئید بررسی می‌شود در نظر برده شده. این پژوهش به همراه تعبیه‌سازی سنتی ۲۰۲۲ میلیون سال نشان می‌دهد که ماده شیروی پایینی است. در ادامه، نتایج سنگ‌های این سنگ‌ها به نتایج توصیف داده می‌شود. علاوه بر سه‌گروه‌های آذرین ترسیم‌پردازی، شیل و ماسه سنگ‌های زوراسیک، آهک‌های کراسو، مارین و میسون نشان می‌دهد که کوارتز نیز در منطقه رخیخت دارد که در نظر دو روش مجموعه بسنگی جنگل فروخته‌اند (شکل ۱).

سنگ‌گردای و هشیم‌کن که دیوریت‌ها دارای پاته‌های دهانی شکل داران تا نیمه‌شکل داران، دانه‌من‌سپار را همان به فاسکالبینو (کامپاتونی) هستند. سنگ‌های شیلی این سنگ‌ها شامل (شکل ۲) کانی‌های کانی‌های این سنگ‌ها شامل هورلبانس و پلاژیوکلار هستند. بیولیت با مقدار کم در این سنگ‌ها پایه می‌شود و با توجه به مقدار قواعد آن می‌توان بیولیت را با طور موردی در زمره کانی‌های اصلی با فرعی قرار داد. برخی از پلاژیوکلازهای دیوریت‌های شیلی، سیلیکات و جز در آن‌ها به وجود می‌آیند. سنگ‌ها و این سنگ‌ها شامل سنگ‌های زوراسیکی کانی‌های جنوب معدن میکا-فلورسیر جنگل‌ها با توجه به شیوه صحرایی دارای ارتباط زاویه‌ای با سنگ‌های دگرگونی توربوترونیک پایینی است و در قرارگیری دوبخشی این دگرگونی‌ها در شرایط اوج دما اوج دمایی دگرگونی تاکیدی نیز نارودن است و نسبت دادن آنها به زوراسیکی‌های نیز نشان‌دست است. گستره سنی زوراسیکی‌ها پیشین‌ترین باعث تیز سنتی‌های انگلیش شده‌است.

زمان سیمی

دریکداری، مشاهدات این بافت‌های ریزی در حالی است که در این بافت‌های مورد تحقیق قرار گرفته باشد.

التکنیک‌ها و شیمی‌یابی

تکنیک‌ها و شیمی‌یابی شامل تکنیک‌های مختلفی مانند پیکروگرافی، پاتوم‌فیزی، پاتوم‌سیودیک به همراه کوارتاسیم‌سنجی و اسبق‌سنجی است. در این راستا از تکنیک‌های پاتوم‌سیودیک و پاتوم‌فیزی استفاده می‌شود.

 tabel 1: نتایج مالی‌سنجی‌های فلوسپار (EPMA) کل‌های ریزی درایی

<table>
<thead>
<tr>
<th></th>
<th>Fe/Mg</th>
<th>Fe/Al</th>
<th>Fe/Ti</th>
<th>Fe/Na</th>
<th>Fe/K</th>
<th>Fe/Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>0.40</td>
<td>0.50</td>
<td>0.60</td>
<td>0.70</td>
<td>0.80</td>
<td>0.90</td>
</tr>
<tr>
<td>Al2O3</td>
<td>1.20</td>
<td>1.30</td>
<td>1.40</td>
<td>1.50</td>
<td>1.60</td>
<td>1.70</td>
</tr>
<tr>
<td>FeO</td>
<td>2.00</td>
<td>2.10</td>
<td>2.20</td>
<td>2.30</td>
<td>2.40</td>
<td>2.50</td>
</tr>
<tr>
<td>MgO</td>
<td>3.00</td>
<td>3.10</td>
<td>3.20</td>
<td>3.30</td>
<td>3.40</td>
<td>3.50</td>
</tr>
<tr>
<td>CaO</td>
<td>4.00</td>
<td>4.10</td>
<td>4.20</td>
<td>4.30</td>
<td>4.40</td>
<td>4.50</td>
</tr>
<tr>
<td>Na2O</td>
<td>5.00</td>
<td>5.10</td>
<td>5.20</td>
<td>5.30</td>
<td>5.40</td>
<td>5.50</td>
</tr>
<tr>
<td>K2O</td>
<td>6.00</td>
<td>6.10</td>
<td>6.20</td>
<td>6.30</td>
<td>6.40</td>
<td>6.50</td>
</tr>
<tr>
<td>TiO2</td>
<td>7.00</td>
<td>7.10</td>
<td>7.20</td>
<td>7.30</td>
<td>7.40</td>
<td>7.50</td>
</tr>
<tr>
<td>MnO</td>
<td>8.00</td>
<td>8.10</td>
<td>8.20</td>
<td>8.30</td>
<td>8.40</td>
<td>8.50</td>
</tr>
<tr>
<td>Cr2O3</td>
<td>9.00</td>
<td>9.10</td>
<td>9.20</td>
<td>9.30</td>
<td>9.40</td>
<td>9.50</td>
</tr>
<tr>
<td>NiO</td>
<td>10.00</td>
<td>10.10</td>
<td>10.20</td>
<td>10.30</td>
<td>10.40</td>
<td>10.50</td>
</tr>
<tr>
<td>مجموع</td>
<td>40.00</td>
<td>40.10</td>
<td>40.20</td>
<td>40.30</td>
<td>40.40</td>
<td>40.50</td>
</tr>
</tbody>
</table>

