بررسی اثر فازی آلومینای بر بلورینگی لایه پروسکایت در سلول‌های خورشید پروسکایت

ناصر جهان بخشی زاده٠، محمود برهمانی زرندی،۱ مهندرس‌نظامی۲

۱- دانشکده تجربی، دانشگاه آزاد‌زیر
۲- دانشکده شیمی، دانشگاه آزاد‌زیر

چکیده: پروسکایت‌های آلومینای (CH₃NH₃PbI₃) برای جذب نور خورشیدیدار بعنوان لایه جذب در سلول‌های خورشیدی نسل سوم استفاده می‌شود. بلورینگی لایه جذب کننده نور نقش مهمی در عملکرد سلول‌های خورشیدی پروسکایت‌هایی بازی می‌کند و نوع ماده‌ای که به عنوان زیرلا از آن استفاده می‌شود بکی از عوامل مؤثر بر بلورینگی لایه جذب است. در این مقاله مدل آلفا و گاما اکسید آلومینیوم برای لایه‌های ماده‌ای استفاده شده‌اند و نتایج در عملکرد سلول خورشیدی پروسکایت‌های نیز مشخص شده است. مشخص شد که در نظر گرفتن همه برای پروسکایت‌های مورب عملکرد سلول خورشیدی فاز گامای اکسید آلومینیوم نسبت به فاز آلی آن برای استفاده در سلول‌های خورشیدی پروسکایتی به روش دو مرحله‌ای ساخته می‌شود، مناسب‌تر است.

واژه‌های کلیدی: اکسید آلومینیوم، بلورینگی، سلول خورشیدی، لایه پروسکایت، نیازهای ناشی

مقدمه
پروسکایت‌ها در حالت کلی می‌توان یا فرمول AMX۳+۳ نشان داد که در آن A کاتیون ای از غیرآلی M بن فلزی و X آئین هستند. این معمولاً ساختار خاصی نیست که به عنوان پروسکایت در سلول‌های خورشیدی استفاده می‌شود. اگر که در مقایسه با فرمول کلی بیان شده CH₃NH₃PbI₃ در عملکرد سلول‌های خورشیدی مورب RE برای پروسکایت‌های X و M A برای پروسکایت، هستند. براساس دما، ساختار بلوری پروسکایت در نظر می‌گیرند که شامل مکعبی، چهارگوشی، و راست‌گوشه هستند.

درصد رسیده است که قابل مقایسه با سلول‌های خورشیدی تجارتی سه سیکلوست است [۳-۴]. بر اساس نویس های مورد استفاده برای این نوع از سلول‌های خورشیدی، پروسکایتی سه ساختار کلی سطح، نرو متخلخل و ارساختر در نظر گرفته می‌شود. یکی از مشکلات این نوع از سالو‌های خورشیدی یادپاری کم‌کننده است که با استفاده از مدل آلی که معمولاً در دو طرف ویژه پروسکایت در سلول‌های خورشیدی استفاده می‌شود با اکسیدروین و رطوبت محسوب می‌شهند که بر عملکرد سلول‌های خورشیدی تأثیر منفی دارد[A۷]. به نظر می‌رسد بهبود و پیشرفت می‌توان از اکسیدروین فاقد قابلیت جذب لایه‌ای استفاده شده در سلول‌های خورشیدی استفاده کرد که دیگر مشکل‌نابایدی در محسوب اطراف را ندارند [A۸]. چنان که در هر (۱) دیده می‌شود، در سلول‌های خورشیدی ارساختر

mborhani@yazd.ac.ir

*نویسنده مستند، تلفن: ۰۲۳ ۹۱۲۳۴۵۶۷۸۹۰۰، تاریخ: ۲۰۲۰/۰۳/۲۵۸۲۳، پست الکترونیکی: mborhani@yazd.ac.ir
به یادآوری که اکسید آلومینیوم استفاده می‌شود که نسبت به اکسید تنباتیوم سرعت انتقال الکترون بیشتری دارد و در نتیجه باعث کم شدن اهمگی بارترکیب الکترون-محور و بسته شدن عملکرد سلول خورشیدی می‌شود.

1. Dimethylformamide
2. Fluorine doped Tin Oxide
3. Spin Coating

روش آزمایش

مواد و تجهیزات مورد استفاده‌‌ها
حلال‌های انانتول، استون، ایزوپولیکول، دی اتانول، و همجنین سولفات آلومینیوم، سولفات آمونیوم 18 آبی، متیل آمونیوم و اسید هیدروپروفید (HI) از شرکت هرک و مواد جدید سرب (PbI) و تیاتیوم (TiO2) از شرکت شریف

سولار خریداری شدند.

