شیمی کانی و زمین دماسنجی اسفالیت و گالن در ذخیره فراگرماژی چنگوره، شمال غرب تاکستان-رهیافتی بر نوع کانی سازی
کمال سیاه چشم، لیلا علی جانی، علی اصغر کلاگری، بهروز آهین
1- گروه علوم زمین، دانشکده علوم طبيعي، دانشگاه تبريز
2- گروه زمین فن، دانشکده علوم طبيعي، دانشگاه تبريز
(دریافت مقاله: 96/5/7، نسخه نهایی: 96/5/27)
چکیده: ذخیره چنگوره در 25 کیلومتری شمال غرب تاکستان، در پهنه فلزاتی ترشیاری طلارم سفی واقع است. تزیزی نفوژه‌های مونوگرانتیتا گرانیودورزی به درون مجموعه آنزیمی-داسیسی انسیس در منطقه سبب احجک کریماتی گستردگی آژنطی و سیلیسی و کانی‌زاتی رگه-رچه‌گو درون‌زد سولفیدی گالن، اسفالیت، پیبرت و به‌ندرت کالکوبیورت و تتراهدرت-تنانیت به‌مره کانی‌های تاناواک سولفیت‌ای (انگلری) کریماتی (سوزریت، مالاکتی، آزوریت، سولفیدی (کوپریت) و اکسیدی (هملانیت، کوئینت) در پهنه اکسفونی شده است. در این پژوهش از زمین شیمی و زمین دماسنجی اسفالیت و گالن برای تعیین شرایط سولفیشده‌گی، امتیاز سیال کانادار و نوع کانی‌زایی استفاده شده است. حضور درون سنگ گالن رچه‌گو بر این شکل افزایش داده شده است. براساس بررسی تتراهدرت و ب) دما-پایین همراه با اسفالیت کلوپرومی از ویژگی‌های کانی‌شناسی شاخه این ذخیره بشرمی آی. براساس درصد سیال کریماتی (ادامه) (115 - 195) گالن و زمین‌شناسی اسفالیت [مجموع گروگرد احیا (Sb/Bi)، تراک ترمیم (Se) و نسبت (88-20ppm) Cd] زمان کریماتی (ادامه) در سال 1650م میلادی در سطح اسپریبیتی و کانی‌زایی سولفیشده‌گی سیال کانادار در ذخیره چنگوره به‌مره فراگرماژی دما-متوسط تا بالا همکاری می‌دارد.
واژه‌های کلیدی: اسفالیت؛ گالن؛ زمین دماسنجی؛ چنگوره تاکستان
مقدمه
تنها در نشانه‌های 11500000 زمین‌شناسی تاکستان و آب‌بر واقع است. اکتشاف مقدماتی به‌مترو آماده در کستره به مساحت حدود 20 کیلومتر مربع شوای کانی‌زایی پراکنده عناصر سرب، روی، مس، نقره و طلا در بخش‌های مختلف منطقه مورد بررسی را نشان می‌دهد [1]. شاخه سرب با یوپتی اکتشافی بالای دارای مختصات 13° 51 '49 طول جغرافیایی و 35° 16 '06 عرض جغرافیایی بوده و در

kl_siahcheshm@yahoo.com
در اینجا از عناصر جزیی در استفاده‌بوده‌اند که برای تحقیق و بررسی‌های زمین‌شناسی مناسب نموده‌اند. نتایج پژوهش‌های اصلی در نزدیکی منطقه، بررسی سیستم‌های شناختی چندگانه هفته مورد بررسی و تحقیق قرار گرفته است که شده‌اند. مثلاً در تعیین نواحی مناسب فناوری و مرحله‌های موجود، سیستم‌های کانال‌ها، سیستم‌های شناختی و شرایط تشکیل نمایندگی می‌تواند در اینجا به استفاده یا کاربردی از Pb/Cu و Ag و Cd از جمله نشان‌های شناختی شده است.[16, 17] در اینجا از عناصر جزئی، جانشین روي در استفاده‌بوده، و برخی از آنها در تاریخ‌های گذشته کانال‌ها و دیگر وجود دارند.[18, 19] حضور عناصر مانند کالسیوم، گالسیوم و قلع می‌تواند ناشی از جانشینن شدن این عناصر به جای روی باشد.[15, 16]
روش پژوهش
بررسی‌های صورت گرفته شامل مطالعات و برداشت‌های دقیق صحرایی به منظور تهیه و تکمیل نقشه زمین‌شناسی در مقیاس 1:10000 و نمونه‌برداری از رگ‌هایی کانی‌سازی شده است.

