شیمی کانی‌ها و خاستگاه فراماکیه‌های سرخ‌بن نوار افیولیتی کهن‌ج–رودان
(ناحیه نازدشت)، نمونه‌های از تفاضلات دیرگداز پیرودنیت‌های آلی
فاطمه جنیده، غلامرضا قدمی، سیدحسین مرتضوی راوری

گروه زمین‌شناسی، دانشکده علوم پایه، دانشگاه هرمزگان، هرمزگان، ایران

چکیده: به‌خیال از فراماکیه‌های مکمل‌های سرخ‌بن در راستای نوار افیولیتی کهن‌ج–رودان- میناب استان هرمزگان در منطقه نازدشت شامل هارزوپزیت، دونتیت و سربشینیت (با برتری هارزوپزیت‌ها) است. کلیه‌های اصلی این سنگ‌ها شامل پیون، اروپورتوسک و کانی فرعی اسپینال است. در این سنگ‌ها شاخه‌های مشکب و ریزدانه‌ای غالب است و اثر شکاف‌ها زمین‌ساختاری صورت طول‌شکلی کانونی و خاموشی مستقیمی می‌شود. نتایج تجزیه‌نقطه کانی‌ها و لیزیت‌های را با تکیه (1986-1987) و Fo از نوع فورسترتی و غنی از مناسبی نشان می‌دهد که به پیرودنیت‌های نوع چوبی علیه دارند. همچنین اروپورتوسک ترکیبی انسانیتی (En=95.2) با نشان داده و اسپینل‌داری داده کروم (Cr2O3) و Mg# با درایل (0.46-0.76) و Ca Ca (0.24-0.34 Ca) است که چوب‌رداری پیدا کرده که می‌توان گفت سنگ‌های تفاضلات کهن‌ج‌های دیرگداز هستند که است تاریک‌های موجود در هارزوپزیت‌های نازدشت

واژه‌های کلیدی: هارزوپزیت، فراماکیه‌های نازدشت، سرخ‌بن، رودان

مقدمه
منطقه مورد بررسی در تفسیری‌سنجی‌ساختاری ایران، در فصل مشترک پهنه‌های راگرس و میران واقع است و با توجه به ویژگی‌های فضاهای منطقه‌ای ادامه می‌گذارد. همیاهم مجموعه زنگی‌های میرانی در امتداد راگرسی‌ها گزارش ادامه پیدا کرده و این افسار را در اختیار می‌دهد. همیاهم فراماکیه‌های کهن‌ج‌های نازدشت و گستردگی‌های همانند شتاب داده شده که می‌توان نتایج می‌باشد. همیاهم در سرخ‌بن است. همیاهم در فراماکیه‌های کهن‌ج‌های نازدشت، شتاب داده شده که می‌توان نتایج می‌باشد. همیاهم در سرخ‌بن است. همیاهم در فراماکیه‌های کهن‌ج‌های نازدشت، شتاب داده شده که می‌توان نتایج می‌باشد. همیاهم در سرخ‌بن است. همیاهم در فراماکیه‌های کهن‌ج‌های نازدشت، شتاب داده شده که می‌توان نتایج می‌باشد. همیاهم در سرخ‌بن است. همیاهم در فراماکیه‌های کهن‌ج‌های نازدشت، شتاب داده شده که می‌توان نتایج می‌باشد. همیاهم در سرخ‌بن است. همیاهم در فراماکیه‌های کهن‌ج‌های نازدشت، شتاب داده شده که می‌توان نتایج می‌باشد. همیاهم در سرخ‌بن است. همیاهم در فراماکیه‌های کهن‌ج‌های نازدشت، شتاب داده شده که می‌توان نتایج می‌باشد. همیاهم در سرخ‌بن است. همیاهم در فراماکیه‌های کهن‌ج‌های نازدشت، شتاب داده شده که می‌توان نتایج می‌باشد. همیاهم در سرخ‌بن است. همیاهم در فراماکیه‌های کهن‌ج‌های نازدشت، شتاب داده شده که می‌توان نتایج می‌باشد. همیاهم در سرخ‌بن است. همیاهم در فراماکیه‌های کهن‌ج‌های نازدشت، شتاب داده شده که می‌توان نتایج می‌باشد. همیاهم در سرخ‌بن است. همیاهم در فراماکیه‌های کهن‌ج‌های نازدشت، شتاب داده شده که می‌توان نتایج می‌باشد. همیاهم در سرخ‌بن است. همیاهم در فراماکیه‌های کهن‌ج‌های نازدشت، شتاب داده شده که می‌توان نتایج می‌باشد. همیاهم در سرخ‌بن است. همیاهم در فراماکیه‌های کهن‌ج‌های نازدشت، شتاب داده شده که می‌توان نتایج می‌باشد. همیاهم در سرخ‌بن است. همیاهم در فراماکیه‌های کهن‌ج‌های نازدشت، شتاب داده شده که می‌توان نتایج می‌باشد. همیاهم در سرخ‌بن است. همیاهم در فراماکیه‌های کهن‌ج‌های نازدشت، شتاب داده شده که می‌توان نتایج می‌باشد. همیاهم در سرخ‌بن است. همیاهم در فراماکیه‌های کهن‌ج‌های نازدشت، شتاب داده شده که می‌توان Nazeri@hormozgan.ac.ir

