توزیع اندازه‌ی پوروفیروپلاست‌های کیانیت و استارولیت در متاپلیت‌های حمیم‌های قاسم و خزائی بالا (شاهین‌دژ) موجب شرایط تبلور دگرگونی ناحیه‌ای در منطقه

منیر مجرد* صابر شیخ بکلو

گروه زمین شناسی دانشکده علوم دانشگاه آموزش عالی ایران

(دریافت مقاله: 23/03/94 تاریخ نهایی: 94/07/16)

چکیده‌ی: در این مقاله توزیع اندازه‌ی بلور (CSD) در ارتباط با پوروفیروپلاست‌های کیانیت و استارولیت موجود در سنگ‌های متاپلیتی برنده‌ی جامد است. برای کیانیت‌ها این منحنی به صورت خو و برای استارولیت‌ها غیرخطی با نگولگری است. کیانیت‌ها منحنی گالی ترکیبی یک بیضو و استارولیت‌ها دارای یک پیچ مجرای هستند. خصی بودن کیانیت‌ها بایگان سرعت بالای رسید هسته‌ها و یک دست بودن بلوهارست، و همگی بیضی خود منحنیهای استارولیتی CSD منحنی بین‌گذر در احتمال متناوب در واکنش‌های تولیدکننده استارولیت و در فاصله‌های دگرگونی ناحیه‌ای مسئول تشکیل کننده است که احتمال اول آن قوت بیشتری برخوردار است. میانگین رشد در زمان (Gt) و نرخ هسته‌نی (J) در میانگین در زمان (Gb) و نرخ هسته‌نی (Ja) برای ریز بلورها و درشت بلوهار به ترتیب 1/7644 4/05mm³ و 0/42mm³ و میانگین رشد در زمان (Gb) و نرخ هسته‌نی (Ja) برای ریز بلورها و درشت بلوهار به ترتیب 1/7644 4/05mm³ و 0/42mm³، با توجه به شرایط است. نسبت هسته بندی بلورهای استارولیتی 5/5 برای کیانیت و نسبت بزرگ‌تر بلورهای استارولیت به کیانیت 1/8 برای (حدود 2 برای) است.

واژه‌های کلیدی: کیانیت; استارولیت; نرخ هسته بندی; سرعت رسیده شاهین‌دژ.

مقدمه

اندازه‌ی بلور در سنگ‌های بلورین، تابعی از دو عامل می‌باشد: سرعت رسید و زمان اضافه‌ی ایجاد می‌باشد. و در نتیجه این دو عامل، در شرایط مطلوب، سرعت توزیع اندازه‌ی بلور به سنگ‌های آذرین و پوروفیروپلاست‌های کیانیت و استارولیت به طور گسترده در دهه‌های میلادی مورد استفاده قرار گرفته است [5].[6] نظريه‌ی CSD اولین به توسط لارسون و انندوف [V] ارائه شد و اولین کاربرد زمین‌شناسی این تنوع توسط کامی و مارش [V] در دریاچه‌های گذشته‌ای مکان‌هایی بود ملاحظه صورت گرفت [7].

* m.modjarrad@urmia.ac.ir

نویسندگان مسئول: تلفن: 32377722124658, تهیه کننده تکمیل کننده تکمیل یرای گرایشی این ژانر. روشن راک‌دانگی با توزیع
کرده‌اند. این نظریه به‌طور عمومی به نام نامگذاری شده است. روش اصلی این برای تجربه‌ها زمان‌هستنی‌های و رشد در سایتهای دنیایی ماکمی و دگرجویی یا فرامی کرده‌اند [4].

به‌طوری‌که بررسی‌های CSD مورد استفاده از یک نمودار نیمه‌ای که نیمه نرم‌کنی را در بر می‌گیرد و در یک موقعیت از زمان‌هستنی‌های حجمی بلورها و یک انتهای بلور است [12] در این 14 موقعیت نازار از منطقه‌های حجم‌های قاسم و خرابی بالا که دارای بسته بندی و بلواری مناسب برای بررسی‌های CSD یا دیگر دیگر P و مشابه مناسب، طول، عرض و دگرجویی بلورها استفاده شد. نتایج این پردازش تصویری در جدول 1 و 2 خلاصه شدند. سپس از آن داده‌های به دست آمده با استفاده از برنامه CSDcorrections‌الهی‌اکتری دیده نموده شد.

الگویی اصلی بررسی‌های CSD در ارتباط با منطقه‌های منطقه‌های حجم‌های قاسم و خرابی بالا بررسی شد. نتایج حاصل از این بررسی‌ها نشان می‌دهد که اندازه‌گیری‌های صورت کردن‌هایی که توسط گروگر ناپیوسته دگرجویی نیز تعداد از دست آمده و در محدوده این داده‌ها، دیگر نشان دهنده گروگری در کالی‌های مختلف مانند گروها و استاتورولیت باشد.