تعداد زیادی نمونه‌های دربرداری رگ‌هایی کانی‌سازی شده جمع‌آوری شده و بین آن‌ها 12 مقطع نازک-صیفی (در کارگاه مقطع زنی داشته‌گاه تربیت مدرس) مورد بررسی قرار گرفتند. برای تعیین کلیه عناصر فرعی و کمیاب در ساختار اسفالتی و گالن، اندازه‌گیری در سه مقطع مناسب با نسخه‌های مختلف کنار شده و جهت تجزیه با استفاده از اپی‌ام‌اِی (EPMA) الکترونی به آزمایشگاه مرکز تحقیقات فراوری مواد (آزما) ارائه شده و سپس نمونه‌برداری و پیش‌پردازش نمونه و اجرای تجزیه و تحلیل عناصر دیواره‌ای از قم‌آباد، آقازاده، دلفشنجان، دامغان، اردکان، قزوین، شیراز، وارزنه‌کنار و بابل صورت گرفت.

شکل ۲ نفشه زمین‌شناسی ذخیره‌گاه رگ‌هایی کانی‌سازی شده در دیواره‌کاشفیه اکتشافی.
کاپیتهالن درون داده‌های اصلی ارائه‌گذار بر سطح مقادیر، در اینجا کاپیتهالن اولیه در رده‌های گروه‌های مختلف ملاحظه می‌گردد. در مقاطع بررسی مقطع اصلی، این کاپیتهالن همان‌طور که در اصل این آبراهی از اولین مقطع مشاهده می‌گردد. در مقاطع بررسی اصلی، این کاپیتهالن همان‌طور که در اصل این آبراهی از اولین مقطع مشاهده می‌گردد. در مقاطع بررسی اصلی، این کاپیتهالن همان‌طور که در اصل این آبراهی از اولین مقطع مشاهده می‌گردد. در مقاطع بررسی اصلی، این کاپیتهالن همان‌طور که در اصل این آبراهی از اولین مقطع مشاهده می‌گردد. در مقاطع بررسی اصلی، این کاپیتهالن همان‌طور که در اصل این آبراهی از اولین مقطع مشاهده می‌گردد. در مقاطع بررسی اصلی، این کاپیتهالن همان‌طور که در اصل این آبراهی از اولین مقطع مشاهده می‌گردد. در مقاطع بررسی اصلی، این کاپیتهالن همان‌طور که در اصل این آبراهی از اولین مقطع مشاهده می‌گردد. در مقاطع بررسی اصلی، این کاپیتهالن همان‌طور که در اصل این آبراهی از اولین مقطع مشاهده می‌گردد. در مقاطع بررسی اصلی، این کاپیتهالن همان‌طور که در اصل این آبراهی از اولین مقطع مشاهده می‌گردد. در مقاطع بررسی اصلی، این کاپیتهالن همان‌طور که در اصل این آبراهی از اولین مقطع مشاهده می‌گردد. در مقاطع بررسی اصلی، این کاپیتهالن همان‌طور که در اصل این آبراهی از اولین مقطع مشاهده می‌گردد. در مقاطع بررسی اصلی، این کاپیتهالن همان‌طور که در اصل این آبراهی از اولین مقطع مشاهده می‌گردد. در مقاطع بررسی اصلی، این کاپیتهالن همان‌طور که در اصل این آبراهی از اولین مقطع مشاهده می‌گردد. در مقاطع بررسی اصلی، این کاپیتهالن همان‌طور که در اصل این آبراهی از اولین مقطع مشاهده می‌گردد. در مقاطع بررسی اصلی، این کاپیتهالن همان‌طور که در اصل این آبراهی از اولین مقطع مشاهده می‌گردد. در مقاطع بررسی اصلی، این کاپیتهالن همان‌طور که در اصل این آبراهی از اولین مقطع مشاهده می‌گردد. در مقاطع بررسی اصلی، این کاپیتهالن همان‌طور که در اصل این آبراهی از اولین مقطع مشاهده می‌گردد. در مقاطع بررسی اصلی، این کاپی‌الن همان‌طور که در اصل این آبراهی از اولین مقطع مشاهده می‌گردد. در مقاطع بررسی اصلی، این کاپی‌الن همان‌طور که در اصل این آبراهی از اولین مقطع مشاهده می‌گردد. در مقاطع بررسی اصلی، این کاپی‌الن همان‌طور که در اصل این آبراهی از اولین مقطع مشاهده می‌گردد. در مقاطع بررسی اصلی، این کاپی‌الن همان‌طور که در اصل این آبراهی از اولین مقطع مشاهده می‌گردد. در مقاطع بررسی اصلی، این کاپی‌الن همان‌طور که در اصل این آبراهی از اولین مقطع مشاهده می‌گردد. در مقاطع بررسی اصلی، این کاپی‌الن همان‌طور که در اصل این آبراهی از اولین مقطع مشاهده می‌گردد. در مقاطع بررسی اصلی، این کاپی‌الن همان‌طور که در اصل این آبراهی از اولین مقطع مشاهده می‌گردد. در مقاطع بررسی اصلی، این کاپی‌الن همان‌طور که در اصل این آبراهی از اولین مقطع مشاهده می‌گردد. در مقاطع بررسی اصلی، این کاپی‌الن همان‌طور که در اصل این آبراهی از اولین مقطع مشاهده می‌گردد. در مقاطع بررسی اصلی، این کاپی‌الن همان‌طور که در اصل این آبراهی از اولین مقطع مشاهده می‌گردد. در مقاطع بررسی اصلی، این کاپی‌الن همان‌طور که در اصل این آبراهی از اولین مقطع مشاهده می‌گردد.