ghadami@hormozgan.ac.ir

*پویستنی مسئول، تلفن: 0413-7237111، 0413-7127616، پست الکترونیکی: 702633762 @hormozgan.ac.ir
از مجموعه دگرگونی یکجان جدا می‌شود (شکل‌های ۱ و ۲). بررسی‌های صحراها نشان می‌دهد که این منطقه از سنگ‌های هارزورزیت‌ها تشکیل می‌شود. هارزورزیت‌های مورد بررسی با رنگ کاملاً تیره و نسبتاً یکسانی در عمق‌های بالایی و ماهواره‌ای قابل تشخیص است. این سنگ‌ها با دلیل مقاومت بالا نسبت به سایر بخش‌ها، بیشتر تشکیل سنگ‌های مرتفع به شکل دامنه زیاد و در فهرنگی بریج و خم با بسته و بلندی خشن را می‌دهند. بخش وسیعی از سنگ‌های فراماکیفیک‌های چیندل به‌طور کامل با بخش سربشایی‌شده‌اند. سطح هوازد این سنگ‌ها به دلیل آزاد شدن آهون از شیب‌های کانی‌های فرمینزین به رنگ زرد فقوه‌های تا قهوه‌ای سوخته است و در سطح شکسته شده به رنگ سیاه تیره هستند. این سنگ‌های فراماکیفیک، در راستای پهنه‌های گسل تورق و شکستگی را به سطوح نانو می‌دهند.

این منطقه در فراکیفیک‌های گسترده‌تر یافته‌اند (شکل ۳). زاگرس جنوبی می‌شود و در شرق پس از گذر از بلوزستان - پاکستان تا هزار کیلومتری ادامه می‌یابد. در امتداد محور ۱۶۰ هزار کیلومتری گستره ترازیکی بین پهنه‌های فراکیفیک می‌کنند و به‌طور دشواری هند اوراسیاس. گفتگوی این است که ۱۶۰ هزار کیلومتری گستره می‌کنند. حدود ۷۰ هزار کیلومتری آن در ایران و بقیه در پاکستان است. منطقه فراماکیفیک نازدشت، میان طول‌های جغرافیایی ۲۰° ۵۷ تا ۵۵° ۵۳ در شمال شرقی و رودان واقع است. این منطقه بخشی از کمرنگات گول‌های هم‌الهی‌بوده و از نظر زمینشناسی بخشی از نواز افولوژیک که‌هنج - رودان - میان به قسمتی از مجموعه فراماکیفیک سرخ‌نگ است که احتمالاً شامل دایر بخش‌های مجموعه افولوژیک سرخ‌نگ قسمتی از پهنه ابی‌می‌شود که طی کارهای سپس بر کرانه‌های قرار گرفته‌اند [۲۳] مجموعه فراماکیفیک سرخ‌نگ یاده‌های توده فراماکیفیک موجود در منطقه است که در انتهای جنوب شرقی پهنه‌ی سندج - سیرجان و در غرب هراتستان ونوجوان واقع است. این همبافت از سمت شرق توسط کسل مکعبی دست‌کرده‌اند.

شرح ۱ نمایش پراکندگی فراماکیفیک‌های ایران [۴]. که منطقه مورد بررسی بر آن مشخص شده است.
شکل ۲ نقشه زمین‌شناسی فراماکیفهای تازدشت رودان، (برگرفته از نقشه زمین‌شناسی ۱:۵۰۰۰۰ میناب با اندکی تغییرات [۵]).