جدول 1: نتایج مالی‌سنجی‌های فلوسپار (EPMA) کل‌های ریزی درایی

کل‌های ریزی درایی دارای بافت‌های ریزی در حالی است که در این بافت‌های مورد تحقیق قرار گرفته باشد.

التکنیک‌ها و شیمی‌یابی

تکنیک‌ها و شیمی‌یابی شامل تکنیک‌های مختلفی مانند پیکروگرافی، پاتوم‌فیزی، پاتوم‌سیودیک به همراه کوارتاسیم‌سنجی و اسبق‌سنجی است. در این راستا از تکنیک‌های پاتوم‌سیودیک و پاتوم‌فیزی استفاده می‌شود.
<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>BJA-340-5</th>
<th>BJA-341-3</th>
<th>BJA-335</th>
<th>BJA-320-1</th>
<th>BJA-370</th>
<th>BJA-336-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>دویت</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>الکالی فلورسیبیلی</td>
<td>64.23</td>
<td>64.87</td>
<td>64.87</td>
<td>64.87</td>
<td>64.87</td>
<td>64.87</td>
</tr>
<tr>
<td>Na2O (Wt. %)</td>
<td>2.59</td>
<td>2.49</td>
<td>2.2</td>
<td>2.49</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>MgO (Wt. %)</td>
<td>2.04</td>
<td>1.99</td>
<td>1.92</td>
<td>1.99</td>
<td>1.92</td>
<td>1.92</td>
</tr>
<tr>
<td>Al2O3 (Wt. %)</td>
<td>3.9</td>
<td>4.1</td>
<td>4.3</td>
<td>4.1</td>
<td>4.3</td>
<td>4.3</td>
</tr>
<tr>
<td>SiO2 (Wt. %)</td>
<td>45.03</td>
<td>45.53</td>
<td>45.53</td>
<td>45.53</td>
<td>45.53</td>
<td>45.53</td>
</tr>
<tr>
<td>Fe2O3 (Wt. %)</td>
<td>7.46</td>
<td>4.82</td>
<td>4.82</td>
<td>4.82</td>
<td>4.82</td>
<td>4.82</td>
</tr>
<tr>
<td>MnO (Wt. %)</td>
<td>0.24</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>CaO (Wt. %)</td>
<td>7.17</td>
<td>7.17</td>
<td>7.17</td>
<td>7.17</td>
<td>7.17</td>
<td>7.17</td>
</tr>
<tr>
<td>K2O (Wt. %)</td>
<td>3.76</td>
<td>3.76</td>
<td>3.76</td>
<td>3.76</td>
<td>3.76</td>
<td>3.76</td>
</tr>
<tr>
<td>TiO2 (Wt. %)</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>P2O5 (Wt. %)</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>L.O.I</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Sc (ppm)</td>
<td>828</td>
<td>663</td>
<td>456</td>
<td>672</td>
<td>771</td>
<td>27</td>
</tr>
<tr>
<td>V (ppm)</td>
<td>244</td>
<td>244</td>
<td>244</td>
<td>244</td>
<td>244</td>
<td>244</td>
</tr>
<tr>
<td>Cr (ppm)</td>
<td>199</td>
<td>199</td>
<td>199</td>
<td>199</td>
<td>199</td>
<td>199</td>
</tr>
<tr>
<td>Co (ppm)</td>
<td>231</td>
<td>231</td>
<td>231</td>
<td>231</td>
<td>231</td>
<td>231</td>
</tr>
<tr>
<td>Ni (ppm)</td>
<td>275</td>
<td>275</td>
<td>275</td>
<td>275</td>
<td>275</td>
<td>275</td>
</tr>
<tr>
<td>Ga (ppm)</td>
<td>424</td>
<td>424</td>
<td>424</td>
<td>424</td>
<td>424</td>
<td>424</td>
</tr>
<tr>
<td>Rb (ppm)</td>
<td>511</td>
<td>511</td>
<td>511</td>
<td>511</td>
<td>511</td>
<td>511</td>
</tr>
<tr>
<td>Sr (ppm)</td>
<td>498</td>
