کاربرد شیمی کانی‌های آمفیبول و پلاژیوکلاز در بررسی خاستگاه و زمین‌دا-فشارسنجی گرانیتوئید جبال‌بارز (بم، استان کرمان)

شیرین بهپور، عباس مرادیان، حمید احمدی‌بور

گروه زمین‌شناسی، دانشکده علوم، دانشگاه شهید باهنر، کرمان

چکیده: گرانیتوئید جبال‌بارز به سن الیگوسن در جنوب‌شرقی شهرستان بم، و جنوب‌شرقی کمربند ماگمایی ارومیه-دختر واقع است. براساس بررسی‌های سنجش‌نگری، این توده شامل تونالیت، غراندیوریت، گرانیت و گرانیتوئید است که کانال‌های اصلی کوارتز، پلاژیوکلاز، آمفیبول، بیوتیت و فلدسپار‌های مشکی دهدهای آن هستند. آلیه پلاژیوکلاز‌ها از 28/38 تا 38/27 درصد و ترکیب آن‌ها از الیگوسن‌های آن را می‌دانند. آمفیبول‌ها نشان از آمیجش مصالح پوششی و گوشه‌ها در تشکیل ماکزیم مولدار دربر ساخته، گرانیتوئید، ماینیک فشار تبیماره‌های کلینیکی 3 کلی‌اکس و درست‌سنجی برای مقیاس نفوذ آمفیبول و زوج کانال‌های تبیل‌و-پلاژیوکلاز، میانگین دمای تبیل را 800 درجه سانتی‌گراد برآورد می‌کند. سننجب کاربردگی آکسینین این توده، اکسیده بودن ماکم‌های مولدار را نشان می‌دهد.

واژه‌های کلیدی: دما- فشارسنجی- آمفیبول- پلاژیوکلاز- گرانیتوئید- جبال‌بارز- بم

مقدمه

مجموعه‌های کانال‌ها و ترکیب آن‌ها در سن‌های آدرین‌ب ترکیب و شرایط فیزیوکیمیایی ماگمایی درگیری‌ندی آن‌ها طی فراز تیلور، ارتباط نزدیکی دارد. از جمله این کانال‌ها آمفیبول است که در گستره وسیعی از شرایط جو و دما ظاهر می‌شود.

و نوع سنجش‌نگری آن از ساندرگان سنجش‌نگری آدرین به‌ویژه آدرین سری امکان‌پذیری به‌شتار می‌آید. ترکیب شیمیایی آمفیبول با توجه به فشار، دما، نوع فازهای همبستگی و فشار جزئی اکسیژن تغییر می‌کند برای مثال مقدار آ در این کانال به‌شمار واقع تیلور واسیط است [13]. با توجه به این امکان حضور طیف گسترده‌ای از عناصر اصلی و فرعی در ساختار و ترکیب شیمیایی کانال آمفیبول پوزه‌گرا یکی‌سانی بسیاری شرایط فیزیوکیمیایی ماکم‌ها را در زمان تبیل آن کانال بررسی

sh.behpour@sci.uk.ac.ir

*تیکارم: ۱۳۹۷/۱۱/۲۹، نسخه نهایی: ۱۳۹۷/۱۱/۱۲
کیلومتر عرض در طول جغرافیایی ۲۰°۳۶ تا ۵۸°۲۷ و عرض جغرافیایی ۱۷°۵۸ تا ۳۸°۲۷ قرار دارد (شکل ۱). کمان ماگمايی ارومیه- دختر، که توسط فوروارد نوتنیس به زیر ایران مركزی بوجود آمده [۱۶] بیشترین فعالیت خود در این بخش شناسایی گردیده است [۱۷]. در اینجا دانگ از قسمت جنوبی که این کمان واقع است بررسی کرده شده است. این کمان و معروف به چهار دهه- ساردونه دارای دو نوع گراویتوپی است: ۱- گراویتوپی نوع جبالنیاز و گراویتوپی کم عمقد کوه نچه [۱۸]. گراویتوپی مورد بررسی از نوع گراویتوپی نوع جبالنیاز بوده که به همین نام معروف است. اگر فعالیت‌های ماگمايی فندی را به جایگزینی نود و نفوذی نوع جبال نیاز در زمان الیگوسین- میووسین نسبت می‌دهند [۸].

چاپگاه زمین‌شناسی

گراویتوپی جبالنیاز که به گرانیت جبالنیاز معروف است، در جنوب شرق بابلی جبالنیاز همچنین جنوب شرق کرمان ماگمایی ارومیه- دختر با بیش از ۶۰ کیلومتر طول و ۱۴
روابط محیطی و سنگی‌گرایی