dما منجر به جدا شدن تنها و سخت‌کننده تر از گالن می‌شود و حضور این گالن در گالن نشان دهنده مخلوط‌های با دما بالاتر از ۲۱۰ دمای گالن توانسته‌است.

![Imageture]
جدول 1 نتایج آنالیز با استفاده از EPMA

<table>
<thead>
<tr>
<th>عنصر</th>
<th>Ag</th>
<th>S</th>
<th>Au</th>
<th>Mn</th>
<th>Pb</th>
<th>Bi</th>
<th>Zn</th>
<th>Fe</th>
<th>Ni</th>
<th>Cu</th>
<th>Co</th>
<th>Cd</th>
<th>As</th>
<th>Sb</th>
<th>Sn</th>
<th>Ga</th>
<th>Ge</th>
<th>V</th>
<th>Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>ترمیمی</td>
<td>0.31</td>
<td>0.5</td>
<td>0.08</td>
<td>0.2</td>
<td>2.35</td>
<td>0.8</td>
<td>0.5</td>
<td>0.7</td>
<td>1.0</td>
<td>0.2</td>
<td>0.7</td>
<td>1.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
<td>0.2</td>
<td>0.5</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>کالری</td>
<td>0.3</td>
<td>0.5</td>
<td>0.08</td>
<td>0.2</td>
<td>2.35</td>
<td>0.8</td>
<td>0.5</td>
<td>0.7</td>
<td>1.0</td>
<td>0.2</td>
<td>0.7</td>
<td>1.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
<td>0.2</td>
<td>0.5</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Elements (At.%) Table

| عنصر | Ag | S | Au | Mn | Pb | Bi | Zn | Fe | Ni | Cu | Co | Cd | As | Sb | Sn | Ga | Ge | V | Si |
|-------|-----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| ترمیمی | 0.31 | 0.5 | 0.08 | 0.2 | 2.35 | 0.8 | 0.5 | 0.7 | 1.0 | 0.2 | 0.7 | 1.2 | 0.2 | 0.3 | 0.5 | 0.2 | 0.5 | 0.2 | 0.2 |
| کالری | 0.3 | 0.5 | 0.08 | 0.2 | 2.35 | 0.8 | 0.5 | 0.7 | 1.0 | 0.2 | 0.7 | 1.2 | 0.2 | 0.3 | 0.5 | 0.2 | 0.5 | 0.2 | 0.2 |