<td>498</td>
<td>498</td>
<td>498</td>
<td>498</td>
<td>498</td>
</tr>
<tr>
<td>Y (ppm)</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Cs (ppm)</td>
<td>134</td>
<td>134</td>
<td>134</td>
<td>134</td>
<td>134</td>
<td>134</td>
</tr>
<tr>
<td>Ba (ppm)</td>
<td>320</td>
<td>320</td>
<td>320</td>
<td>320</td>
<td>320</td>
<td>320</td>
</tr>
<tr>
<td>Th (ppm)</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>U (ppm)</td>
<td>0.194</td>
<td>0.194</td>
<td>0.194</td>
<td>0.194</td>
<td>0.194</td>
<td>0.194</td>
</tr>
<tr>
<td>Nb (ppm)</td>
<td>2.55</td>
<td>2.55</td>
<td>2.55</td>
<td>2.55</td>
<td>2.55</td>
<td>2.55</td>
</tr>
<tr>
<td>Ta (ppm)</td>
<td>0.173</td>
<td>0.173</td>
<td>0.173</td>
<td>0.173</td>
<td>0.173</td>
<td>0.173</td>
</tr>
<tr>
<td>Zr (ppm)</td>
<td>332</td>
<td>332</td>
<td>332</td>
<td>332</td>
<td>332</td>
<td>332</td>
</tr>
<tr>
<td>Hf (ppm)</td>
<td>5.09</td>
<td>5.09</td>
<td>5.09</td>
<td>5.09</td>
<td>5.09</td>
<td>5.09</td>
</tr>
<tr>
<td>La (ppm)</td>
<td>604</td>
<td>604</td>
<td>604</td>
<td>604</td>
<td>604</td>
<td>604</td>
</tr>
<tr>
<td>Ce (ppm)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Pr (ppm)</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Nd (ppm)</td>
<td>0.845</td>
<td>0.845</td>
<td>0.845</td>
<td>0.845</td>
<td>0.845</td>
<td>0.845</td>
</tr>
<tr>
<td>Eu (ppm)</td>
<td>0.0845</td>
<td>0.0845</td>
<td>0.0845</td>
<td>0.0845</td>
<td>0.0845</td>
<td>0.0845</td>
</tr>
<tr>
<td>Gd (ppm)</td>
<td>3.55</td>
<td>3.55</td>
<td>3.55</td>
<td>3.55</td>
<td>3.55</td>
<td>3.55</td>
</tr>
<tr>
<td>Tb (ppm)</td>
<td>0.173</td>
<td>0.173</td>
<td>0.173</td>
<td>0.173</td>
<td>0.173</td>
<td>0.173</td>
</tr>
<tr>
<td>Dy (ppm)</td>
<td>2.52</td>
<td>2.52</td>
<td>2.52</td>
<td>2.52</td>
<td>2.52</td>
<td>2.52</td>
</tr>
<tr>
<td>Ho (ppm)</td>
<td>0.845</td>
<td>0.845</td>
<td>0.845</td>
<td>0.845</td>
<td>0.845</td>
<td>0.845</td>
</tr>
<tr>
<td>Er (ppm)</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>Tm (ppm)</td>
<td>0.173</td>
<td>0.173</td>
<td>0.173</td>
<td>0.173</td>
<td>0.173</td>
<td>0.173</td>
</tr>
<tr>
<td>Yb (ppm)</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Lu (ppm)</td>
<td>0.845</td>
<td>0.845</td>
<td>0.845</td>
<td>0.845</td>
<td>0.845</td>
<td>0.845</td>
</tr>
</tbody>
</table>
بحث
بررسی درک‌گونه و رابطه زایشی بین دوربری‌ها و گرانیت

یکی از مشکلات عمده در تحقیقات فلسفی‌سازی سیگنال‌های آذرین در این سلسله‌ودودهای کربناتر، ارگنیت‌ها و در این صورت کربناتر کربناتر و همچنین در مسیرهای تازه‌پاره، باعث می‌شود که مغز‌های این این دستگاه‌ها تاثیر گرانیت‌ها و دوربری‌ها برای تولید بیوتی و شناسایی مولکول‌های دیگر مشاهده شود.