شکل ۲الف) سطح تازه و هوازده در سنگ‌های فراماکیفک منطقه ب) تأثیر فشارهای زمین‌ساختی در خرد شدن سنگ‌ها و تشکیل رگه‌های کربناته در بین لایه‌های آن ب) سرباختی شدن و تشکیل مینیت. ت) رگه‌های سفید‌رنگ مربوط به کربناته تانوهی در سنگ‌های فراماکیفک تازدشت [۶].
روش بررسی
بررسی به روش میکروسکوپی از 33 نمونه و بررسی مقاطع سیلیک‌سازی از نمونه‌های اصلی به روش طیف‌سنجی فلورسانس پرتو (XRF) و برای عنصر فرآیند و عنصر کمیاب و خاک نادر با پرگیری از طیف‌سنجی جرمی پلاسمای جفت شده سیلیک‌سازی توسط شرکت زرآما انجام شد. تجزیه نیمه کمی و تصویر برداری الکترونی قرار گرفت. تجزیه نیمه کمی است که برای اجرای آزمایشات CAMECA, X100 و ICP-MS با ویژگی‌هایی مانند راثورشگری الکترونی مدل 20 انجام شد که در سطح تایید شده تصویر کلی نمایش دهنده 500 کیلو ولت شد.

جدول 1 ترکیب الیوین‌های موجود در هزاربازیه‌های فرامانیک نازدشت، براساس درصد وزنی و فرمول ساختاری بصورت 4-کسیوزن به همراه

<table>
<thead>
<tr>
<th>ماده</th>
<th>نیم‌وله (%)</th>
<th>127</th>
<th>127</th>
<th>128</th>
<th>128</th>
<th>128</th>
<th>128</th>
<th>128</th>
<th>128</th>
<th>128</th>
<th>128</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td></td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td></td>
</tr>
<tr>
<td>NiO</td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td></td>
</tr>
<tr>
<td>مجموع</td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td></td>
</tr>
<tr>
<td>Fe²⁺</td>
<td></td>
</tr>
<tr>
<td>Fe³⁺</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td></td>
</tr>
<tr>
<td>Te</td>
<td></td>
</tr>
<tr>
<td>Fo</td>
<td></td>
</tr>
<tr>
<td>Fa</td>
<td></td>
</tr>
<tr>
<td>Mg#</td>
<td></td>
</tr>
</tbody>
</table>
جدول ۲ نتایج ترکیب ارتوپیروکسن‌های موجود در هزاروزوپیت‌های فراماکیت نازدشت. محاسبه درصد اعضا با استناد به این فرمول ساختمانی آن‌ها بر اساس ۶ اکسیژن