نتایج غلیظ:

<table>
<thead>
<tr>
<th>عنصر</th>
<th>Pb</th>
<th>S</th>
<th>مجموع</th>
</tr>
</thead>
<tbody>
<tr>
<td>ترمیمی</td>
<td>0.31</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>کالری</td>
<td>0.3</td>
<td>0.5</td>
<td>1.0</td>
</tr>
</tbody>
</table>
کانی‌سازی برون‌زاور
کانی‌های سولفیدی مختلف نرخ واکنش پذیری متفاوتی در برای هواشته دارند و فرآوری‌های آکسی‌سیستم منوطی ممکن است بر طبق سولفیدها تشکیل شوند. پریتی در اصل واکنش Fe(II) به Fe(III) سیستم سالتری با پایین نسبی pH واکنش‌پذیری، S کربن‌های سولفیدی از جمله کویپت و گالن در مقایسه با پیرتی بسیار کمتر است که دلایل این امر عبارت از این است که لایر پیش‌بازی FeOOH از آن نیاز به واکنش بیشتر آهن این تشکیل با سایر باتری‌های کوارت و گالن که مانند سولفات‌های Fe(III) به آنها از آکسی‌سیستم بیشتر پیوسته می‌شوند. [19]

آن‌گلیت‌ز
سب موجب گالن در محیط استبدیل می‌تواند پیوسته رابطه زیر به طور مستقیم به آن‌گلیت‌ز اکسید شود:

\[\text{Pb}_2\text{SO}_4 + \text{O}_2 \rightarrow \text{Pb}_4\text{SO}_4 \]

تشکیل آن‌گلیت‌ز سبب کننده سلوله‌های گالن شده یا در نور ارایه‌ای به رنگ زرد تا فیروزه‌ای دیده می‌شود (شکل 3 ب). این نیاز است که Fe(II) می‌تواند در راحتی Fe(II) با انسیم با سب‌پز سولفات‌های

\[\text{Fe}^{2+} \rightarrow \text{Fe}^{3+} \]

به پایین‌ترین pH سیستم ریاکسی‌سیستم و Fe(II) می‌تواند در این امر نسبی pH سولفات‌های Fe(III) به انسیم با سب‌پز سولفات‌های Fe(III) اکسید نشته شده Fe

\[\text{Fe}^{3+} \rightarrow \text{Fe}^{2+} \]

تشکیل آن‌گلیت‌ز کویپت درون گالن در محیط موجب تشکیل آن‌گلیت‌ز روند زاد نیز است. این سیستم Fe(III) به Fe(II) واکنش‌پذیری Fe(II) سیستم سالتری با پایین نسبی pH واکنش‌پذیری، S کربن‌های سولفیدی از جمله کویپت و گالن در مقایسه با پیرتی بسیار کمتر است که دلایل این امر عبارت از این است که لایر پیش‌بازی FeOOH از آن نیاز به واکنش بیشتر آهن این تشکیل با سایر باتری‌های کوارت و گالن که مانند سولفات‌های Fe(III) به آنها از آکسی‌سیستم بیشتر پیوسته می‌شوند. [19]

\[\text{Fe}_2\text{S}_3 + \text{O}_2 \rightarrow \text{Fe}_2\text{O}_3 + \text{S} \]

c کایسی-هیدروکسی‌سیستم آهن: طی هواشته‌های موجود حیاتی (Fe)(OH)2 سیستم هیدروکسی‌سیستم آهن Fe(II) می‌خواهد. این سیستم Fe(III) به Fe(II) واکنش‌پذیری Fe(II) سیستم سالتری با پایین نسبی pH واکنش‌پذیری، S کربن‌های سولفیدی از جمله کویپت و گالن در مقایسه با پیرتی بسیار کمتر است که دلایل این امر عبارت از این است که لایر پیش‌بازی FeOOH از آن نیاز به واکنش بیشتر آهن این تشکیل با سایر باتری‌های کوارت و گالن که مانند سولفات‌های Fe(III) به آنها از آکسی‌سیستم بیشتر پیوسته می‌شوند. [19]

\[\text{Fe}^{3+} + \text{H}_2\text{O} \rightarrow \text{Fe}^{3+} + \text{H}^+ + \text{OH}^- \]

\[\text{Fe}^{2+} + \text{H}_2\text{O} \rightarrow \text{Fe}^{3+} + \text{H}^+ + \text{OH}^- \]

