شیمی کانی گابروهای همسانگرد افیوپیت کرمانشاهی، شواهدی بر خاستگاه زمین ساختی

فراه آنلی، زینب دارآییزاده

گروه زمین‌شناسی، دانشکده علوم، دانشگاه بوتومس، همان

چکیده: گابروهای همسانگرد افیوپیت کرمانشاه شامل طیفی از گابرهای افیوپیت، رتریور گابرهای کاس کنار، گابرهای کاس و گابرهای کاس و تروکولیت هستند که به‌شمار می‌روند. در نواحی افیوپیت کرمانشاه، اکثریت این واحدها به دلیل وجود ماده‌های Si و Mg و افزایش طیف‌رسانی و فیزیک به‌کار رفته‌اند.

کلرونز، بیستون و پاک، کمکه، سطح و نسبت‌های Si و Mg در این واحدها به‌وسیله اکتیک و انرژی‌های نونتسک تشکیل شده است.

واژه‌های کلیدی: افیوپیت کرمانشاه، گابروهای همسانگرد، شیمی کانی، اینتربروزیست

مقدمه

افیوپیت کرمانشاه (صحنه - هرمس) در پهنه زمین ساختی - ساختاری غرب ایران، در زمین‌در راکوس قرار گرفته است و از افیوپیت کرمان شاخهی زاگرس (ZOB) به‌عنوان محصول مناسب ساخته شده است. این جوهر یک حاضریکه‌داری دارای تکنیک سنگی و ترکیب اتشفیه‌های کاربردی دارای بات‌ساخته‌های ساختی است.

بررسی سلگیک تشکیل‌دهنده توالی افیوپیتی از اهمیت بسیاری در تعیین جایگاه زمین‌ساختی ماگما و نیز ترکیب دگرگونی‌های حوضه ایکتیوسی برپا می‌گردد. این تکنیک در تشکیل این زمین‌ساختی‌ها و نیز ترکیب سلگیک‌ها، کاربردی از سلگیک‌ها، دهنده توالی مشابه بسیاری از توالی‌های افیوپیتی هستند.

۱۷. گابروهای همسانگرد در بالای توالی انابستی تراکم که معمولاً بوسیله توده‌های غیرانابستی، بدن برگرفته و لاپه - بندي هستند. ۱۸. گابرهای لاپه و همسانگرد، از نظر کانی - شناسی و زمین شیمی اصلی سیسی شده و نمایشگاههای فیزیولوژیک، باریکی، اسپیلیسیتی سلگیک‌ها و ترکیب‌های آندین حاوی این که به‌طور درک‌رسی توزیع کراته‌ها رژیمی - تخریبی و نیز
از نظر فراولی عناصر کمیاب ناسازگار تفاوت دارند [9]. گزههای لایه‌ای دارای مقادیر بالایی تری‌نیترات و TiO₂، P₂O₅ و K₂O عناصر کمیاب ناسازگار هستند. افیلوپت کرمانشاه دارای دو نوع کارایی لایه‌ای و همسانگرد است. شیمی کلی گازههای همسانگرد نقش مهمی در تغییر تاریخچه زمین‌ساختی مجموعه‌های افیلوپتی دارد. در این پژوهش، با توجه به نتایج برآمرده از شیمی کلی گازههای همسانگرد افیلوپت کرمانشاه، ویژگی‌های سنگ‌شناسی، خاصیت و نیز خاستگاه زمین‌ساختی این سنگ‌ها تعیین می‌شود.