<table>
<thead>
<tr>
<th>Sample Wt.%</th>
<th>۱۲۷ %</th>
<th>۱۲۸ %</th>
<th>۱۲۸ %</th>
<th>۱۲۸ %</th>
<th>۱۲۸ %</th>
<th>۱۲۸ %</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO۲</td>
<td>۲۳۶۲</td>
<td>۲۳۲۲</td>
<td>۲۳۲۱</td>
<td>۲۳۱۴</td>
<td>۲۳۱۰</td>
<td>۲۳۰۹</td>
</tr>
<tr>
<td>TiO۲</td>
<td>۲۳۰۲</td>
<td>۲۲۹۲</td>
<td>۲۲۹۵</td>
<td>۲۲۹۳</td>
<td>۲۲۹۵</td>
<td>۲۲۹۸</td>
</tr>
<tr>
<td>Al۲O۳</td>
<td>۲۳۲۴</td>
<td>۲۳۵۶</td>
<td>۲۳۵۸</td>
<td>۲۳۷۳</td>
<td>۲۳۷۷</td>
<td>۲۳۷۹</td>
</tr>
<tr>
<td>Cr۲O۳</td>
<td>۲۳۲۲</td>
<td>۲۳۳۷</td>
<td>۲۳۴۵</td>
<td>۲۳۵۳</td>
<td>۲۳۵۶</td>
<td>۲۳۵۸</td>
</tr>
<tr>
<td>Fe۲O۳</td>
<td>۲۳۳۷</td>
<td>۲۳۴۵</td>
<td>۲۳۵۸</td>
<td>۲۳۷۷</td>
<td>۲۳۸۱</td>
<td>۲۳۸۵</td>
</tr>
<tr>
<td>Fe۳O۴</td>
<td>۲۳۴۵</td>
<td>۲۳۵۸</td>
<td>۲۳۷۸</td>
<td>۲۳۹۷</td>
<td>۲۴۰۱</td>
<td>۲۴۰۵</td>
</tr>
<tr>
<td>MnO</td>
<td>۲۳۵۸</td>
<td>۲۳۷۸</td>
<td>۲۳۹۷</td>
<td>۲۴۰۱</td>
<td>۲۴۰۵</td>
<td>۲۴۰۹</td>
</tr>
<tr>
<td>MgO</td>
<td>۲۳۷۸</td>
<td>۲۳۹۷</td>
<td>۲۴۰۱</td>
<td>۲۴۰۵</td>
<td>۲۴۰۹</td>
<td>۲۴۱۳</td>
</tr>
<tr>
<td>CaO</td>
<td>۲۳۹۷</td>
<td>۲۴۰۱</td>
<td>۲۴۰۵</td>
<td>۲۴۰۹</td>
<td>۲۴۱۳</td>
<td>۲۴۱۷</td>
</tr>
<tr>
<td>FeO</td>
<td>۲۴۰۱</td>
<td>۲۴۰۵</td>
<td>۲۴۰۹</td>
<td>۲۴۱۳</td>
<td>۲۴۱۷</td>
<td>۲۴۲۱</td>
</tr>
<tr>
<td>NiO</td>
<td>۲۴۰۵</td>
<td>۲۴۰۹</td>
<td>۲۴۱۳</td>
<td>۲۴۱۷</td>
<td>۲۴۲۱</td>
<td>۲۴۲۵</td>
</tr>
<tr>
<td>Cr۲O۳</td>
<td>۲۴۰۹</td>
<td>۲۴۱۳</td>
<td>۲۴۱۷</td>
<td>۲۴۲۱</td>
<td>۲۴۲۵</td>
<td>۲۴۲۹</td>
</tr>
<tr>
<td>Total</td>
<td>۲۴۲۱</td>
<td>۲۴۲۵</td>
<td>۲۴۲۹</td>
<td>۲۴۳۳</td>
<td>۲۴۳۷</td>
<td>۲۴۴۱</td>
</tr>
</tbody>
</table>

Fe۲+/Fe۳⁺ assuming full site occupancy, Cr# = [Cr / (Cr + Al)], Mg# = [Mg / (Mg + Fe۲⁺) * 100], Fe۳⁺/Fe⁷⁺ [Fe⁷⁺ / (Fe⁷⁺ + Cr + Al)]
جدول 2: نتایج تجزیه شیمیایی عناصر عمدی در هاگر ویویت‌های فراماتیک نازدیک

<table>
<thead>
<tr>
<th>عناصر</th>
<th>101</th>
<th>126</th>
<th>132</th>
<th>148</th>
<th>149</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>48.5</td>
<td>44.7</td>
<td>43.8</td>
<td>44.8</td>
<td>44.9</td>
<td>44.9</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>CaO</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>MgO</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>MnO</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>SO₃</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>CO₂</td>
<td>48.2</td>
<td>48.2</td>
<td>48.2</td>
<td>48.2</td>
<td>48.2</td>
<td>48.2</td>
</tr>
<tr>
<td>LOI</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
</tr>
<tr>
<td>CaO· Al₂O₃</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

این جدول 2 نتایج تجزیه شیمیایی عناصر عمدی و حاکی نادر در هاگر ویویت‌های فراماتیک نازدیک.
شکل ۴ (الف) اثر توارشکنی و طول شدگی در بلورهای الیفون در اثر مشبک موجود در دوینیت‌ها (CPL، ب) اثر توارشکنی موجود در هارزورپزیت‌های ت. (CPL، ج) تغییر در موضع و تغییر در موضع در اثر تنش کششی (CPL، ع) این فرعی کرومیت نمی‌شکل تا یپشکه رنگ فوهیای تبره‌ها باید باعث نشان از دوینیت‌های هارزورپزیت سریانتینی شده (PPL) محلول‌های سربیاری و اثر محلول‌های غنی از CO2 از سبک‌های منطقه‌ای دیگر کرده و باعث ایجاد شده است. فرآیند مواد الیفون در دوینیت‌ها بطور متوسط بیش از ۹۵ درصد از این دستخوش فرآیند سربیاری شده است. هدف کنش نشان داده شده است، هزینه بسیاری در سبک‌های موجود و درتونجبه‌های تبدیل شده و در نقاط مختلف بطور کاملاً به سربیاری تبدیل شده‌اند. سربیاری‌شدن دلیل ایجاد شده که در حواله نمایشگاه و مهم‌ترین واکنش در وسایل درونی‌هاست که در مطالعه مطرح شده‌اند. سربیاری در اثر محلول‌های غنی و درونی‌ها در راستای داری و شکل‌گیری، اثر محلول‌های خاکی و در اثری از این فعالیت‌ها جویان می‌گیرد (بار). در این مورد باید تشکیل نمی‌گردد شیمی کانی‌ها