براساس شواهد محیطی، گرانیت‌های جالب‌بارز در سنگ‌های آنششانی که در قسمت‌هایی این منطقه و به سمت اوست ساخته شده‌اند، این سنگ‌های جالب‌بارز با ناحیه‌ای از سنگ‌های اطراف ساخته شده‌اند. سنگ‌های آنششانی میزبان شالی سنگ‌های متعددی هستند که از این نظر در برخی از محیط‌های مناسب از جمله گرانیت‌های توسفت به ناحیه‌ای از سنگ‌های جالب‌بارز توسط گرانیت‌های و دایک‌هایی تا ناحیه‌ی قطع شده‌اند. وجود سنگ‌های موجود در همبستگی بین سنگ‌های آنششانی و گرانیت‌های مورد بررسی، نشانگر نقش مهم گسل‌ها در کنترل صعود و جابجایی این توده‌ها در همبستگی بین گرانیت‌های و سنگ‌های آنششانی میزبان. شواهد از دگرگونی دیده نمی‌شود که نشانگر دمای پایین یا هم‌مدنی توده گرانیت‌های و سل زمین‌شناسی آنششانی میزبان در زمان جابل‌بارز است.

واحد گرانیت‌های این واحد گسترده‌تری از توده نفوذی جالب‌بارز را تشکیل داده است که از منطقه سد نسا (پیم) تا منطقه ریگان.

شکل ۲: سنگ‌های آنششانی در ناحیه جالب‌بارز هستند، دیده‌گر که سمت شمال-شرق ب. تصویر میکروسکوپی از گرانیت‌های مورد بررسی همه‌ای (کوارتز، باکتریت، الامانتید، حفره و ازبین) به عنوان میکروسکوپی از تونل‌های منطقه مورد بررسی همه‌ای (کوارتز، باکتریت، الامانتید، اتولوکالز، حفره و ازبین) به عنوان میکروسکوپی از گرانیت‌های مورد بررسی همه‌ای (کوارتز، باکتریت، الامانتید، اتولوکالز، حفره و ازبین).
واحد توانالی: واحد توانالی بیشترین به صورت نفوذی‌های برگ‌های ارزش‌مند در دو فاز گروه‌های فیزیکی است. درصد بین این دو وسیله به عنوان سیستم مصرف و بسته‌های هرگونه منطقه‌ای و آنتی‌ژنی است. طیف سنجش‌هایی از این واحد شاخص توانالی و گروه‌بندی است. ضرر رگی این واحد نیمه‌روشات و گروه‌بندی است. واحد توانالی در توانالی‌های این واحد از 26 درصد ضریب ۱۵ دارد. این واحد ضریب ۱۰ و ۲۵ درصد بوده و ۴ درصد ضریب ۴۰ و ۸۰ درصد بوده. درصد کلی شناسی مودال ۱ و ۲ واحد سنجی می‌باشد. روش ژیوه‌ها و سنجش کننده‌های کدر، کلاه‌های فرعی موجود در هر دو واحد سنجی هستند. هک در حدود ۳ تا ۲ درصد از سنجی‌های رود بررسی را تشکیل می‌دهند. کلاه‌های زیرک و آنتی‌ژنی بیشتر داشته که به دریاچه‌ی این سنجی‌ها می‌تواند نقاط آن کاهش می‌دهد. این واحد سنجی با گیاه‌های آبیوتوپ و گروه‌بندی دیده می‌شود. این واحد سنجی در این واحد رود بوده و ۲ درصد بوده و ۶ درصد ضریب ۱۵ و ۴ درصد ضریب ۸۰ درصد بوده. درصد کلی شناسی مودال ۲ واحد سنجی می‌باشد. روش ژیوه‌ها و سنجش کننده‌های ۲ تا ۲ واحد سنجی را تشکیل می‌دهند.

این آزمایشات به‌صورت جهت‌گیری و سنجش داده‌های آن که در حدود ۵ دارد. این واحد سنجی را تشکیل می‌دهند. کلاه‌های زیرک و آنتی‌ژنی بیشتر داشته که به دریاچه‌ی این سنجی‌ها می‌تواند نقاط آن کاهش می‌دهد. این واحد سنجی با گیاه‌های آبیوتوپ و گروه‌بندی دیده می‌شود. این واحد سنجی در این واحد رود بوده و ۲ درصد بوده و ۶ درصد ضریب ۱۵ و ۴ درصد ضریب ۸۰ درصد بوده. درصد کلی شناسی مودال ۲ واحد سنجی می‌باشد. روش ژیوه‌ها و سنجش کننده‌های ۲ تا ۲ واحد سنجی را تشکیل می‌دهند.
جدول 2- نتایج تجزیه ناحیه‌ی پلاژیوکلازها در گرانیت‌های چاووش. محاسبه‌ی کانونی‌ها بر پایه‌ی 8 اکسیژن.