روابط محرکی سنگ‌های مافیک

در جنوب شرق صحنه در همسایگی فراوان‌کیک، مجموعه متنوعی از گازههای قرار دارد. گازههای فراوان‌کیک تندوتهای مافیک در این ناحیه مشاهده [10]؛ تندوتهای گازه‌ی کوهی به‌طور کلی،
روستای سیا و اطراف روستایی علی آباد گروس ادامه دارد.
گذر از سنگ‌های فرماقیک گوشتهای به سنگ‌های بازی
پوششی با نیاز و توکافت دنبال شده است.
تروکنی‌ها در شمال روستای سیا واقع و نیز در روستای
ارگن با افت ذهین شدی خوابیده برخوردار بوده.
تروکنی‌ها
تولید آبیاری با ضخامت کم حداکثر ۴۰ متر شالی دورین
هارپوزیت و پروکسنتی نالکی شده از هارپوزیت‌های
زیمت ساختی مجزا می‌شوند و در بعضی از قسمت‌ها به طور
مستقیم و با هر گردش گل‌های هارپوزیت‌ها قرار می‌گیرند.
سنگ‌های اینه و هم‌اکنون بنگاه‌بردی و گروه‌های علمی،
الیون در سه به توصیف کامل‌گیری برداشته خرد
شد و به هم امتحان‌می‌کنند.
علاقه بر گرابویه تام برده، گرابویه‌ی پکواناندیز نیز در
منطقه وجود دارند که در صحنه گشت‌سپاری داده دارند.
همان‌گونه در شرق هریسین در منطقه‌ی تولید می‌گیرند.
سنگ‌هایی نیز در اطراف عالی‌پاراده در سه به توصیف کامل‌گیری
در شرقی رشته‌های کلیوپوزیت‌های که از این گروه است.
در شرقی یا در شرقی به آنها بیشتر می‌تواند در
پلی‌پوزیت‌ها احاطه شده با بهصرت مناسب در بیرون شاخص
گرفته‌ایند. گرابویه‌ی پکواناندیز قسمتی از زیرین تولیت دیک‌ری
را تشکیل می‌دهد. به‌سیستم بی‌پی ایجاد تولیت به‌سیستم
پلی‌پوزیت‌ها، شکا و گرابویه‌ی همساندگی یا گرابویه‌ی
پکواناندیز را می‌دانند. پس از روستای گروس، به‌سیستم
شرقی، گرابویه نشان دهنده چهار تولیت شده و به‌سیستم در
نحوه‌ی باشی مشخص می‌شوند. سرانجام پس از روستای
شروع به استرآتی‌های گروبها، گرابویه‌ی همساندگی به تدریج
به گرابویه‌ی میلی‌نیک‌دان متعلق به گروب‌های سیا و اطراف
نورآباد و نیز در جاده نورآباد به‌سیستم تپه‌های متعدد
رخنده‌ی ایجاد شده و به‌سیستم گروبها همساندگی در این منطقه
گسترش بیشتری را خود احتمال داده‌اند.
روش کار
مرحله نخست شامل جمع‌آوری نمونه‌های متعدد از انواع
گروبها موجود در توالی اصلی مورد نظر، به‌سیستم قابل
نارگی از سنگ‌های و بررسی‌های میکروسکوپی برای سنگ‌شناسی
و سنگ‌گردانی آن‌ها تاریکه‌ی به‌نفیکس صحرا و سنگ-
جدول 1: نمایش کانی پلی‌گلون در گاز‌های هسته‌گرد افولویت کرمان و فرمول ساختاری بر مبنای 6 اتم اسید:

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>آئوری</th>
<th>آئورو</th>
<th>آئورو</th>
<th>آئورو</th>
<th>آئورو</th>
<th>آئورو</th>
<th>آئورو</th>
<th>آئورو</th>
</tr>
</thead>
<tbody>
<tr>
<td>کانی</td>
<td>SiO2</td>
<td>SiO2</td>
<td>SiO2</td>
<td>SiO2</td>
<td>SiO2</td>
<td>SiO2</td>
<td>SiO2</td>
<td>SiO2</td>
</tr>
<tr>
<td>FeO</td>
<td>FeO</td>
<td>FeO</td>
<td>FeO</td>
<td>FeO</td>
<td>FeO</td>
<td>FeO</td>
<td>FeO</td>
<td>FeO</td>
</tr>
<tr>
<td>CaO</td>
<td>CaO</td>
<td>CaO</td>
<td>CaO</td>
<td>CaO</td>
<td>CaO</td>
<td>CaO</td>
<td>CaO</td>
<td>CaO</td>
</tr>
<tr>
<td>MgO</td>
<td>MgO</td>
<td>MgO</td>
<td>MgO</td>
<td>MgO</td>
<td>MgO</td>
<td>MgO</td>
<td>MgO</td>
<td>MgO</td>
</tr>
</tbody>
</table>

جدول 2: نمایش کانی پلی‌گلون در گاز‌های هسته‌گرد افولویت کرمان و فرمول ساختاری بر مبنای 8 اتم اسید:

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>آئوری</th>
<th>آئورو</th>
<th>آئورو</th>
<th>آئورو</th>
<th>آئورو</th>
<th>آئورو</th>
<th>آئورو</th>
<th>آئورو</th>
</tr>
</thead>
<tbody>
<tr>
<td>کانی</td>
<td>SiO2</td>
<td>SiO2</td>
<td>SiO2</td>
<td>SiO2</td>
<td>SiO2</td>
<td>SiO2</td>
<td>SiO2</td>
<td>SiO2</td>
</tr>
<tr>
<td>FeO</td>
<td>FeO</td>
<td>FeO</td>
<td>FeO</td>
<td>FeO</td>
<td>FeO</td>
<td>FeO</td>
<td>FeO</td>
<td>FeO</td>
</tr>
<tr>
<td>CaO</td>
<td>CaO</td>
<td>CaO</td>
<td>CaO</td>
<td>CaO</td>
<td>CaO</td>
<td>CaO</td>
<td>CaO</td>
<td>CaO</td>
</tr>
<tr>
<td>MgO</td>
<td>MgO</td>
<td>MgO</td>
<td>MgO</td>
<td>MgO</td>
<td>MgO</td>
<td>MgO</td>
<td>MgO</td>
<td>MgO</td>
</tr>
</tbody>
</table>

[DOI: 10.29529/jijm.28.5.365]
جدول 3: شیمی کلی الیوت‌های هیپاسانگردهای اهلیت کرمانشاه به شکل‌های پیش‌گرد

<table>
<thead>
<tr>
<th>شیمی کلی الیوت‌های هیپاسانگردهای اهلیت کرمانشاه به شکل‌های پیش‌گرد</th>
<th>گازوردهای مسکن</th>
<th>شاره‌های سومه</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N44.2</td>
<td>N44.4</td>
</tr>
<tr>
<td>کلی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>FeO</td>
<td>4.52</td>
<td>4.52</td>
</tr>
<tr>
<td>MnO</td>
<td>2.34</td>
<td>2.34</td>
</tr>
<tr>
<td>MgO</td>
<td>44.11</td>
<td>44.11</td>
</tr>
<tr>
<td>NiO</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>CaO</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>مجموع</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

جدول 4: شیمی کلی الیوت‌های هیپاسانگردهای اهلیت کرمانشاه

<table>
<thead>
<tr>
<th>شاره سومه</th>
<th>گازوردهای مسکن</th>
<th>شیمی کلی الیوت‌های هیپاسانگردهای اهلیت کرمانشاه</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S26.7</td>
<td>S26.8</td>
</tr>
<tr>
<td>کلی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>23.38</td>
<td>23.38</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>FeO</td>
<td>4.52</td>
<td>4.52</td>
</tr>
<tr>
<td>MnO</td>
<td>2.34</td>
<td>2.34</td>
</tr>
<tr>
<td>MgO</td>
<td>44.11</td>
<td>44.11</td>
</tr>
<tr>
<td>NiO</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>CaO</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>مجموع</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

[DOI: 10.2952/jpmc.2020.3.656]
کلیپیروکسنهای همجین دارای تیغ‌های جداشی از اروپین هستند و لبه‌های آنها توسط آمپبولیت جانشین شده است. آمپبولیت‌ها از نوع هورنبلند و اکتینولیت (تانویه) به صورت بلورهای نیمه‌شکل دار تا یک حضور دارند و گاهی به کلریت تبدیل شده‌اند. کانی‌های تیره‌تر نمای اکسیده‌ای به تیناتینی تبدیل می‌شوند، پیرولیت، به تدریج کوولیت، کالکپریت و پیوسته گردیده برای اندازه‌ی فرعی در بین

ظاهرهای متعددی به این سه گروه با کلیپیروکسنهای همجین دارای تیغ‌های جداشی از اروپین هستند و لبه‌های آنها توسط آمپبولیت جانشین شده است. آمپبولیت‌ها از نوع هورنبلند و اکتینولیت (تانویه) به صورت بلورهای نیمه‌شکل دار تا یک حضور دارند و گاهی به کلریت تبدیل شده‌اند. کانی‌های تیره‌تر نمای اکسیده‌ای به تیناتینی تبدیل می‌شوند، پیرولیت، به تدریج کوولیت، کالکپریت و پیوسته گردیده برای اندازه‌ی فرعی در بین

کلیپیروکسنهای و اکتینولیت قرار گرفته‌اند. از جمله شواهد دگرگویی موثر بر این سنگ‌ها می‌توان به تشکیل آمپبولیت (اواریت) از پیرپین، سرپارتنوئین و مگنتیت برآمده از البین و نیز کلریت شدن اشاره کرد.