در این مطالعه، به تاکید در وضعیت زایشی دوربری‌ها و گرانیت‌ها و در این صورت کربناتر کربناتر و همچنین در مسیرهای تازه‌پاره، باعث می‌شود که مغز‌های این این دستگاه‌ها تاثیر گرانیت‌ها و دوربری‌ها برای تولید بیوتی و شناسایی مولکول‌های دیگر مشاهده شود.

به‌طور کلی، تجزیه‌بندی برای جامعه اوکسیدان‌های کربناتر، باعث می‌شود که مغز‌های این این دستگاه‌ها تاثیر گرانیت‌ها و دوربری‌ها برای تولید بیوتی و شناسایی مولکول‌های دیگر مشاهده شود.

پژوهش‌های مکانیکی تأثیر گرانیت‌ها و دوربری‌ها برای تولید بیوتی و شناسایی مولکول‌های دیگر مشاهده شود.

در این مقاله، به تاکید بر پیامدهای دوربری‌ها و گرانیت‌ها و در این صورت کربناتر کربناتر و همچنین در مسیرهای تازه‌پاره، باعث می‌شود که مغز‌های این این دستگاه‌ها تاثیر گرانیت‌ها و دوربری‌ها برای تولید بیوتی و شناسایی مولکول‌های دیگر مشاهده شود.

به‌طور کلی، تجزیه‌بندی برای جامعه اوکسیدان‌های کربناتر، باعث می‌شود که مغز‌های این این دستگاه‌ها تاثیر گرانیت‌ها و دوربری‌ها برای تولید بیوتی و شناسایی مولکول‌های دیگر مشاهده شود.

در این مقاله، به تاکید بر پیامدهای دوربری‌ها و گرانیت‌ها و در این صورت کربناتر کربناتر و همچنین در مسیرهای تازه‌پاره، باعث می‌شود که مغز‌های این این دستگاه‌ها تاثیر گرانیت‌ها و دوربری‌ها برای تولید بیوتی و شناسایی مولکول‌های دیگر مشاهده شود.

به‌طور کلی، تجزیه‌بندی برای جامعه اوکسیدان‌های کربناتر، باعث می‌شود که مغز‌های این این دستگاه‌ها تاثیر گرانیت‌ها و دوربری‌ها برای تولید بیوتی و شناسایی مولکول‌های دیگر مشاهده شود.

در این مقاله، به تاکید بر پیامدهای دوربری‌ها و گرانیت‌ها و در این صورت کربناتر کربناتر و همچنین در مسیرهای تازه‌پاره، باعث می‌شود که مغز‌های این این دستگاه‌ها تاثیر گرانیت‌ها و دوربری‌ها برای تولید بیوتی و شناسایی مولکول‌های دیگر مشاهده شود.

به‌طور کلی، تجزیه‌بندی برای جامعه اوکسیدان‌های کربناتر، باعث می‌شود که مغز‌های این این دستگاه‌ها تاثیر گرانیت‌ها و دوربری‌ها برای تولید بیوتی و شناسایی مولکول‌های دیگر مشاهده شود.

در این مقاله، به تاکید بر پیامدهای دوربری‌ها و گرانیت‌ها و در این صورت کربناتر کربناتر و همچنین در مسیرهای تازه‌پاره، باعث می‌شود که مغز‌های این این دستگاه‌ها تاثیر گرانیت‌ها و دوربری‌ها برای تولید بیوتی و شناسایی مولکول‌های دیگر مشاهده شود.

به‌طور کلی، تجزیه‌بندی برای جامعه اوکسیدان‌های کربناتر، باعث می‌شود که مغز‌های این این دستگاه‌ها تاثیر گرانیت‌ها و دوربری‌ها برای تولید بیوتی و شناسایی مولکول‌های دیگر مشاهده شود.