<table>
<thead>
<tr>
<th>نمونه</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>تغذیه</th>
<th>Si</th>
<th>Al</th>
<th>Fe</th>
<th>Ca</th>
<th>Na</th>
<th>K</th>
<th>Or</th>
<th>Ab</th>
<th>An</th>
</tr>
</thead>
<tbody>
<tr>
<td>1pjb10_Core</td>
<td>35.17</td>
<td>24.75</td>
<td>11.74</td>
<td>2.32</td>
<td>0.74</td>
<td>0.12</td>
<td>2.94</td>
<td>1.22</td>
<td>3.13</td>
<td>0.81</td>
<td>2.42</td>
<td>0.35</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>2pjb10</td>
<td>35.82</td>
<td>24.75</td>
<td>11.74</td>
<td>2.32</td>
<td>0.74</td>
<td>0.12</td>
<td>2.94</td>
<td>1.22</td>
<td>3.13</td>
<td>0.81</td>
<td>2.42</td>
<td>0.35</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>3pjb10_Rim</td>
<td>38.60</td>
<td>22.53</td>
<td>10.57</td>
<td>2.32</td>
<td>0.74</td>
<td>0.12</td>
<td>2.94</td>
<td>1.22</td>
<td>3.13</td>
<td>0.81</td>
<td>2.42</td>
<td>0.35</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>1pjb10_Core</td>
<td>35.17</td>
<td>24.75</td>
<td>11.74</td>
<td>2.32</td>
<td>0.74</td>
<td>0.12</td>
<td>2.94</td>
<td>1.22</td>
<td>3.13</td>
<td>0.81</td>
<td>2.42</td>
<td>0.35</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>2pjb10</td>
<td>35.82</td>
<td>24.75</td>
<td>11.74</td>
<td>2.32</td>
<td>0.74</td>
<td>0.12</td>
<td>2.94</td>
<td>1.22</td>
<td>3.13</td>
<td>0.81</td>
<td>2.42</td>
<td>0.35</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>3pjb10_Rim</td>
<td>38.60</td>
<td>22.53</td>
<td>10.57</td>
<td>2.32</td>
<td>0.74</td>
<td>0.12</td>
<td>2.94</td>
<td>1.22</td>
<td>3.13</td>
<td>0.81</td>
<td>2.42</td>
<td>0.35</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

جدول 1- محاسبه‌ی کانونی‌ها بر اساس 23 اکسیژن.

<table>
<thead>
<tr>
<th>نمونه</th>
<th>Mg#</th>
<th>Fe(Mg+Fe)</th>
<th>Fe²⁺</th>
<th>Fe³⁺</th>
<th>Mg²⁺</th>
<th>Mg³⁺</th>
<th>Si</th>
<th>Al</th>
<th>Fe</th>
<th>Ca</th>
<th>Na</th>
<th>K</th>
<th>B Ca</th>
<th>B Na</th>
</tr>
</thead>
<tbody>
<tr>
<td>5pjb34</td>
<td>3.76</td>
<td>1.32</td>
<td>1.80</td>
<td>1.76</td>
<td>1.80</td>
<td>1.29</td>
<td>2.17</td>
<td>1.81</td>
<td>3.98</td>
<td>0.06</td>
<td>0.07</td>
<td>0.11</td>
<td>0.26</td>
<td>0.25</td>
</tr>
<tr>
<td>6pjb34</td>
<td>3.79</td>
<td>1.33</td>
<td>1.80</td>
<td>1.76</td>
<td>1.80</td>
<td>1.29</td>
<td>2.17</td>
<td>1.81</td>
<td>3.98</td>
<td>0.06</td>
<td>0.07</td>
<td>0.11</td>
<td>0.26</td>
<td>0.25</td>
</tr>
<tr>
<td>7pjb34</td>
<td>3.74</td>
<td>1.31</td>
<td>1.80</td>
<td>1.76</td>
<td>1.80</td>
<td>1.29</td>
<td>2.17</td>
<td>1.81</td>
<td>3.98</td>
<td>0.06</td>
<td>0.07</td>
<td>0.11</td>
<td>0.26</td>
<td>0.25</td>
</tr>
<tr>
<td>2pjb14</td>
<td>3.67</td>
<td>1.27</td>
<td>1.80</td>
<td>1.76</td>
<td>1.80</td>
<td>1.29</td>
<td>2.17</td>
<td>1.81</td>
<td>3.98</td>
<td>0.06</td>
<td>0.07</td>
<td>0.11</td>
<td>0.26</td>
<td>0.25</td>
</tr>
<tr>
<td>3pjb14</td>
<td>3.68</td>
<td>1.28</td>
<td>1.80</td>
<td>1.76</td>
<td>1.80</td>
<td>1.29</td>
<td>2.17</td>
<td>1.81</td>
<td>3.98</td>
<td>0.06</td>
<td>0.07</td>
<td>0.11</td>
<td>0.26</td>
<td>0.25</td>
</tr>
<tr>
<td>1pjb14</td>
<td>3.69</td>
<td>1.29</td>
<td>1.80</td>
<td>1.76</td>
<td>1.80</td>
<td>1.29</td>
<td>2.17</td>
<td>1.81</td>
<td>3.98</td>
<td>0.06</td>
<td>0.07</td>
<td>0.11</td>
<td>0.26</td>
<td>0.25</td>
</tr>
<tr>
<td>3pjb14</td>
<td>3.68</td>
<td>1.28</td>
<td>1.80</td>
<td>1.76</td>
<td>1.80</td>
<td>1.29</td>
<td>2.17</td>
<td>1.81</td>
<td>3.98</td>
<td>0.06</td>
<td>0.07</td>
<td>0.11</td>
<td>0.26</td>
<td>0.25</td>
</tr>
<tr>
<td>1pjb14</td>
<td>3.69</td>
<td>1.29</td>
<td>1.80</td>
<td>1.76</td>
<td>1.80</td>
<td>1.29</td>
<td>2.17</td>
<td>1.81</td>
<td>3.98</td>
<td>0.06</td>
<td>0.07</td>
<td>0.11</td>
<td>0.26</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Mg# = Mg(Fe⁺+Mg)
بحث و بررسی
شیمی کانی‌ها
آمفیبول: چنان که گفته شد، کانی آمفیبول از مجموعه کانی‌های فرومیت‌زین موجود در گرانیت‌های جنوبی پارس است. نتایج ماحصلی این افرودیک استاندارد آمفیبول [21] AB₃C₅⁴/₈T₈O₃₂(OH)₂ کانی‌های موجود در موقعیت گردو، برنجی و هوشی در جدول 1.4 اثرات آلیات ماتریس موجود در گردن B است (جدول 1). با توجه به مقادیر کلسیم موجود در جدول B (BCa)، صفر تا ۰.۲۲ آمفیبول‌ها از نوع کلسیم تشخیص داده شده‌اند. به نمودار مرجع [21] (شکل ۳ ألف) این گفته را نشان می‌کند (شکل ۳ ألف). خضور آمفیبول‌های کلسیمی در سنگ‌های موجود در گردن برای این‌که بعد از جدول آزمایش مگنتوپورتکندر و چرماکی کار در گردن می‌گردد.