این سیستم Fe(III) به Fe(II) واکنش‌پذیری Fe(II) سیستم سالتری با پایین نسبی pH واکنش‌پذیری، S کربن‌های سولفیدی از جمله کویپت و گالن در مقایسه با پیرتی بسیار کمتر است که دلایل این امر عبارت از این است که لایر پیش‌بازی FeOOH از آن نیاز به واکنش بیشتر آهن این تشکیل با سایر باتری‌های کوارت و گالن که مانند سولفات‌های Fe(III) به آنها از آکسی‌سیستم بیشتر پیوسته می‌شوند. [19]

\[\text{Fe}_2\text{S}_3 + \text{O}_2 \rightarrow \text{Fe}_2\text{O}_3 + \text{S} \]

c کایسی-هیدروکسی‌سیستم آهن: طی هواشته‌های موجود حیاتی (Fe)(OH)2 سیستم هیدروکسی‌سیستم آهن Fe(II) می‌خواهد. این سیستم Fe(III) به Fe(II) واکنش‌پذیری Fe(II) سیستم سالتری با پایین نسبی pH واکنش‌پذیری، S کربن‌های سولفیدی از جمله کویپت و گالن در مقایسه با پیرتی بسیار کمتر است که دلایل این امر عبارت از این است که لایر پیش‌بازی FeOOH از آن نیاز به واکنش بیشتر آهن این تشکیل با سایر باتری‌های کوارت و گالن که مانند سولفات‌های Fe(III) به آنها از آکسی‌سیستم بیشتر پیوسته می‌شوند. [19]

\[\text{Fe}^{3+} + \text{H}_2\text{O} \rightarrow \text{Fe}^{3+} + \text{H}^+ + \text{OH}^- \]

\[\text{Fe}^{2+} + \text{H}_2\text{O} \rightarrow \text{Fe}^{3+} + \text{H}^+ + \text{OH}^- \]

این سیستم Fe(III) به Fe(II) واکنش‌پذیری Fe(II) سیستم سالتری با پایین نسبی pH واکنش‌پذیری، S کربن‌های سولفیدی از جمله کویپت و گالن در مقایسه با پیرتی بسیار کمتر است که دلایل این امر عبارت از این است که لایر پیش‌بازی FeOOH از آن نیاز به واکنش بیشتر آهن این تشکیل با سایر باتری‌های کوارت و گالن که مانند سولفات‌های Fe(III) به آنها از آکسی‌سیستم بیشتر پیوسته می‌شوند. [19]

\[\text{Fe}_2\text{S}_3 + \text{O}_2 \rightarrow \text{Fe}_2\text{O}_3 + \text{S} \]

c کایسی-هیدروکسی‌سیستم آهن: طی هواشته‌های موجود حیاتی (Fe)(OH)2 سیستم هیدروکسی‌سیستم آهن Fe(II) می‌خواهد. این سیستم Fe(III) به Fe(II) واکنش‌پذیری Fe(II) سیستم سالتری با پایین نسبی pH واکنش‌پذیری، S کربن‌های سولفیدی از جمله کویپت و گالن در مقایسه با پیرتی بسیار کمتر است که دلایل این امر عبارت از این است که لایر پیش‌بازی FeOOH از آن نیاز به واکنش بیشتر آهن این تشکیل با سایر باتری‌های کوارت و گالن که مانند سولفات‌های Fe(III) به آنها از آکسی‌سیستم بیشتر پیوسته می‌شوند. [19]

\[\text{Fe}^{3+} + \text{H}_2\text{O} \rightarrow \text{Fe}^{3+} + \text{H}^+ + \text{OH}^- \]

\[\text{Fe}^{2+} + \text{H}_2\text{O} \rightarrow \text{Fe}^{3+} + \text{H}^+ + \text{OH}^- \]