کلیپیروکسنهای بافت دانایی، پیوسته کلیفیک نشان می‌دهند، ترکیب کانی‌شناسی آنها شامل پلاژیوکلار (60 تا 65 درصد)، کلیپیروکسنهای (15 تا 20 درصد)، اروپین (کم‌تر از 5

Downloaded from ijcm.ir at 16:10 +0430 on Wednesday June 10th 2020 [DOI: 10.29252/ijcm.26.3.635]
شیمی کانی‌گی ماده‌های همسانگرد ایلیولیت کرمانشاه، شوهدی در...

461

جلد 22، شماره 3، 1392

بخش 3.

شیمی کانی‌گی ماده‌های همسانگرد ایلیولیت کرمانشاه، شوهدی در...

461

جلد 22، شماره 3، 1392

بخش 3.

شیمی کانی‌گی ماده‌های همسانگرد ایلیولیت کرمانشاه، شوهدی در...

461

جلد 22، شماره 3، 1392

بخش 3.

شیمی کانی‌گی ماده‌های همسانگرد ایلیولیت کرمانشاه، شوهدی در...

461

جلد 22، شماره 3، 1392

بخش 3.

شیمی کانی‌گی ماده‌های همسانگرد ایلیولیت کرمانشاه، شوهدی در...

461

جلد 22، شماره 3، 1392

بخش 3.

شیمی کانی‌گی ماده‌های همسانگرد ایلیولیت کرمانشاه، شوهدی در...

461

جلد 22، شماره 3، 1392

بخش 3.

شیمی کانی‌گی ماده‌های همسانگرد ایلیولیت کرمانشاه، شوهدی در...

461

جلد 22، شماره 3، 1392

بخش 3.

شیمی کانی‌گی ماده‌های همسانگرد ایلیولیت کرمانشاه، شوهدی در...

461

جلد 22، شماره 3، 1392

بخش 3.

شیمی کانی‌گی ماده‌های همسانگرد ایلیولیت کرمانشاه، شوهدی در...

461

جلد 22، شماره 3، 1392

بخش 3.

شیمی کانی‌گی ماده‌های همسانگرد ایلیولیت کرمانشاه، شوهدی در...

461

جلد 22، شماره 3، 1392

بخش 3.

شیمی کانی‌گی ماده‌های همسانگرد ایلیولیت کرمانشاه، شوهدی در...

461

جلد 22، شماره 3، 1392

بخش 3.

شیمی کانی‌گی ماده‌های همسانگرد ایلیولیت کرمانشاه، شوهدی در...

461

جلد 22، شماره 3، 1392

بخش 3.

شیمی کانی‌گی ماده‌های همسانگرد ایلیولیت کرمانشاه، شوهدی در...

461

جلد 22، شماره 3، 1392

بخش 3.

شیمی کانی‌گی ماده‌های همسانگرد ایلیولیت کرمانشاه، شوهدی در...

461

جلد 22، شماره 3، 1392

بخش 3.

شیمی کانی‌گی ماده‌های همسانگرد ایلیولیت کرمانشاه، شوهدی در...

461

جلد 22، شماره 3، 1392

بخش 3.
شکل ۳ ترکیبات آنتیمتاکتها، ترسانت و فایروسیت در شکل (۱) نشان داده شده‌اند. نمودار (۲) نشان‌دهنده میزان Fe/Mg در آنتیمتاکتهای (۳) نشان می‌دهد. نمودار (۴) نشان‌دهنده میزان Si در آنتیمتاکتهای (۵) نشان می‌دهد.
بحث

نتایج به دست آمده از شیمی کانی کلینوپیروکسن گابروهای همسانگرد افسولیت، نسبت به SiO$_2$، (الف) نشان می‌دهد که این پیروکسنس گابروهای همسانگرد افسولیت در شرایط فشار متوسط و در گستره ترمولیت، اکتینولیت و اکتینولیت دارای مقادیر بالایی Mg$^+$، Cr$_2$O$_3$، TiO$_2$، Al$_2$O$_3$، CaO، MgO، Na$_2$O، K$_2$O، FeO و Fe$_2$O$_3$ در میانگین می‌باشند.

نمونه‌های تجزیه افسولیت نشان نشان می‌دهد که مقدار آنها در گستره 32 تا 98 درصد و Mg$^+$، Mg[Mg$^+$Fe$^{2+}$] نسبت به Ca$_2$(Ca+Na+K) در گستره 87 تا 96 درصد است.

نمونه‌های تجزیه افسولیت کرمانشاه در نمونه‌های افسولیت اکتینولیت Mg[Mg$^+$Fe$^{2+}$] و اکتینولیت هورنیلد واقع‌اند (شکل ۳ ج).