شكل 1 ساختار سلول‌های خورشیدی پروسکایسی الف- ارسخ‌اتور- ب- متوسط مخلخل

مطالعه نمونه‌ها
برای ساخت سلول‌های خورشیدی پروسکایسی، ابتدا به اندامام 3 میلی متراً از الیاف رسانای روی شیشه‌های FTO با استفاده از بوفر رژیم (Zn) و حلال 2 مولار برداشته و مراحل شستشوی آن به ترتیب با آب صورت، آب مقطور، استون و انالول انجام شد. سپس لایه اکسید تنباتیوم فشرده که نقش سد- کننده در برای حکمت حفظ و در نتیجه کاهش اهمگی بارترکیب زوج الکترون-محور را دارد و همچنین لایه مخلخل اکسید تنباتیوم با استفاده از دستگاه نشانده چربیشی‌ها- نشانی شد و در دمای 500 درجه سانتی‌گراد و به مدت 100 ساعت گرم‌سازی کرد. سپس لایه‌های فازهای آلفا و گاما اکسید آلومینیوم، نخست 5 میلی‌گرم از هر یک در 5 ساعت آبزیب‌پذیری حل شده و به مدت 20 ساعت به طور همزمان شد، سپس محلول حلال بر روی لایه‌های شیشه‌ای قرار گرفت. اکسید تنباتیوم لایه‌نشانی در دمای 150 درجه سانتی‌گراد و به مدت 100 ساعت گرم‌سازی کرد. سپس از آن، محلول پدید سرب و که در دمای 40 درجه‌سانتی‌گراد و به مدت 20 ساعت DMSO هم خورده پای را با استفاده از دستگاه لایه‌نشانی چربی‌سازی کردند. در مدت 70 دقیقه در محلول پیکت داد و دو دقیقه مورد بر آن لایه- تشکیل لایه پروسکایسی کرد. برای FTO که لایه پدید سرب بر آن لایه- تشکیل لایه پروسکایسی کردند. در مدت 3 دقیقه در محلول مثل پیکت داده و اکسید آلومینیوم غوطه ور کرد و به مدت 15 دقیقه در دمای 200 درجه سانتی‌گراد شد. برای لایه‌نشانی الکترود طلا از دستگاه کندوپاش استفاده شد و لایه طلا با ضخامت 50 نانومتر بر لایه پروسکایسی لایه‌نشانی شد.
شکل 1 وسایل مورد استفاده الف - دستگاه آمیانسیا جریان-ورتان- دستگاه کندر و پاش.

برای سنتز آلومینیوم آمونیوم، مقدار 1/32 گرم از سولفات آمونیوم و 46 گرم سولفات آلومینیوم 18 ابه (Al₂(SO₄)₃·18H₂O) به 10 میلی لیتر آب دوباره بونیده، اضافه شده و محلول هم زده شد. سپس محلول گراماده شد تا حلال آن تبخیر و پودری سفید مایل به صورتی ایجاد شد. سپس 1 میلی لیتر آمونیاک غلظته ان اضافه شده و بس از گراماده پودر سفید رنگ ایجاد شد.

سنتز Al₂O₃–α و Al₂O₃–β با استفاده از روش زل
برای سنتز فازهای α و γ گاز آکسید آلومینیوم به 4/2 گرم از سولفات آلومینیوم آمونیوم که با آن 9 گرم از محلول آلومینیاک Al(OH)₃/2 ًاضافه شده به خوبی هم زده شد. دراین مرحله تشکیل شد. 116 گرم اسید سیتراتیک به آرامی به آن اضافه شده و محلول به دست امده در دمای 150 درجه سانتیگراد به شور [10].
سنتر جنگلی هیدروفیلیت (MAI) نخست ۲۴ میلی لیتر متخلخل آمونیوم (۲۳wt٪ در اتانول) و ۱۰ میلی لیتر اسید هیدروفیلیت (۲۵wt٪ در آب) در یک جریان در حمام یخ مخلوط شد به طوریکه اسید HI قطره قطره به متخلخل آمونیوم اضافه شد. این محلول به مدت ۲ ساعت روی همزن مغناطیسی قرار داده شد و پس از خشک شدن در دمای ۵۰ درجه سانتی گراد به مدت ۱ ساعت سروب سفید رنگی بالقوه ماند. پودر به دست آمده در اتانول خالص حل شد و سپس با اضافه کردن دی اتیلن اتر به محلول، دوباره تغشیه و پودر سفید رنگ بروز و پس از صاف کردن آن مخلوط پیشین چندین بار تکرار شد و در آخر در دمای ۶۰ درجه سانتی گراد در کوره خلا خشک شد که پودر سفید رنگ MAI ساخته شد.