در بلور و ناشناپیشین چشمان ماکم‌های تولید شده در این جدول ۱ نشان دهنده مقدار Ti کمتر از ۵ تا آن در گردن تولید متریک‌زین که ناحیه از آن‌ها از آزمایش آن‌ها در ساخت‌های این‌که بعد از جدول مگنتوپورتکندر و چرماکی کار است [77].

شکل ۲۳-
دردهندی آمفیبول‌های گردن برای این‌که تولید شیمی‌ای این‌که بعد از جدول نمودار تقسیم‌بندی امفیبول‌ها [21] که نشان می‌دهد که آن‌ها در جدول مگنتوپورتکندر و چرماکی کار می‌بندند.
در این بیان، برای تغییر دما، فشار و خاستگاه سنتی‌های مورد بررسی از امپائری ها مگنیوگریت‌بندی که نتیجه تبلور مستقیم از ماکس‌هستند، استفاده شده است.

پلاژیکالاز: پلاژیکالاز از فراوان‌ترین کانی‌های فلسی توده گیان‌نی‌ودی مورد بررسی مستقیم و فرمول ساختاری پلاژیکالاز براساس 8 اکسیون محسوب می‌شود. نتیجه تجزیه این کانی‌ها در جدول ۲ ردیابی شده است. ترکیب شیمیایی پلاژیکالاز‌ها در توده گیان‌نی‌ودی از پلاژیکالاز نا آنلاین می‌باشد است (شکل ۵ اف). در برخی موارد، بلورهای پلاژیکالاز دارای منطقه‌بندی عادی و نوسانی بهره و مقادیر آلیت در آنها ۲۸۳۸ تا ۶۸۷۲ درصد است (جدول ۲، الگویی بلورهای پلاژیکالاز در شکل ۵ اف نشان داده شده است.

عواملی مانند تغییرات فشار آب از [۲۸] آمیختگی ماکمی و [۲۹] تغییر شیمیایی ماکمی [۲۴]، عدم تغییرات شیمیایی به‌عنوان تغییرات شیمیایی، تغییرات شیمیایی سیستم ماکمی طی تبلور ماکمی [۳۰] و تغییرات سرعت انتشار ترکیبات سازندای کانی نسبت به سطح بلور [۳۱] ناشی از منطقه‌بندی بروزه منطقه‌بندی نوسانی در کانی پلاژیکالاز است. جایگزین می‌باشد که پلاژیکالاز می‌تواند موجب کاهش فشار می‌شود که خروج سریع بخارها و منفی شدن نیرو مغناطیسی انحجام را در دارد، این روداد موجب تباین فشارها کلیسی و انحلال فشرده‌های

شکل ۵ اف: خوشه‌زنده پلاژیکالاز گیان‌نی‌ودی در کانی پلاژیکالاز از مکانیک بی‌ارتباط در ساختار و همکنش ماکمی‌ها باعث می‌شود که این کانی‌ها در جدول ۲ ردیابی شده است. ترکیب شیمیایی پلاژیکالاز‌ها در توده گیان‌نی‌ودی از پلاژیکالاز نا آنلاین می‌باشد است (شکل ۵ اف). در برخی موارد، بلورهای پلاژیکالاز دارای منطقه‌بندی عادی و نوسانی بهره و مقادیر آلیت در آنها ۲۸۳۸ تا ۶۸۷۲ درصد است (جدول ۲، الگویی بلورهای پلاژیکالاز در شکل ۵ اف نشان داده شده است.