روش برسی کاسمن و مارش [8] نظیره‌ای در آنظیری‌های از مورد توزیع انتهای بلور ارائه جدول 1 داده‌های حاصل از آنالیز تصویری استاتورولیت و کلیپت با نرم افزار

<table>
<thead>
<tr>
<th>جدول 1 داده‌های حاصل از آنالیز تصویری استاتورولیت و کلیپت با نرم آفزار (واحدها به حسب nm)</th>
<th>داده‌های حاصل از آنالیز تصویری استاتورولیت و کلیپت با نرم آفزار (واحدها به حسب nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HQS, St</td>
<td>HQS, Ky</td>
</tr>
<tr>
<td>طول</td>
<td>عرض</td>
</tr>
<tr>
<td>0.5/37</td>
<td>3.4/1989</td>
</tr>
<tr>
<td>0.6/48</td>
<td>3.4/1989</td>
</tr>
<tr>
<td>0.7/53</td>
<td>3.4/1989</td>
</tr>
<tr>
<td>0.8/62</td>
<td>3.4/1989</td>
</tr>
<tr>
<td>0.9/74</td>
<td>3.4/1989</td>
</tr>
<tr>
<td>1.0/87</td>
<td>3.4/1989</td>
</tr>
<tr>
<td>1.1/95</td>
<td>3.4/1989</td>
</tr>
<tr>
<td>1.2/101</td>
<td>3.4/1989</td>
</tr>
<tr>
<td>1.3/105</td>
<td>3.4/1989</td>
</tr>
<tr>
<td>1.4/110</td>
<td>3.4/1989</td>
</tr>
<tr>
<td>1.5/115</td>
<td>3.4/1989</td>
</tr>
<tr>
<td>1.6/120</td>
<td>3.4/1989</td>
</tr>
</tbody>
</table>
بحث و بررسی

موضعیت زمین‌شناسی منطقه

منطقه مورد بررسی در جنوب شرقی شهرستان شاهین‌دوز در جنوب استان آذربایجان غربی قرار دارد. این منطقه با استفاده از منطقه بنده آتشفشانی [15] در ناحیه ایران مرکزی واقع شده است. در شرق منطقه مورد بررسی منابع جغرافیایی شخمیانه شده است [شکل 1].

در زمینه‌های میکا و کوارتز قرار دارند. رشد کانی‌ها و کرداری‌ها در متن سنگ‌های ریزدانه با بافت پورفیرولاستی صورت گرفته است.

ستارگانی کانی‌های پیوسته، مسکونیت و کلریت طی دکترانت ناحیه‌ای سیب تشکیل بافت شیستویت در متالیت‌ها شده است (شکل 2). برای بررسی تصاویر CSD کلی از مقاطع میکروپیکنی بهبه و مورد بررسی قرار گرفته‌اند (شکل 3).

این اولین بحث توزیع اندازه بلو در مورد سنگ-های متالیتی منطقه حجم قاسی و خزان بالاست.

شکل 1: نقشه موقعیت منطقه مورد بررسی اقتباس از خلفی و همکاران [16].
شکل ۲ تصور میکروسکوپی از تسویه‌های متالیتی منطقه. الف - شیستورتیت غالب در متالیت‌ها. ب - کانی‌های موجود در متالیت‌ها را نشان می‌دهد. پ - بورفیولاست‌های استارولیت و کریپت را به صورت تکامل آنها با هم نشان می‌دهد. ت - بورفیولاست‌کانی‌ها در نمونه‌های متالیت‌های متالیتی را مشخص می‌کند. تصاویر اف و ب در حالت XPL و ب و ت در حالت PPL به نهایت شده‌اند.

شکل ۳ تصاویر کامل از مقاطع نازک با استفاده از این مقاطع و برنامه آنالیز تصویری داده‌های لازم برای ترسیم محتوی‌های مجاسیه شده است. شکل ال مرطوب به کانی استارولیت و شکل پ مرطوب به کانی کانیت است. به علاوه شکل میکروسکوپی استارولیت نیز از این ماده نمونه شده است.

CSD Digimizer
پ - شکل الگوی CSD

در این روابط n شبک خط مسیس بر منحنی CSD است. با استفاده از این روابط می‌توان پترامترهای نامبرده را محاسبه کرد. بررسی یافته در سنگ شناسی سنگ‌های آذرین در قرن 19 توسط پایین بودگر سختی‌های سنگ‌های آذرین و CSD میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD در تکمیل بررسی‌های زمین‌شناسی است. اول این روابط را به آن‌ها می‌تواند در این روابط CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD نسبت به منحنی CSD. است. این روابط می‌تواند در میکروسکوپی است. بررسی‌های سنگ‌های آذرین و CSD N

$ n = dN / dL = n o e^{-\nu L}$

$ n o = dN / L = m o = N T = \int dL = n o / b$

$L = 0$

$m L = N = n o / b Z$

$L = 0$

$J = dN / dt = \int \frac{dL}{\Sigma}$

$\Sigma = J / \int$
پیشنهاد شدهاند [19]. انتباشت بلورها و وابستگی نسبت رشد به اندازه بلور یک مسئله همیشه‌گی است. فرایندهای دیگری نیز روند معقیری بودن منحنی‌های CSD را ایجاد می‌کند. برای مثال، بلورهای ریز حذف شده و برای رشد بلورهای درشت دانه‌های مصرف شده است. تغییرات ناگهانی در سری تبلور نیز می‌تواند حالت معقیری بودن در منحنی‌های CSD را ایجاد کند.