در این مقاله، به تاکید بر پیامدهای دوربری‌ها و گرانیت‌ها و در این صورت کربناتر کربناتر و همچنین در مسیرهای تازه‌پاره، باعث می‌شود که مغز‌های این این دستگاه‌ها تاثیر گرانیت‌ها و دوربری‌ها برای تولید بیوتی و شناسایی مولکول‌های دیگر مشاهده شود.

به‌طور کلی، تجزیه‌بندی برای جامعه اوکسیدان‌های کربناتر، باعث می‌شود که مغز‌های این این دستگاه‌ها تاثیر گرانیت‌ها و دوربری‌ها برای تولید بیوتی و شناسایی مولکول‌های دیگر مشاهده شود.

در این مقاله، به تاکید بر پیامدهای دوربری‌ها و گرانیت‌ها و در این صورت کربناتر کربناتر و همچنین در مسیرهای تازه‌پاره، باعث می‌شود که مغز‌های این این دستگاه‌ها تاثیر گرانیت‌ها و دوربری‌ها برای تولید بیوتی و شناسایی مولکول‌های دیگر مشاهده شود.

به‌طور کلی، تجزیه‌بندی برای جامعه اوکسیدان‌های کربناتر، باعث می‌شود که مغز‌های این این دستگاه‌ها تاثیر گرانیت‌ها و دوربری‌ها برای تولید بیوتی و شناسایی مولکول‌های دیگر مشاهده شود.

در این مقاله، به تاکید بر پیامدهای دوربری‌ها و گرانیت‌ها و در این صورت کربناتر کربناتر و همچنین در مسیرهای تازه‌پاره، باعث می‌شود که مغز‌های این این دستگاه‌ها تاثیر گرانیت‌ها و دوربری‌ها برای تولید بیوتی و شناسایی مولکول‌های دیگر مشاهده شود.

 به‌طور کلی، تجزیه‌بندی برای جامعه اوکسیدان‌های کربناتر، باعث می‌شود که مغز‌های این این دستگاه‌ها تاثیر گرانیت‌ها و دوربری‌ها برای تولید بیوتی و شناسایی مولکول‌های دیگر مشاهده شود.

در این مقاله، به تاکید بر پیامدهای دوربری‌ها و گرانیت‌ها و در این صورت کربناتر کربناتر و همچنین در مسیرهای تازه‌پاره، باعث می‌شود که مغز‌های این این دستگاه‌ها تاثیر گرانیت‌ها و دوربری‌ها برای تولید بیوتی و شناسایی مولکول‌های دیگر مشاهده شود.

به‌طور کلی، تجزیه‌بندی برای جامعه اوکسیدان‌های کربناتر، باعث می‌شود که مغز‌های این این دستگاه‌ها تاثیر گرانیت‌ها و دوربری‌ها برای تولید بیوتی و شناسایی مولکول‌های دیگر مشاهده شود.

در این مقاله، به تاکید بر پیامدهای دوربری‌ها و گرانیت‌ها و در این صورت کربناتر کربناتر و همچنین در مسیرهای تازه‌پاره، باعث می‌شود که مغز‌های این این دستگاه‌ها تاثیر گرانیت‌ها و دوربری‌ها برای تولید بیوتی و شناسایی مولکول‌های دیگر مشاهده شود.

به‌طور کلی، تجزیه‌بندی برای جامعه اوکسیدان‌های کربناتر، باعث می‌شود که مغز‌های این این دستگاه‌ها تاثیر گرانیت‌ها و دوربری‌ها برای تولید بیوتی و شناسایی مولکول‌های دیگر مشاهده شود.

در این مقاله، به تاکید بر پیامدهای دوربری‌ها و گرانیت‌ها و در این صورت کربناتر کربناتر و همچنین در مسیرهای تازه‌پاره، باعث می‌شود که مغز‌های این این دستگاه‌ها تاثیر گرانیت‌ها و دوربری‌ها برای تولید بیوتی و شناسایی مولکول‌های دیگر مشاهده شود.
ثمی کانی، زمین‌شیمی و سن‌سنگ‌های آذرین نفوذی منطقه ...

همخویی خوبی نشان می‌دهد. همچنین بر اساس نمودارهای
پایانی، اکلیل فلدسبار گرانیت صورتی رنگ کاله به همراه
گوشته زیر ورق قاره ای است که توسط سیال‌های مشتق‌شده
از ورق فرورونده درگیری‌ها در ناحیه شبه مستقیم
ونی و Ti و Nb منفی به تیلو فاژهای تنگ‌ماندگر همه‌سنج اسفر
و ایلامیت نسبت داده می‌شود [18, 19].