مشخصه‌های نمونه‌ها

برای مشخص کردن تکمیل فازهای آلфа و گاما اکسید آمونیوم از نمونه‌های سنتر شده طیف پراش پرتوی X (XRD) مربوط به اکسید آمونیوم آلفا و ب- فاز گاما شکل ۳ نشان می‌دهد.

شکل ۳. الگوی XRD مربوط به اکسید آلومینیوم اف- فاز آلфа و ب- فاز گاما.
بحث و بررسی

یکی از پارامترهای بسیار مهم در سلول‌های خورشیدی پروسکایتی بلورینگی لایه پروسکایت است که ارتباط مستقیمی با عملکرد سلول دارد. این SEM تصاویر شکل ۴ از تولید این SEM صورت گرفته است. پروسکایت ساخته شده بر لایه اکسید آلومینیوم با فاز مایع و گاما را نشان می‌دهد. پروسکایت که بر لایه اکسید آلومینیوم با فاز آلیف ساخته شده است نسبت به فاز گاما بهره‌گیرتر است. فاز گاما نسبت به فاز آلیف اکسید آلومینیوم دارای تخلخل بسیار بالایی است (۱۰۰). این روند لایه‌ای بدون سرب که بر این لایه‌نشانی شده است با نفوذ به درون این تخلخل، به اندازه‌ای کوچک محدود می‌شود. در نتیجه پروسکایتهای پروسکایتی تکمیل شده که بر این مهندسی بدن سرب به مثل بدین آمیزه انجام شده در اندازه‌ای کوچکتر نسبت به پروسکایتهای پروسکایتی که بر فاز آلیف.

شکل ۴ تصاویر SEM لایه پروسکایت ساخته شده بر روی آلیف- فاز گاما اکسید آلومینیوم و ب- فاز آلیف اکسید آلومینیوم.

\[
FF = \frac{(V*I)_{\text{max}}}{(V*I)_{\text{oc sc}}} \]

\[
BP = \frac{(V*I_{\text{sc FF}})*100}{P_{\text{in}}}
\]

شکل ۵ نمایش عوامل موتور بر بارده سلول خورشیدی پروسکایتی با استفاده از مشخصه‌های جریان- ولتاژ.

اکسید آلومینیوم تشکیل شده‌اند. در ادامه اثر این بلورینگی متفاوت لایه پروسکایت که ناشی از متفاوت بودن لایه زیرین آن است، بر پارامترهای موتور بر عملکرد سلول خورشیدی بررسی می‌شود.

بازه سلول خورشیدی پروسکایتی وابسته به سه پارامتر ولتاز مدار بار، چگالی جریان اتصال کوتاه و ضریب پرشدگی است که به ترتیب با FF، \(V_{sc} \) و \(I_{sc} \) نامیش داده می‌شود. این پارامترها و رابطه آنها با بارده سلول خورشیدی که از نمواد چریان- ولتاژ مشخص می‌شود در شکل ۵ نشان داده شده است. در این رابطه کمیت \(P_{\text{max}} \) چگالی توان نور فردی است. برای بررسی دقیق اثر هر یک از فازهای اکسید آلومینیوم بر عملکرد سلول خورشیدی ساخته شده، پارامترهای موتور بر عملکرد سلول خورشیدی بررسی شد. که نتایج آن به شرح زیر است:

جریان- ولتاژ مشخص می‌شود در شکل ۵ نشان داده شده است.