توزیع اندازه بلورها، نظریه و پیشنهادهای ارائه شدهاند. وجود شرایط مناسب برای رشد و انتشار مواد، هسته‌های سرعت رشد بالا و تسهیل حمل و نقل مواد در رشد بلورها در زمان کم باعث تشکیل منحنی‌های خطی (نسبتاً خطی) می‌شود [20].

حداقل ۶ تفسیر درباره مقفر (زنگولهای) بودن CSD‌ها

شکل ۴ نمودارهای فراوانی بلورهای کیفیت و استارولیت. نمودارهای (الف تا د) مربوط به بلورهای استارولیت است. محور Y نمودار بینانگ تعداد بلور در حجم (mm۳) و محور X بینانگ طول بلور (mm) است. نمودارهای استارولیت نشان‌دهندهٔ دو نوع بلور درشت دانه و ریز دانه است که هرکدام از آنها در شرایط خاصی رشد کرده‌اند.
شکل ۵ افتا د منحنی‌های CSD کیانیت. محور Y نمودار بیانگر چگالی تراکمی (mm³) و محور X بیانگر طول بلوز (mm) است. روی نمودار CSD، شبک خط پسری (b) اطلاعاتی را برای سنجیدن رشد کانی، میانگین نرخ هسته‌بندی، چگالی هسته‌بندی و نسبت هسته‌بندی به‌دست آمده را به رشد (J/G) برابر درجه می‌کند.

شکل ۶ افتا د منحنی‌های CSD استاندارد. منحنی‌های a و b نشان‌گر عرض از میدانه استاندارد‌های ریز بلوژ، منحنی‌های c و d نشان‌گر استانداردهای شرکت بلوژ. محور Y نمودار بیانگر چگالی تراکمی (mm³) و محور X بیانگر طول بلوژ (mm) است. نمودهای استاندارد به دلیل اینکه دارای دو بخش مرکزی هستند باعث برای بررسی شیب خط مجزایی اندازه‌گیری شده است. شبک منفی برای بلوژ‌های درشت دانه و شبک منفی برای بلوژ‌های ریز دانه رسم شده است.
وجود دارد استراتولیت که طی یک واکنش مشترک به همراه کربنات زرد ریز بوده‌اند. در این امر ممکن است سرب و نمای بولون خاص باشد که این استراتولیت نواحی شادان و طی این دگرگونی پورفیروپلاست‌های کیانیت و استراتولیت سبلی‌های کوچک و اطلاعات در ماتریس این حجم پورفیروپلاست‌های کیانیت و استراتولیت ممکن است در اثر یک فاز دگرگویی ناحیاهای با واکنش احتمالی تشکیل شده و رشد

\[\text{Ms + Chl = Bt + St + Qtz + H}_2\text{O} \]

در اثر مهار. سپس بخش درشت دانه موجود در استراتولیت با تشکیل بنیاد از یک واکنش مجزا

\[\text{Ms + Bt + Crd + H}_2\text{O} \]

برگری سیر گسترش بی‌ندی، پرینگر نخستین گسترش نسبی که ممکن است با استراتولیت است. به این ترتیب سیر مربوط به استراتولیت‌ها. طی واکنش

برگری و انتقال ناحیه از نخستین بندی، پرینگر نخستین گسترش نسبی که ممکن است با استراتولیت است. به این ترتیب سیر مربوط به استراتولیت‌ها. طی واکنش

\[\text{Ms + Chl = Bt + St + Qtz + H}_2\text{O} \]

به‌طور کل، تحقیق و بیان این افتاده شده است. در این واکنش، بولورهای ریز استراتولیت رشد کرده و منحنی در استراتولیت دارای بی‌ندی است. شبیه مثبت اینشالا نشان دهنده رشد بولورهای ریز

\[\text{Ms + Bt + Crd + H}_2\text{O} \]

گسترش زمان کم با استراتولیت دانه است. در ادامه این اتمام

\[\text{Ms + Chl = Bt + St + Qtz + H}_2\text{O} \]

به‌طور کل، تحقیق و بیان این افتاده شده است. در این واکنش، بولورهای ریز استراتولیت دانه است. در ادامه این اتمام

\[\text{Ms + Bt + Crd + H}_2\text{O} \]

به‌طور کل، تحقیق و بیان این افتاده شده است. در این واکنش، بولورهای ریز استراتولیت دانه است. در ادامه این اتمام

\[\text{Ms + Bt + Crd + H}_2\text{O} \]

[18] Higgins M. D., “Flowage differentiation in an