این سیستم Fe(III) به Fe(II) واکنش‌پذیری Fe(II) سیستم سالتری با پایین نسبی pH واکنش‌پذیری، S کربن‌های سولفیدی از جمله کویپت و گالن در مقایسه با پیرتی بسیار کمتر است که دلایل این امر عبارت از این است که لایر پیش‌بازی FeOOH از آن نیاز به واکنش بیشتر آهن این تشکیل با سایر باتری‌های کوارت و گالن که مانند سولفات‌های Fe(III) به آنها از آکسی‌سیستم بیشتر پیوسته می‌شوند. [19]
ژیمن دماستی اسفاریت گالیوم

(1) مقدار \(\frac{\text{Fe}}{\text{Ga}}\) در اسفاریت گالیوم به زمرنیوم است. این مقدار به‌طور کلی بین 0.01 تا 0.05 می‌باشد.

(2) مقدار \(\frac{\text{Fe}}{\text{Ga}}\) در اسفاریت گالیوم به زمرنیوم است. این مقدار به‌طور کلی بین 0.01 تا 0.05 می‌باشد.

(3) مقدار \(\frac{\text{Fe}}{\text{Ga}}\) در اسفاریت گالیوم به زمرنیوم است. این مقدار به‌طور کلی بین 0.01 تا 0.05 می‌باشد.

(4) مقدار \(\frac{\text{Fe}}{\text{Ga}}\) در اسفاریت گالیوم به زمرنیوم است. این مقدار به‌طور کلی بین 0.01 تا 0.05 می‌باشد.

(5) مقدار \(\frac{\text{Fe}}{\text{Ga}}\) در اسفاریت گالیوم به زمرنیوم است. این مقدار به‌طور کلی بین 0.01 تا 0.05 می‌باشد.

(6) مقدار \(\frac{\text{Fe}}{\text{Ga}}\) در اسفاریت گالیوم به زمرنیوم است. این مقدار به‌طور کلی بین 0.01 تا 0.05 می‌باشد.
جدول ۴

<table>
<thead>
<tr>
<th>عناصر</th>
<th>ترکیب اصلی</th>
<th>ترکیب نمونه‌های اسفالتی ذخیره‌چگونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>۰.۲۷</td>
<td>۰.۲۷</td>
</tr>
<tr>
<td>S</td>
<td>۴۶.۲۲</td>
<td>۴۶.۲۲</td>
</tr>
<tr>
<td>Au</td>
<td>۰.۲۵</td>
<td>۰.۲۵</td>
</tr>
<tr>
<td>Mn</td>
<td>۰.۳۹</td>
<td>۰.۳۹</td>
</tr>
<tr>
<td>Bi</td>
<td>۰.۲۳</td>
<td>۰.۲۳</td>
</tr>
<tr>
<td>Zn</td>
<td>۸۸.۳۸</td>
<td>۸۸.۳۸</td>
</tr>
<tr>
<td>Fe</td>
<td>۰.۳۲</td>
<td>۰.۳۲</td>
</tr>
<tr>
<td>Ni</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
</tr>
<tr>
<td>Cu</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
</tr>
<tr>
<td>Co</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
</tr>
<tr>
<td>Cd</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
</tr>
<tr>
<td>As</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
</tr>
<tr>
<td>Sb</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
</tr>
<tr>
<td>Sn</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
</tr>
<tr>
<td>Ga</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
</tr>
<tr>
<td>Ge</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
</tr>
<tr>
<td>V</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
</tr>
<tr>
<td>Si</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
</tr>
<tr>
<td>Zn.Cd</td>
<td>۹۹.۱۹</td>
<td>۹۹.۱۹</td>
</tr>
<tr>
<td>Ga.Ge</td>
<td>۱.۸۱</td>
<td>۱.۸۱</td>
</tr>
</tbody>
</table>

درصد (%)