این انبه طیب‌العیج سربیاری شده و اثر محلول‌های غنی از CO2 و سربیاری‌شدن دلیل ایجاد شده از سبک‌های منطقه‌ای دیگر کرده و باعث ایجاد شده است. فرآیند مواد الیفون در دوینیت‌ها بطور متوسط بیش از ۹۵ درصد از این دستخوش فرآیند سربیاری شده است. هدف کنش نشان داده شده است، هزینه بسیاری در سبک‌های موجود و درتونجبه‌های تبدیل شده و در نقاط مختلف بطور کاملاً به سربیاری تبدیل شده‌اند. سربیاری‌شدن دلیل ایجاد شده که در حواله نمایشگاه و مهم‌ترین واکنش در وسایل درونی‌هاست که در مطالعه مطرح شده‌اند. سربیاری در اثر محلول‌های غنی و درونی‌ها در راستای داری و شکل‌گیری، اثر محلول‌های خاکی و در اثری از این فعالیت‌ها جویان می‌گیرد (بار). در این مورد باید تشکیل نمی‌گردد شیمی کانی‌ها

این انبه طیب‌العیج سربیاری شده و اثر محلول‌های غنی از CO2 و سربیاری‌شدن دلیل ایجاد Sh
شیمیایی اشبیله‌های موجود در هاروپوزیت‌های فرامافیک نازدشت بر روی مثلث (شکل 6) نشان داده شده است. یکی از مهم‌ترین گانه‌های موجود در این مکان‌ها MgO و Al2O3، که در برخی از این مواد به صورت کسی-TiO2 موجود می‌باشند. MgO به صورت یکی از پایه‌های اصلی در سیستم‌های Fe-Fe2O3 و Cr-Cr2O3 به میان می‌آید و باعث شدن افزایش درصد MgO در سطح‌های مختلف از طریق ترکیب‌سازی بین آلیاژ‌ها می‌گردد.

دادرست در حضور دارند و در گستره‌ای انتخابی قرار گرفته‌اند (شکل 5). درصد وزنی این اشبیله با درصد وزنی اشبیله‌های موجود در سیستم‌های Fe-Fe2O3، Cr-Cr2O3 مطابقت دارد.

شکل 5: رده بندی پیروکسنه بر گروه‌های فرامافیک در حوزه‌های مختلف

درصد وزنی اشبیله‌های موجود در سیستم‌های Fe-Fe2O3،Cr-Cr2O3 مطابقت دارد.

درصد وزنی اشبیله‌های موجود در سیستم‌های Fe-Fe2O3،Cr-Cr2O3 مطابقت دارد.

درصد وزنی اشبیله‌های موجود در سیستم‌های Fe-Fe2O3،Cr-Cr2O3 مطابقت دارد.
شکل 6 نمودار سه تایی $\text{Al}^{3+}, \text{Cr}^{3+}, \text{Fe}^{3+}$ و موقتی اسبیلن‌های موجود در هارزیورژتیتهای فرامافیک نازدشت، بر گرفته از مرجع [12].

شکل 7 نمودار نسبت به TiO_2 کلیه اسبیلن‌های موجود در هارزیورژتیتهای فرامافیک نازدشت رودان [14].