عواملی مانند تغییرات فشار آب از [۲۸] آمیختگی ماکمی و [۲۹] تغییر شیمیایی ماکمی [۲۴]، عدم تغییرات شیمیایی به‌عنوان تغییرات شیمیایی، تغییرات شیمیایی سیستم ماکمی طی تبلور ماکمی [۳۰] و تغییرات سرعت انتشار ترکیبات سازندای کانی نسبت به سطح بلور [۳۱] ناشی از منطقه‌بندی بروزه منطقه‌بندی نوسانی در کانی پلاژیکالاز است. جایگزین می‌باشد که پلاژیکالاز می‌تواند موجب کاهش فشار می‌شود که خروج سریع بخارها و منفی شدن نیرو مغناطیسی انحجام را در دارد، این روداد موجب تباین فشارها کلیسی و انحلال فشرده‌های

شکل ۵ اف: خوشه‌زنده پلاژیکالاز گیان‌نی‌ودی در کانی پلاژیکالاز از مکانیک بی‌ارتباط در ساختار و همکنش ماکمی‌ها باعث می‌شود که این کانی‌ها در جدول ۲ ردیابی شده است. ترکیب شیمیایی پلاژیکالاز‌ها در توده گیان‌نی‌ودی از پلاژیکالاز نا آنلاین می‌باشد است (شکل ۵ اف). در برخی موارد، بلورهای پلاژیکالاز دارای منطقه‌بندی عادی و نوسانی بهره و مقادیر آلیت در آنها ۲۸۳۸ تا ۶۸۷۲ درصد است (جدول ۲، الگویی بلورهای پلاژیکالاز در شکل ۵ اف نشان داده شده است.

عواملی مانند تغییرات فشار آب از [۲۸] آمیختگی ماکمی و [۲۹] تغییر شیمیایی ماکمی [۲۴]، عدم تغییرات شیمیایی به‌عنوان تغییرات شیمیایی، تغییرات شیمیایی سیستم ماکمی طی تبلور ماکمی [۳۰] و تغییرات سرعت انتشار ترکیبات سازندای کانی نسبت به سطح بلور [۳۱] ناشی از منطقه‌بندی بروزه منطقه‌بندی نوسانی در کانی پلاژیکالاز است. جایگزین می‌باشد که پلاژیکالاز می‌تواند موجب کاهش فشار می‌شود که خروج سریع بخارها و منفی شدن نیرو مغناطیسی انحجام را در دارد، این روداد موجب تباین فشارها کلیسی و انحلال فشرده‌های
کل این نمونه‌ها که ویژگی آهکی-قلیایی را برای این توده گرانیتونی‌های در نظر گرفته‌اند، هم‌خوانی دارد [11–15]. بررسی Al₂O₃ در ترکیب آمفیبول‌ها با توجه به نمودار TiO₂ نسبت به (برحسب درصد اکسید) [40] حضور ماکم‌های گوشتهای و ترکیبات پیوسته در تشکیل آنها را نشان می‌دهد.

نمونه‌هایی مورد جدایی مذهبی زمین‌سَختی

امفیبول‌های در نظر گرفته شده است. به این ترتیب که مقدار بخش از 15 نشان دهنده آمفیبول‌های فشار بالا در حدود 10 کیلوبار، که در محیط‌های جریان قوسی کرنشهای فاضلاب و مقدار کمرتر از 15 مربوط به آمفیبول‌های کره‌های فعال قرار

می‌شوند [41]. به این ترتیب با توجه به مقدار

همه آمفیبول‌های منطقه مورد بررسی مقدار کمرتر از

15 در حد محدود کرنشهای فعال قرار و باعث فاصله قرار

می‌گیرند که با نتایج پژوهش‌های پیشین [11–15] هم‌خوانی

دارد.

تعیین زمین‌سَختی و خاستگاه گرانیتونی‌های جبال‌بارز با استفاده

از ترکیب آمفیبول

با استفاده از ترکیب شیمیایی آمفیبول‌های که از بررسی قطعات

بی‌گاهه سنگ‌ها گوشتهای تعبیه شده‌اند [72] می‌توان محیط‌های زمین‌سختی مختلف به‌وسیله تیاز محیط‌های درون

صفحه‌های را براساس فرآیندهای مختلف کرنش، آمفیبول‌های

واسطه به محیط فرآیندهای Na₂O-TiO₂، مقدار Na₂O

نتیج به نوع درون صفحه‌های دارد [42]. مقدار

امفیبول‌های سنگ‌های مورد بررسی، که کمتر از 2%,

ارتباط این کلی را با محیط زمین‌سختی فروناشی روشی می‌کند (شکل 6). با توجه به نمودار Na₂O-TiO₂

کد نسبت به ماهیت آمفیبول‌ها از نظر قلبی‌ها

شبه قلبایی بودن، می‌برد. آمفیبول‌های قلبی‌داری‌های Tr. Ti

پایین‌تر نسبت به آمفیبول‌های قلبی‌های فاشی ویستند، که کد آمفیبول‌های

مورد بررسی سرشتی‌های قلبایی دارد (شکل 6 و ب)،

این روداد با نتایج بررسی‌های پیشین در مورد شیمی سنگ

شکل 6 الف) نمودار Na₂O نسبت به SiO₂ [42] که نشان دهنده ارتباط آمفیبول‌های مورد بررسی با مذهبی زمین‌سختی فروناشی است.