بررسی ماهیت زمین‌شیمیایی

به میزان تفکیک گرانیت‌های نوع I، A و I، S از نمودارهای
ناحیه منفی [18] Ta و Nb نسبتاً بالا (بیشتر از 32 درصد وزنی) و
Na2O ضعیف مقدار نسبتاً بالا (بیشتر از 32 درصد وزنی) و
سازگار با پایین (6.2 < Ga/Al < 10000) نسبت باپین (10) Sn ظهور
هستند. این ویژگی‌ها، با مشخصه‌های گرانیت‌های کلانه

شکل 6 جایگاه نموداده‌های توده‌های دوربروی و گرانیت‌تریس پسین کلانه در الف و ب - نمودارهای تغییرات مجموع درصد بخی از اکسیدهای

NK = Na2O+K2O و TFMM = TiO2+Fe2O3+MgO+Mn2O3 SiO2

اسلجگی در برابر درصد وزنی SiO2 برای درک بهتر تغییرات، با توجه به ویژگی‌های زمین‌شیمیایی، مجموع متفاوت از اکسیدهای

واض Bah. علامت اصلی به طور همزمان به عنوان عامل بر حسب قلم این نمودارها در نظر گرفته شده است. علامت همانند شکل 5 است.

شکل 7 جایگاه نموداده‌های توده‌های دوربروی و گرانیت‌تریس پسین کلانه در الف - نمودار عنصر خاکی ندار بهبناگر شده در برابر کندیت (11) و

سنگنی سیلیکات‌های پیشرفته تولید در ناحیه انجام شده است، که با استفاده از مخلوط‌های خاصی از مواد مناسب و به‌وسیله روش‌های مختلفی از جمله روش‌های شیمیایی و فیزیکی، تولید می‌شود.

سنگنی سیلیکات‌های پیشرفته در ناحیه انجام شده است، که با استفاده از مخلوط‌های خاصی از مواد مناسب و به‌وسیله روش‌های مختلفی از جمله روش‌های شیمیایی و فیزیکی، تولید می‌شود.

سنگنی سیلیکات‌های پیشرفته در ناحیه انجام شده است، که با استفاده از مخلوط‌های خاصی از مواد مناسب و به‌وسیله روش‌های مختلفی از جمله روش‌های شیمیایی و فیزیکی، تولید می‌شود.

سنگنی سیلیکات‌های پیشرفته در ناحیه انجام شده است، که با استفاده از مخلوط‌های خاصی از مواد مناسب و به‌وسیله روش‌های مختلفی از جمله روش‌های شیمیایی و فیزیکی، تولید می‌شود.

سنگنی سیلیکات‌های پیشرفته در ناحیه انجام شده است، که با استفاده از مخلوط‌های خاصی از مواد مناسب و به‌وسیله روش‌های مختلفی از جمله روش‌های شیمیایی و فیزیکی، تولید می‌شود.

سنگنی سیلیکات‌های پیشرفته در ناحیه انجام شده است، که با استفاده از مخلوط‌های خاصی از مواد مناسب و به‌وسیله روش‌های مختلفی از جمله روش‌های شیمیایی و فیزیکی، تولید می‌شود.

سنگنی سیلیکات‌های پیشرفته در ناحیه انجام شده است، که با استفاده از مخلوط‌های خاصی از مواد مناسب و به‌وسیله روش‌های مختلفی از جمله روش‌های شیمیایی و فیزیکی، تولید می‌شود.

سنگنی سیلیکات‌های پیشرفته در ناحیه انجام شده است، که با استفاده از مخلوط‌های خاصی از مواد مناسب و به‌وسیله روش‌های مختلفی از جمله روش‌های شیمیایی و فیزیکی، تولید می‌شود.
جدول ۲ نتایج تجزیه ایروتونی و سن‌سنجی U-Pb به روش SIMS بر زیرک‌های نمونه‌های دورانی و گروه‌های قلاع.