زمین‌شناسی

مقادیر پایین عناصر ماکرو دوست مانند نظیر CaO (جدول 4) و Al_2O_3 (تیتانیت) در هارزیورژتیتهای فرامافیک نازدشت نشان می‌دهد که این سنگ‌ها می‌توانند به عنوان تقاضاهای دویچه‌ای در نظر گرفته شوند. به علاوه، مقدار Fe^{3+} (تیتانیت) و Fe_2O_3 (تیتانیت) به همراه مقدار پایین Al_2O_3 و TiO_2 به مصرف نگرفته شد که این سنگ‌های فاقد پلاژیولاس، در اثر دویچه‌ای از عناصر بارو نهی شده‌اند. مقدار پایین TiO_2 در این سنگ‌ها (2011) تا درصد وزنی در مقایسه با ترکیب گویش‌های بالایی که، درصد وزنی الگوف تعیین نشده‌اند است. زیرا این سنگ‌های تاریک و هارزیورژتیتهای در سنگ‌های نازدشت، با وابستگی در کاساراهای نواع آلی کمتر از 25 درصد وزنی است [17]. بنابراین می‌توان نتیجه گرفت که مقادیر پایین CaO همراه با نسبت Fe^{3+} به همراه حضور پلاژیولاس و درصد کم پیروکسنهای فاقد از کلسیم است. به همراه حضور الیوین فورسترینی نشان دهنده تعلق
قردند درون اسپینل‌های غنی از کروم وارد شوند، از این رو Ta
اسپینل‌های میزانی همانندی برای این عناصر به شمار می‌رود [16].

در نمونه‌های جریان فре و کمیاب بهنگار شده نسبت به
گندت‌ریت (شکل 8)، ناهمگنی میت عناصر نسبت به عناصر
مجاور نشان دهنده خاسیت‌های گونه‌های این سیستم‌هاست. نسبت
در اتاق سنگ‌های منطقه‌های حدود 41±9 است که از
Zr/Hf
مقدار آن در گونه‌های اولیه (15) [15] بالاتر است و با توجه
به این نسبت می‌توان گفت که سنگ‌های پریدوپتیتی منطقه
فرامافیک نازدهنده چندین مرحله نوربخشی را به سر
گذاشته‌اند. نسبت Pb/Nb (Np) در همه نمونه‌های هزارپورزیت
324 است که از مقدار آن در گونه‌های اولیه (15) [15] بسیار کمتر است و نیاز به
به‌نفعه منافک را نشان می‌دهند. غنی شدگی عناصر خاکی
نادر در نمونه‌های هزارپورزیت برسی به شکل نازدهنده نسبت به
کندتیت بسیار کم و در بیشتر مواد کمتر از 0.5 (شکل 9) و
نشان‌گر دیدن شدگی بالا (شکل از 0.25 درصد) است و در
نتیجه اینکه نمونه‌های برسی در گستره پریدوپتیتی های
نهپ‌شنگی بالا قرار می‌گیرند.

مقدار Cr از سنگ‌های
800 ppm در برخی
سنگ‌های هزارپورزیتی این منطقه نزدیک به مقدار متوسط سنج‌های
فرامافیک است. از نظر سازگاری، مشابه
Cr اما برخلاف
مقدار در سنگ‌های مختلف از ترکیب
کانی‌شناسی سنگ بیروی می‌کند. مقدار نیکل در
1800 ppm سنگ‌های اولیه که سنگ مادر آن‌ها در در
و در این‌های که سنگ مادران پریدوپتین است 1600 ppm و
در آن‌هایی که سنگ مادران پریدوپتین است
1000 ppm به دست آمده است [19]. در سنگ‌های فرامافیک نازدهنده
روجان، مقدار در هزارپورزیت
1670 ppm است (شکل
8) و در گستره سنگ مادر پریدوپتین قرار می‌گیرند. عناصر
Pb و Nb
در گستره سنج‌های خاکی نادر نمونه‌های برسی به شکل
نهپ‌شنگی نسبت به کندتیت [15] [15].
خاستگاه

به منظور مقایسه ترکیب سنگهای فراماکیفی نازدشت با پریدوئیت‌های گوشتهای و یا به عبارت دیگر، پریدوئیت‌های افولوئیت‌های کوه‌های غیر‌سیالوپتیک [21]. گردده این پریدوئیت‌ها بر نمونه‌های مذکور آن‌های که داده شده (شکل 10). بخش عمده‌های فراماکیفی نازدشت، از نظر مقدار MgO مشابه پریدوئیت‌های گوشتهای و یا از روند کلی پریدوئیت‌های افولوئیت‌های غیر‌سیالوپتیک دنیا بی‌روی می‌کند. MgO کوشتهای با کاهش بر مقدار MgO افزوده می‌شود. مقدار TiO2 وجود در هزارپزیت‌های منطقه مورد بررسی افولوئیت‌های تشکیل خاستگاه فراماکیفی مربوط به استفاده شد. ترکیب کروم اسپینل‌های موجود در هزارپزیت‌های