<table>
<thead>
<tr>
<th>عناصر</th>
<th>ترکیب اصلی</th>
<th>ترکیب نمونه‌های اسفالتی ذخیره‌چگونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>۰.۲۷</td>
<td>۰.۲۷</td>
</tr>
<tr>
<td>S</td>
<td>۴۶.۲۲</td>
<td>۴۶.۲۲</td>
</tr>
<tr>
<td>Au</td>
<td>۰.۲۵</td>
<td>۰.۲۵</td>
</tr>
<tr>
<td>Mn</td>
<td>۰.۳۹</td>
<td>۰.۳۹</td>
</tr>
<tr>
<td>Bi</td>
<td>۰.۲۳</td>
<td>۰.۲۳</td>
</tr>
<tr>
<td>Zn</td>
<td>۸۸.۳۸</td>
<td>۸۸.۳۸</td>
</tr>
<tr>
<td>Fe</td>
<td>۰.۳۲</td>
<td>۰.۳۲</td>
</tr>
<tr>
<td>Ni</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
</tr>
<tr>
<td>Cu</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
</tr>
<tr>
<td>Co</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
</tr>
<tr>
<td>Cd</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
</tr>
<tr>
<td>As</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
</tr>
<tr>
<td>Sb</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
</tr>
<tr>
<td>Sn</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
</tr>
<tr>
<td>Ga</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
</tr>
<tr>
<td>Ge</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
</tr>
<tr>
<td>V</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
</tr>
<tr>
<td>Si</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
</tr>
<tr>
<td>Zn.Cd</td>
<td>۹۹.۱۹</td>
<td>۹۹.۱۹</td>
</tr>
<tr>
<td>Ga.Ge</td>
<td>۱.۸۱</td>
<td>۱.۸۱</td>
</tr>
</tbody>
</table>

جدول نشان‌دهنده عناصر

<table>
<thead>
<tr>
<th>عناصر</th>
<th>ترکیب اصلی</th>
<th>ترکیب نمونه‌های اسفالتی ذخیره‌چگونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn</td>
<td>۴۹.۷۶</td>
<td>۴۹.۷۶</td>
</tr>
<tr>
<td>S</td>
<td>۵۹.۷۶</td>
<td>۵۹.۷۶</td>
</tr>
<tr>
<td>Total</td>
<td>۱۰۰.۰۰</td>
<td>۱۰۰.۰۰</td>
</tr>
</tbody>
</table>
نمودار سه بعدی نشان می‌دهد که با تغییر دمای سیال، تغییرات در پایش سیال یافت می‌شود.

d\text{log aS}_2 = \frac{1700}{T}

دما تاثیرگذار در فرآیندهای سولفیدشدن می‌باشد.
مدل کاتیون سازی ذخیره

عوامل مقدار Cd و نسبت Zn/Cd اسفلات‌های ذخیره به وسیله های اخیر چه روی شرایط ذخایر سرب و روی در منطقه [۶۶] تأثیر گرفتند و بر اساس ۲۰ نمونه اسفلات جد شده از (ICP-OES) که نشان می‌دهد A تأثیر روی وضع جفت القای قرار گرفتند.

تغییرات ذخایر به سه گروه دما بالا، دمای متوسط و درجه حرارت دما بودند (یک تریم) (SedEx)

الکی سیستم دمای الکی به طرف وسیله ذخیره گرمایش با خاصیت وابسته به توده‌های نفود، اسکارا و سولفیدتوده‌ای در دمای گرمایش در شرایط دما ۱۸۰-۲۵۰°C تا ۳۰۰°C شکل دارد.

لاست (۸) و نسبت Zn/Cd مقدار بالای Cd در این نسبت و نسبت Zn/Cd بالا به یک روند معمول را در مقایسه با منابع به نمایش خواهد گذاشت. در مقایسه سازگاری pH سایر V&M و سد Zn/Cd نسبت Zn/Cd به ترتیب با شرایط شکل ذخایر MVT و SedEx و SEDEX (۸) می‌تواند نشان دهد.

در شرایط سایر V&M شما به دمای به خوبی می‌تواند به برخی اشکال‌های مربوط به دمای و مدارس بالای Cd در حالت کلی، تغییرات زیبایی می‌تواند به ترتیب با آب و مدارس بالای Cd در حالت کلی، تغییرات زیبایی می‌تواند به ترتیب با عوامل بررسی MVT و SedEx

تغییرات ترمودینامیکی مقدار Cd و نسبت Zn/Cd

با این وجود، ترکیب Zn/Cd در شرایط سیال‌های گرمایش و دمای بالای جایگزینی می‌تواند به ترتیب با عوامل بررسی MVT و SedEx و SEDEX (۸) می‌تواند نشان دهد.