برای در این رابطه کمیت \(P_{\text{max}} \) چگالی توان نور فردی است. برای بررسی دقیق اثر هر یک از فازهای اکسید آلومینیوم بر عملکرد سلول خورشیدی ساخته شده، پارامترهای موتور بر عملکرد سلول خورشیدی بررسی شد. که نتایج آن به شرح زیر است:
ونتاز مدار باز (Vc) سولول خورشیدی برای بررسی ونتاز مدار باز و همچنین میزان پایداری این کمیت در سالولهای خورشیدی پروسکایتی که در آنها از فازهای آلفا و گاما آکسید آلومینیوم استفاده شده است، سالولهای ساخته شده با مشخصه‌بایی جریان-ونتاز به‌طور متوسط به‌صورت تكرارهای مختلف در حالیکه آنها از فازهای آلفا و گاما استفاده شده است، سالولهای ساخته شده با مشخصه‌بایی جریان-ونتاز به‌طور متوسط به‌صورت تكرارهای مختلف در 9 روز بررسی شده. بررسی نتایج به شکل 6 نشان داده شده است. دیده می‌شود که پارامتر Vc مربوط به سالولهای که در آنها از فازهای اکسید آلومینیوم استفاده شده است نسبت به فاز گاما بیشتر است که با دلیل پرداخت بودن پروسکاکرهای پروسکایتی برای فازهای آلومینیوم نسبت به فاز گاما است و این با مشخصه‌بایی جریان-ونتاز سالول-های خورشیدی ساخته شده، پارامتر FF این سالولهای برای فاز-6 کمیت Vc سالولهای خورشیدی پروسکایتی ساخته شده با استفاده از فازهای آلفا و گاما آکسید آلومینیوم.

![شکل 6](image6.png)

![شکل 7](image7.png)
برای بررسی جریان اتصال کوتاه سلول‌های خورشیدی پروسکایتی ساخته شده بر پایه فازهای آلفا و گاما اکسید آلومینیوم، کمیت J_{0} با استفاده از نمودار جریان- ولتاژ سلول- های ساخته شده به دست آمده از مشخصات سلول‌ها، پایه ساختاری خورشیدی پروسکایتی ساخته شده محاسبه و بررسی شد که نتایجی که در شکل 8 وارد شده است، با توجه به شکل جریان اتصال کوتاه مربوط به سلول‌های ساخته شده با فازهای آلفا و گاما اکسید آلومینیوم تبدیل نمی‌شود و در این مورد، هیت لیکنی کمیت J_{0} سلول‌های فاز گاما نسبت به فاز آلфа بیشتر است که می‌تواند به دلیل مناسب بودن اندازه پلورکهای پروسکایت بر پایه فاز گاما نسبت به فاز آلфа باشد که در نتیجه آن احتیاط به دام افتادگی الکترون کمتر و جریان سلول‌های خورشیدی بیشتر می‌شود.

شکل 8: کمیت J_{0} سلول‌های خورشیدی پروسکایتی ساخته شده با استفاده از فازهای آلفا و گاما اکسید آلومینیوم.

شکل 9: کمیت η سلول‌های خورشیدی پروسکایتی ساخته شده با استفاده از فازهای آلفا و گاما اکسید آلومینیوم.

برداشت
در این پژوهش با استفاده از اکسید آلومینیوم در بافت سلول خورشیدی پروسکاتی، اثر فازی اکسید فلزی بر پایه آلومینیوم مورث بر بازه سلول خورشیدی و تبلورگنجی لایه پروسکات ساخته شده به روش دوشیرهلای بررسی شد. پروسکات تشکیل شده بر لایه اکسید آلومینیوم با فاز آلفا نسبت به فاز گاما برگرته هستند. سلول‌هایی که در ساختار آن‌ها از فاز آلفا اکسید آلومینیوم استفاده شده است نسبت به سلول‌های دارای اکسید آلومینیوم با فاز گاما، ولتاژ مدار بیشتری دارند که به دلیل برگرتن بودن پروسکات پروسکات بر یک فاز آلفا نسبت به فاز گاما است. جریان اصلاح کوانت سلول‌های با فاز آلفا و گاما در آلومینیوم تقریباً یکسان است. در حالت کلی می‌توان گفت که با گرفتن همه پارامترهای موثر بر بازه سلول خورشیدی پروسکاتی ساخته شده به روش دوشیرهلای، استفاده از فاز گاما اکسید آلومینیوم نسبت به فاز گاما به دلیل تخلخل بیشتری که دارند و منجر به رشد پرتو در اندازه مناسب بر پروسکات می‌شود، در سلول‌های خورشیدی پروسکاتی نتیجه یافته بیشتری می‌دهد. همچنین برای بررسی پایداری سلول‌های خورشیدی ساخته شده، با در نظر گرفتن جدال‌های پارامترهای موثر بر بازه سلول خورشیدی طی چند روز، مشخص شد که از نظر پایداری، سلول‌های خورشیدی پروسکاتی ساخته شده با فاز‌های آلفا و گاما شرایط یکسانی دارند و از این نظر تفاوتی بین این دو فاز وجود ندارد.

مراجع

Downloaded from ijcimr at 15:18 +0430 on Thursday April 30th 2020