ب) نمودار Na₂O-TiO₂ [43] برای تعیین ماهیت گرانیتونی‌های جبال‌بارز با استفاده از ترکیب شیمیایی آمفیبول‌ها.

ت) نمودار TiO₂-Al₂O₃ [41] که بیانگر ترکیب ماکم‌های گوشتهای با مواد پوشیده در شکل هورنل‌نده است.
ترکیب آمفیپولی است. میانگین فشار بسته آمد در تیلور هورنلند در نمونه‌های مورد بررسی ۳/۹ کیلوبرد است. برای محاسبه فشار از ترکیب س همراه ارائه شده در دمای سطح.

\[p = 3.01 + 4.76 \alpha T \ (kPa) \]

در این معادله ناتئین دما و فشار بر مقدار A، به خوشه مخصوص است. با توجه به معادله بالا در نمونه‌های مورد بررسی فشار میانگین برای تیلور هورنلند ۱/۴ کیلوبرد برآورد شد. این رابطه دارای میل به نسبت به روش‌های دیگر است.

براساس شکل ۷، آمفیپولی های گرانتوندوزی شده در مورد بررسی در گسترش کسر از با توجه به تغییر ۳ کیلوبرد (میانگین عمق تقیی ۴/۳ کیلوبرد) مبتنی بر شدت و تبدیل فشار و بستگی به سطح آماده بر روی عمق برهم‌کنش کیلوبرد از میانگین دچار یک نماینده مسکن (۱/۷ گرم/متر³) استفاده می‌شود

\[p = 0.61 \alpha T \ (kPa) \]

بهتر است. این کالیستری در همه شناخت تقویم انتخاب - میدان آبیاد و ترکیب شیمیایی آمفیپولی در گستره فشار از ۱ تا ۲۳ کیلوبرد و دما ۱۰۰ تا ۱۱۵ درجه سانتی‌گراد پایدار است.

\[p = 44 \alpha T \ (kPa) \]

مقدار آمفیپولی موجود در آمفیپولی از دیتاباخته سطح بیشتر خواهد بود. در آمفیپولی مهاجم آلمونیم هسته (AlIV) و جهت (AlVI)

\[p = 43 \alpha T \ (kPa) \]

تأثیر آب ماکلا نیز وابسته است.

\[p = 17 \alpha T \ (kPa) \]

در حالی که ترکیب شیمیایی سطح تاکد جنگلی برمگرد.

\[p = 37 \alpha T \ (kPa) \]

به آنها گفتگوی است که برای استفاده از آمفیپولی، بعنوان معمولاً برای ارتباط قرار داشته با نکات کوهستانی، فلزات فناوری، پلاستیک‌ها، هورنلند، بیوشیمی و الیمپیک است.

\[p = 47 \alpha T \ (kPa) \]
زمین دماسنجی

با استفاده از این روش، دما تغییر تشکیل شده Fe\(^{3+}\) (Fe\(^{3+}\)+Mg)\(^{2+}\) در

\[
\begin{align*}
\text{Fe} & \quad \text{Fe}^{3+} \quad \text{Mg}^{2+} \\
1\text{Kbar} & \quad 3\text{Kbar} \\
& \quad 5\text{Kbar} \\
& \quad 7\text{Kbar}
\end{align*}
\]

از 0.2 تا 0.8 درجه سانتی‌گراد تغییر می‌کند.

به نظر می‌رسد که تغییرات جالب‌تر را با توجه به اینکه دمای نسبت به Fe\(^{3+}\) (Fe\(^{3+}\)+Mg)\(^{2+}\) با استفاده از تغییرات دمای آنومیم نسبت به دمای نسبت به Fe\(^{3+}\) (Fe\(^{3+}\)+Mg)\(^{2+}\)

\[
T \left[K \right] = \{78.44 + Y_{ab-an} - 33.6X_{Na}^{M4} - (66.8 - 2.92P\left[\text{kbar} \right])X_{Al}^{M2} + 78.5 X_{Al}^{M1} + Ln0.0721 - R\{9.4X_{Na}^{A}\}^{-1/2} X_{Al}^{M1} X_{Al}^{M1} b_{\text{plg}}\} \\
\]

\[
T = 654.9 + 25.3 P
\]

در نظر گرفته شده است.

\[
\text{Fe}^{3+} + \text{Mg}^{2+} \quad \text{Fe}^{3+} + \text{Mg}^{2+} \\
10-1 \text{Kibar} \quad \text{Fe}^{3+} + \text{Mg}^{2+} \\
\]

ورش دیگری که در مرجع [44] ارائه شده است برای تغییرات دمای نسبت به Fe\(^{3+}\) (Fe\(^{3+}\)+Mg)\(^{2+}\) در فشار

\[
Y_{ab} \geq 0.5,
\]

\[
Y_{ab} = 8.06 + 25.5 (1 - X_{ab})^{2} \quad \text{X}_{ab} < 0.5
\]