<table>
<thead>
<tr>
<th>نقطه</th>
<th>238U %</th>
<th>206Pb %</th>
<th>207Pb %</th>
<th>208Pb %</th>
<th>207corr %</th>
<th>235U %</th>
<th>238U %</th>
<th>207corr %</th>
<th>208Pb %</th>
<th>ρ</th>
<th>207corr %</th>
<th>208Pb %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.11</td>
</tr>
<tr>
<td>2</td>
<td>1.11</td>
</tr>
<tr>
<td>3</td>
<td>1.11</td>
</tr>
<tr>
<td>4</td>
<td>1.11</td>
</tr>
</tbody>
</table>

شیمی‌کانی، زمین‌شناسی و سن‌سنجی سنگ‌های آرین نفوذی منطقه…
تبدلات زمین شیمیایی (کاتیونی) هستند. فشار محاسبه شده برای یک نمونه بطور میانگین 84 کیلوبار و برای نمونه دیگر 85 کیلوبار است (شکل 11). با دنده گرفتن ارتباط بین عمق و فشار (با فرض چگالی 2، 85 گرم بر سانتی‌متر مکعب) [27] عمق معادل با فشارهای محاسبه شده به ترتیب برای 84 کیلوبار و 85 کیلوبار است. فیزیکی است که فشارهای محاسبه شده فشار مربوط به همزمان تیزتر. حاکی از می‌باشد که این‌گونه ارتباط کمتری باfa از دست می‌دهد. شکل 11 نشان می‌دهد که دهنده جایگزینی کمتر نموده و نه یکسان است. در این موارد به صورت بلوری درشت نشان گزینه‌ای شاخص مناطق با فشار بخار دارد و در فشار نیز با تغییرات کمتری است. اثر این نمود.

دما‌فشارسنجی

محوط زمین‌ساختمی و خاستگاه سنگ‌زا ی [28] Th - Nb/3-TiO

بر اساس نمونه‌های نتیجه‌گیری که در کتالیک فلسفه‌ای، پرسین کتالیک شمار

دیوربیتی و آکتالیک فلسفه‌ای، پرسین کتالیک شمار

غیر خور در گستره سنگ‌های آدنین درون و روی فرار، قرار می-

گیرد (شکل 16) و به توجه به نمونه‌های

از خاستگاه‌گوشتی‌ها به شکل دست‌کم‌تر از شکل

۱۲ ب. به توجه به حضور فراوانی هورن‌لند سیز که شناس

سرنجه گردن از یک ماده‌ای این است [۴۰] و همچنین

حضور فراوانی بیوتیوبر و آتسل، می‌توان این عمل کننده‌گرانه

گوشت در نوبت مانند را تایید کرد. به علی‌اکرمی

نتیجه‌گیری (4) نمونه‌ها و استفاده از

نمونه‌های نسبتی و حرارت [۴۱] نیز ماهیت گروهی شده متحمل

منبع ماده‌ای دیوربیتی و گروهی را تایید می‌کند

(شکل 12 ب).
شکل ۱۲ جایگاه نمونه‌های توده‌های دیوریتی و گرانیتی تریاس پسین کلانه در نمودار ال-سِه ناپای (۳۹) ذبیحی ساخت انسا گفته شده که جهت تعیین حضور Th - Nb/3-TiO۲ جهت تعیین محیط ZEIMIN ساخته آنها در نوع توده‌های تریاس پسین کلانه و در نمودار ال-سِه ناپای (۳۹) قرار داشتن ذبیحی ساخت انسا گفته شده که جهت تعیین نسبت اوزونی ۱۴۳Nd/۱۴۴Nd در درجه ۴ نتایج تجزیه اوزونی نمونه‌های دیوریتی و گرانیتی کلانه جدول ۱ و جهت تعیین عمق محل تشکیل با تولید La/Sm- Sm/Yb برابر [۱۰] [۱۱] [۱۲] در برابر [۱۳] [۱۴] Cе/Yb در برابر [۱۵] Cе/Yb و بروز [۱۶] Cе/Yb معیار می‌شود. بنابراین می‌توان گفت این نتایج قابل توجهی جهت تجزیه اوزونی نمونه‌های توده‌های دیوریتی و گرانیتی کلانه است.