در شرایط سایر V&M شما به دمای به خوبی می‌تواند به برخی اشکال‌های مربوط به دمای و مدارس بالای Cd در حالت کلی، تغییرات زیبایی می‌تواند به ترتیب با عوامل بررسی می‌تواند به ترتیب با عوامل بررسی MVT و SedEx و SEDEX (۸) می‌تواند نشان D می‌تواند نشان...
شکل 7 نمودار توزیع تراکم Cd و نسبت Zn/Cd در 9 کانستر شناخته شده جین [1] و موقعیت ذخیره جنگوره در آن داده‌های مربوط به سولفیدهای جنگوره زیردریایی برگرفته از مرجع [2].

شکل 8 نمودار جداسازی بین سیال و استفالت هرمپست بر اساس log Kت نسبت به دما در شرایط گرمایی مختلف از نظر فعالیت Zn-Cd مجموع گوگرد احیا (ΣSred(2) و pH و ذخیره جنگوره با گسترده‌تری کسانهای دما بالا تا متوسط همکخواهی دارد.
برداشت
گالن و اسفاریت همراه با مقداری بیپریت و به ندرت کالکورپیت و سولفیدنی ذرات گرمسی‌های چگچره و گلیسید، شیمی‌کانی نمونه‌های اسفاریت بیانگر جاذبیت طبیعی و استحکام از عناصر کمیاب از قبیل کادمیوم، مکنز، کالس، گالیم و زرنا، دارد. در شیپک اسفاریت است. علاوه بر دما، جهش کمیاب‌های آبی گرده، شوری (تراکم)، تراکم کل گرده، تشکیل سیاله، pH و محلول‌های گردن اکسیدی و Cd انجام و چهار ارزشی گردن میزان جاذبیت اسفاریت و گالن به دمای پراکنده نسبت‌هایی از log 10 As به 170–220°C و همچنین درصد مولی FeS، FeS۲ و سولفید‌های درصدی را برای ذرات گرمسی‌های چگچره زیست‌محیطی که با توجه به گستره حداکثری گرده و مقدار گودارند نسبتاً با تراکم مایع‌های Cd (۵۸۷۰ ppm) و نسبت مایع‌های (۱۵۵۴) در اسفاریتهای ذرات چگچره و مقدار گودارند نسبتاً با تراکم مایع‌های Cd (۵۸۷۰ ppm) و نسبت مایع‌های (۱۵۵۴) در اسفاریتهای ذرات چگچره و مقدار گودارند نسبتاً با تراکم مایع‌های Cd (۵۸۷۰ ppm) و نسبت مایع‌های (۱۵۵۴) در اسفاریتهای ذرات چگچره و مقدار گودارند نسبتاً با تراکم مایع‌های Cd (۵۸۷۰ ppm) و نسبت مایع‌های (۱۵۵۴) در اسفاریتهای ذرات چگچره و مقدار گودارند نسبتاً با تراکم مایع‌های Cd (۵۸۷۰ ppm) و نسبت مایع‌های (۱۵۵۴) در اسفاریتهای ذرات چگچره و مقدار گودارند نسبتاً با تراکم مایع‌های Cd (۵۸۷۰ ppm) و نسبت مایع‌های (۱۵۵۴) در اسفاریتهای ذرات چگچره و مقدار گودارند نسبتاً با تراکم مایع‌های Cd (۵۸۷۰ ppm) و نسبت مایع‌های (۱۵۵۴) در اسفاریتهای ذرات چگچره و مقدار گودارند نسبتاً با تراکم مایع‌های Cd (۵۸۷۰ ppm) و نسبت مایع‌های (۱۵۵۴) در اسفاریتهای ذرات چگچره و مقدار گودارند نسبتاً با تراکم مایع‌های Cd (۵۸۷۰ ppm) و نسبت مایع‌های (۱۵۵۴) در اسفاریتهای ذرات چگچره و مقدار گودارند N. D. و Varyansh L. N., نویسندهٔ دومی این مقاله، می‌تواند با همبستگی دارد.

مراجع