که در آن X\text{plg}_\text{ab} \quad X_{ab}

\[
X_{ab} \quad \text{Fe}^{3+} \quad \text{Mg}^{2+}
\]

میزان درصد آلبیت در پلاژیوکلز و مقادار X\text{plg}_\text{ab} یافت که در آن

\[
Y_{ab} \quad 0.5
\]

\[
Y_{ab} = 8.06 + 25.5 (1 - X_{ab})^{2} \quad \text{X}_{ab} < 0.5
\]

از روابط زیر به دست می‌آید

\[
Y_{ab} = 0.5
\]

\[
Y_{ab} = 8.06 + 25.5 (1 - X_{ab})^{2} \quad \text{X}_{ab} < 0.5
\]

زمره‌ی صفحهٔ 7 (الف) نشان‌دهندهٔ شکل تشکیل گرانولیتی در شکل‌های Fe\(^{3+}\) (Fe\(^{3+}\)+Mg)\(^{2+}\) یافت که در آن

\[
Y_{ab} \quad 0.5
\]

\[
Y_{ab} = 8.06 + 25.5 (1 - X_{ab})^{2} \quad \text{X}_{ab} < 0.5
\]
برآورد گریزندگی اکسیزن

با توجه به فشار جزئی اکسیزن می‌توان شرایط فیزیکی، شیمیایی و مکانیکی حاکم بر تبلور توده‌های نفوذی را برآورد کرد. مقادیر گریزندگی اکسیزن ممکن است به جنس مواد در منطقه مکانی و دماگاه زمانی منجر شوند. ساختی آن وابسته است [66]. ماگماها گروهی با خاستگاه رسوبی (نوع S) و نسبت پیشانی آن دارد و گریزندگی نو 1

نیستین اکسیدان هستند [66]. ماگماها با اکسیسیون بالا در مزرعه وکار نمی‌کنند. می‌تواند [65]. ولی ماگماها فلزی نتیجه چاپ ماکماهای گوشته در مناطق کافی، احیا هستند [66]. با استفاده از کانی‌های فرعی مانند مگنتیت و ایمنیت و مجموعه کانی‌های سه و شیمی کانی‌ها می‌توان به میزان گریزندگی اکسیزن اولیه ماگماهای باید [65]. وجود اتمسفری- های غی از منیزیم نشان دهنده ماکماهای فلزی اکسیدان است. وجود تیناتیت و مگنتیت در سیستم فلزی نشان دهنده از حضور ماکماه به نسبت اکسیدان است [65].

نتایج تجزیه‌های نقطه‌ای اتمسفری (جدول 1) پیوست و وجود اتمسفری- های غی از منیزیم در این سیستم، همان‌طور که نشان می‌دهد که ماکماه نشان دهنده آن به نسبت اکسیدان به دست آمد که پایانگر اکسیسیون می‌توان گریزندگی نسبت را اکسید ان معادله زیر برآورد کرد.

| جدول 3 محاسبه دما و فشار گریزنتدی جیالی‌براز به روش‌های مختلف |
|-------------------------|-----------------|-----------------|
| | min | Max | Average |
| | | | |
| روش‌ها | | | |
| | | | |
| فشار (کیلوبار) | | | |
| Hammarstrom and Zen (1986) | 136 | 406 | 214 |
| Johnson and Rutherford (1989) | 98 | 225 | 164 |
| Schmidt (1992) | 199 | 225 | 233 |
| Anderson and Smith (1995) | 115 | 235 | 181 |
| Otten (1984) | 634.2 | 764.5 | 699.35 |
| برایه زوج کانی‌های هریلیند و پلاپاکوزاپ هرمزیست | | | |
| Holland and Blundy (1994) | 737.4 | 850 | 800 |
پیامد 8 نمودار گیرنده‌کننده‌ای اکسیژن بر پایه ترکیب آمفیبول [4] که با لادون گریزندگی اکسیژن در زمان تبلور آمفیبول‌های شیمیایی جدید باز تا نشان می‌دهد.

برداشت
توده گریزندگی جداره باز شامل سنگ‌های اسیدی تونالیت، گرانودوبیت، گرانیت و گرانیت قلبی است. کاتیون‌های اصلی پلاژیوکلاز و هورنبلند این سنگ‌ها دارای بافت دانه‌ای و میان دانه هستند. بیشتر پلاژیوکلازها دارای منطقه‌بندی و هورنبلندها قبلاً ویژگی‌هستند. علت منطقه‌بندی در پلاژیوکلازها وجود آب، میزان گریزندگی اکسیژن و تغییرات ترکیب شیمیایی در مکانی تشكل دهنده آن است.
آمفیبول‌های مور در اسپرس طی فرآیندهای آذرین تشكل یافته‌اند و دارای آمفیبول‌های کلسیسی و زیرگروه نمونه‌های هورنبلند که شامل سنگ‌های اسیدی تونالیت، گرانودوبیت، گرانیت و گرانیت قلبی است. کاتیون‌های اصلی پلاژیوکلاز و هورنبلند این سنگ‌ها دارای بافت دانه‌ای و میان دانه هستند. بیشتر پلاژیوکلازها دارای منطقه‌بندی و هورنبلندها قبلاً ویژگی‌هستند. علت منطقه‌بندی در پلاژیوکلازها وجود آب، میزان گریزندگی اکسیژن و تغییرات ترکیب شیمیایی در مکانی تشكل دهنده آن است.