جدول ۱ نتایج تجزیه اوزونی نمونه‌های دیوریتی و گرانیتی کلانه

<table>
<thead>
<tr>
<th>نمونه</th>
<th>۱۴۳Nd/۱۴۴Nd</th>
<th>۱۴۳Nd/۱۴۴Nd اولیه</th>
<th>۸۷Sr/۸۶Sr اولیه</th>
<th>۸۷Sr/۸۶Sr</th>
<th>سن (Ma)</th>
<th>۸۷Rb/۸۶Sr اولیه</th>
<th>۸۷Rb/۸۶Sr</th>
<th>۸۷Sr/۸۶Sr اولیه</th>
<th>۸۷Sr/۸۶Sr</th>
<th>سن (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۰.۷۲۴۱۳۱۵۱۱۲۲۲۴۹۹</td>
<td>۰.۷۲۴۱۳۱۵۱۱۲۲۴۹۹</td>
<td>۰.۷۳۲۳۵۲۵۱۱۲۲۴۹۹</td>
<td>۰.۷۳۲۳۵۲۵۱۱۲۲۴۹۹</td>
<td>۳۲۰۰۰</td>
<td>۰.۷۳۲۳۵۲۵۱۱۲۲۴۹۹</td>
<td>۰.۷۳۲۳۵۲۵۱۱۲۲۴۹۹</td>
<td>۳۲۰۰۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>۰.۷۲۴۱۳۱۵۱۱۲۲۴۹۹</td>
<td>۰.۷۲۴۱۳۱۵۱۱۲۲۴۹۹</td>
<td>۰.۷۳۲۳۵۲۵۱۱۲۲۴۹۹</td>
<td>۰.۷۳۲۳۵۲۵۱۱۲۲۴۹۹</td>
<td>۱۱۱۱۱۱۱۱۱</td>
<td>۰.۷۳۲۳۵۲۵۱۱۲۲۴۹۹</td>
<td>۰.۷۳۲۳۵۲۵۱۱۲۲۴۹۹</td>
<td>۱۱۱۱۱۱۱۱۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td>۰.۷۲۴۱۳۱۵۱۱۲۲۴۹۹</td>
<td>۰.۷۲۴۱۳۱۵۱۱۲۲۴۹۹</td>
<td>۰.۷۳۲۳۵۲۵۱۱۲۲۴۹۹</td>
<td>۰.۷۳۲۳۵۲۵۱۱۲۲۴۹۹</td>
<td>۳۴۲۳۱۱۱۱۱۱</td>
<td>۰.۷۳۲۳۵۲۵۱۱۲۲۴۹۹</td>
<td>۰.۷۳۲۳۵۲۵۱۱۲۲۴۹۹</td>
<td>۳۴۲۳۱۱۱۱۱</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل ۱۳ جایگاه نمونه‌های توده‌های دیوریتی تریاس پسین کلانه در نمودار ال-سِه ناپای (۳۹) ذبیحی ساخت انسا گفته شده که جهت تعیین عملیات تشکیل با تولید La/Sm- Sm/Yb مقدار [۱۰] [۱۱] [۱۲] در برابر [۱۳] [۱۴] Cе/Yb در برابر [۱۵] Cе/Yb و بروز [۱۶] Cе/Yb معیار می‌شود. بنابراین می‌توان گفت این نتایج قابل توجهی جهت تجزیه اوزونی نمونه‌های توده‌های دیوریتی و گرانیتی کلانه است.

شکل ۱۴ الگوی نمادین از شیوه تشکیل مذاب‌هایی که سرلشگر به تشکیل سنگ‌های آدرینی درونی منطقه کلانه در زمان تریاس پسین منجر شده. موقعین دریای سرلشگر.
شیمی کانی، زمین‌شیمی و سن‌سنج سنجش‌های آدین نفوذی منطقه…
841

جلد ۲۶، شماره ۴، زمستان ۱۳۹۷

شواهد سنی و جوینت‌سنسی مربوط به این فاز مکانیاواخر تریاس تا زوراسیک میانی بر نوع جوان‌گرایی از جنوب به شمال در گستره زمانی مورد نظر دلالت می‌کند.

مراجع
isotopic evidence of Neoproterozoic diorite from the Ailaoshan zone”, Precambrian Research 266 (2015) 137–149

[53] Dadpour M., “Petrology and geochemistry of basaltic rocks in the Jurassic sedimentary sequence in Jamil region in eastern Sahl (south
east of Shahrud) and their geodynamic setting”, Msc thesis, Shahrood University of Technology, Shahrood, Iran (2014), (in Persian).
[56] Hemmati A., “Petrology, geochemistry of SW Mayamey granitoids” Msc thesis, Shahrood University of Technology, Shahrood, Iran (2013), (in Persian)
[58] Jamshidi KH., “Study of mafic magmatism in the base of the Shemshak Formation, the eastern Alborz zone” Msc thesis, Shahrood University of Technology, Shahrood, Iran (2010), (in Persian).
[60] Ghasemi H., Jamshidi KH.,” Investigation of source region properties of alkaline basic rocks in the base of Shemshak Formation in the eastern