همجنس موجودیت اسپینل‌های موجود در هزارپزیت‌های

نازدشت در نمونه Al2O3 نسبت به آن‌ها در

Mg# نسبت به Cr# طرف دیگر، در نمونه اسپینل‌های موجود در هزارپزیت‌های ناز دشت با پریدوئیت-

یا نوع آلی همبسته دارند (شکل 11 الف). عده کروم-

اسپینل‌های موجود در پریدوئیت‌های اطرافانی باقر از عدد

کروم اسپینل‌های موجود در پریدوئیت‌های ایپسال است. (از 38 تا

پیش از 80) که نتای می‌دهد که درجه ذوب‌بخشی در

پریدوئیت‌های اطرافانی نسبت به پریدوئیت‌های ایپسال

پیش‌تر است [11] با توجه به جدول 3 مقدار Cr# در کروم-

20.7% تا 51.2 درصد متغیر است. بنابراین می‌توان

هزارپزیت‌های منطقه نازدشت را مربوط به پریدوئیت‌های

ابزارانی با داره ذوب ذوب‌بخش در Cr# پریدوئیت‌ها. نشان دهنده افزایش منظور ذوب‌بخشی در

گوشته است [11، 29]. ناکنون پژوهش‌های سیار برای

مقدار کروم اسپینل‌های گوشتهای و درجه ذوب-

بخش آن‌ها صورت گرفته‌است. در شکل 12 ب داره ذوب-

بخش اسپینل ارس انحصاری هیپروس و همکارش [20] به

نحو پیکا رسم شده است. دیده می‌شود که میزان درجه

ذوب‌بخشی در اسپینل‌های منطقه مورد نظر بیشتر از 25 درصد

است.
شکل ۱۰ تغییرات %j MgO در هزارپوزیتیهای نازدشت که متغیر به پریپدیتیهای گوشته‌های است و از روند کلی پریپدیتیهای افیولیتی و غیر افیولیتی نشان می‌دهد [۲۱].

شکل ۱۱ اینج ترکیب کروم اسپینل‌های موجود در هزارپوزیتیهای نازدشت در نمودار CrO۳ (نسبت به TiO۲) موجود در هزارپوزیتیهای نازدشت در نمودار Al۲O۳ (نسبت به TiO۲) [۱۰].

شکل ۱۲ اینج ترکیب Mg# نسبت به Cr# کروم اسپینل‌های هزارپوزیتیهای فراامافیک نازدشت و ویژگی آن‌ها به پریپدیتیهای نوع آلی به ترتیب از مراجع [۱۱،۱۲،۱۳،۱۴] و گستره بوننیتی از مرحله از [۱۵] آورده شده. نماد علامت‌دار شده نشان دهنده درصد ذوب سنگ پریپدیت می‌باشد بر اساس محاسبات مرجع [۲۰] است.
پژوهش نتایج تجزیه محیط‌های پهن‌تر برف‌پوشانی قابل مقایسه است. ترکیب کروم اسپینیل‌های موجود در هزاروزیمهای نازدشت آنها را در گستره‌ای از اسفنج‌ها است. همچنین موقعیت کروم اسپینیل‌های موجود در هزاروزیم‌های نازدشت نسبت به TiO₂ نشانگر تشکیل آنها در محیط برف‌پوشانی است. از طرف دیگر، نسبت Cr# به Cr نسبت به TiO₂ موجود در هزاروزیم‌های اسپینیل‌های نازدشت با برف‌پوشانی نسبت اولیه همچنین دارد. مقدار (۲۵ تا ۲۷) نسبت Cr به Mg موجود در برف‌پوشانی Cr# نشان می‌دهد که در یک محیط برف‌پوشانی در شرایط برف‌پوشانی بالا تشکیل و سپس به پوسته قاره‌ای فرار داده شدند.

قدرتانی نوسان‌گران در منطقه محروم ملکی بلورنشانی و کالی-شناسی ایران جهت ارائه چه مطلب‌تر این مقاله سیاست‌گذاری می‌کند.

مراجع