تمایل‌های توزیع توده‌های منطقه‌بندی در گستره‌ای آمفیبول‌های مواد پیش‌بندی‌شده به مناطق هستند. گرانیت و گرانت‌های ویژگی شده پلاژیوکلاز و هورنبلند، میان‌گروه دمای تشكل حدود 800 درجه سانتی‌گراد پراورده می‌شود. زمین‌شناسی برای بررسی این شده‌های موجود در هورنبلند، میان‌گروه دمای تشكل حدود 800 درجه سانتی‌گراد پراورده می‌شود. زمین‌شناسی برای بررسی این شده‌های موجود در هورنبلند، میان‌گروه دمای تشكل حدود 800 درجه سانتی‌گراد پراورده می‌شود. زمین‌شناسی برای بررسی این شده‌های موجود در هورنبلند، میان‌گروه دمای تشكل حدود 800 درجه سانتی‌گراد پراورده می‌شود. زمین‌شناسی برای بررسی این شده‌های موجود در هورنبلند، میان‌گروه دمای تشكل حدود 800 درجه سانتی‌گراد پراورده می‌شود. زمین‌شناسی برای بررسی این شده‌های موجود در هورنبلند، میان‌گروه دمای تشكل حدود 800 درجه سانتی‌گراد پراورده می‌شود. زمین‌شناسی برای بررسی این شده‌های موجود در هورنبلند، میان‌گروه دمای تشكل حدود 800 درجه سانتی‌گراد پراورده می‌شود. زمین‌شناسی برای بررسی این شده‌های موجود در هورنبلند، میان‌گروه دمای تشكل حدود 800 درجه سانتی‌گراد پراورده می‌شود. زمین‌شناسی برای بررسی این شده‌های موجود در هورنبلند، میان‌گروه دمای تشكل حدود 800 درجه سانتی‌گراد پراورده می‌شود. زمین‌شناسی برای بررسی این شده‌های موجود در هورنبلند، میان‌گروه دمای تشكل حدود 800 درجه سانتی‌گراد پراورده می‌شود. زمین‌شناسی برای بررسی این شده‌های موجود در هورنبلند، میان‌گروه دمای تشكل حدود 800 درجه سانتی‌گراد پراورده می‌شود. زمین‌شناسی برای بررسی این شده‌های موجود در هورنبلند، میان‌گروه دمای تشكل حدود 800 درجه سانتی‌گراد پراورده می‌شود. زمین‌شناسی برای بررسی این شده‌های موجود در هورنبلند، میان‌گروه دمای تشكل حدود 800 درجه سانتی‌گراد پراورده می‌شود. زمین‌شناسی برای بررسی این شده‌های موجود در هورنبلند، میان‌گروه دمای تشكل حدود 800 درجه سانتی‌گراد پراورده می‌شود. زمین‌شناسی برای بررسی این شده‌های موجود در هورنبلند، میان‌گروه دمای تشكل حدود 800 درجه سانتی‌گراد پراورده می‌شود. زمین‌شناسی برای بررسی این شده‌های موجود در هورنبلند، میان‌گروه دمای تشكل حدود 800 درجه سانتی‌گراد پراورده می‌شود. زمین‌شناسی برای بررسی این شده‌های موجود در هورنبلند، میان‌گروه دمای تشكل حدود 800 درجه سانتی‌گراد پراورده می‌شود. زمین‌شناسی برای بررسی این شده‌های موجود در هورنبلند، میان‌گروه دمای تشكل حدود 800 درجه سانتی‌گراد پراورده می‌شود. زمین‌شناسی برای بررسی این شده‌های موجود در هورنبلند، میان‌گروه دمای تشكل حدود 800 درجه سانتی‌گراد پراورده می‌شود. زمین‌شناسی برای بررسی این شده‌های موجود در هورنبلند، میان‌گروه دمای تشكل حدود 800 درجه سانتی‌گراد پراورده می‌شود. زمین‌شناسی برای بررسی این شده‌های موجود در هورنبلند، میان‌گروه دمای تشكل حدود 800 درجه سانتی‌گراد پراورده می‌شود. زمین‌شناسی برای بررسی این شده‌های موجود در هورنبلن

[22] Stein E., Dietl C., "Hornblende thermobarometry of granitoids from the Central Odenwald (Germany) and their implications for the geotectonic development of the Odenwald", Mineralogy and Petrology, 72 (2001) 185-207.

[43] Xue H., Dong S., Jian P., "Mineral chemistry, geochemistry and U-Pb SHRIMP zircon data of