شکل ۴ (الف) نمودار Ca$^+$Na نسبت به Al$_2$O$_3$ و (ب) نمودار Ti نسبت به Al$_2$O$_3$.
کلیپتوبوروسکس‌هایي که از یک ماکری باید در فشار بالای متبول می‌شوند، ممکن است با [27] کلیپتوبوروسکس‌ها و ارتباطی به کلیپتوبوروسکس‌های گابروهای همسانگرد افولیت کرمانشاه در نمونه‌های Mg مسیره فشار مسیره واقع می‌شوند. (شکل 6) در نمونه‌های کلیپتوبوروسکس‌های گابروهای چهارماهی افولیت کرمانشاه در فشار مسیره در مطلب افولیت کرمانشاه بر نمونه‌های تفکیک محيط.

cpx.png

شکل 6 نمونه‌های Mg6 نسبت به Al2O3 در لف (کلیپتوبوروسکس‌ها و ارتباط‌ها) و گابروهای همسانگرد افولیت کرمانشاه. (گستره فشار با [27]). افولیت کلیپتوبوروسکس‌ها و گابروهای تکریک (Tekirova) از مرجع [24]. و داده‌های همبستگی تونزیا (Tonsina) از مرجع [25].

cpx.png

شکل 7 نمونه‌های Al1Al1 نسبت به Al2O3 در لف (کلیپتوبوروسکس‌ها و گابروهای افولیت کرمانشاه.

X Fe²⁺ Na

زمان‌ساختی نمونه‌های Fe²⁺ (شکل‌های 8 مدل

در Ti و Fe²⁺ (Fe²⁺+Mg) (ب) [21]، گستره جزیر کوگی را نشان می‌دهد و در نمونه‌های Al، نسبت به Ti شکل (8 ب) و نسبت به Ca، نسبت به Ti نسبت به Ca (شکل 9 ب) [16] و نمونه Al نسبت به Ti+Cr نسبت به Ca (شکل 9 ب) [16] در گستره تولیدترین جزئیات قوی واقع می‌شوند.

کلیپتوبوروسکس‌هایی که از یک ماکری باید در فشار بالای متبول می‌شوند، ممکن است با [27] کلیپتوبوروسکس‌ها و ارتباطی به کلیپتوبوروسکس‌های گابروهای همسانگرد افولیت کرمانشاه در نمونه‌های Mg مسیره فشار مسیره واقع می‌شوند. (شکل 6) در نمونه‌های کلیپتوبوروسکس‌های گابروهای چهارماهی افولیت کرمانشاه در فشار مسیره در مطلب افولیت کرمانشاه بر نمونه‌های تفکیک محيط.

cpx.png

شکل 6 نمونه‌های Mg6 نسبت به Al2O3 در لف (کلیپتوبوروسکس‌ها و ارتباط‌ها) و گابروهای همسانگرد افولیت کرمانشاه. (گستره فشار با [27]). افولیت کلیپتوبوروسکس‌ها و گابروهای تکریک (Tekirova) از مرجع [24]. و داده‌های همبستگی تونزیا (Tonsina) از مرجع [25].

cpx.png

شکل 7 نمونه‌های Al1Al1 نسبت به Al2O3 در لف (کلیپتوبوروسکس‌ها و گابروهای افولیت کرمانشاه.
جلوه قوسی هستند. مؤلفه آنورتینی پلاژیوکلاژهای موجود در گلوبه‌ها همسانگردی مورد بررسی با استفاده از بالست وجود پلاژیوکلاژ کلسیمی در گلوبه‌ها ممکن است خاطرات جزیره قوسی آنها را با ذهن اورده سنگهای گلوبیک بیشتر قوس به سبب مقدار بیشتر کلسیم موجود در گلوبه‌ها از آنها از نظر شیمیایی مشابه هستند [۳۴، ۳۵، ۳۶]. به عبارتی پلاژیوکلاژهای موجود در گلوبه‌ها با خاتمه جزیره قوسی در این مقدار مؤلفه آنورتینی بالاتری نسبت به انواع تشکیل شده در محیط پرشه میان اقیانوسی هستند.

تغییرات مقدار آنورتین پلاژیوکلاژ نسبت به استانت بی‌پروکس سنگهای گلوبیک همان‌طور که جزیره قوسی و همچنین برای بسیاری از افیولوگی‌های مدیرانه‌ای شامل ترودوس [۳۱]، پوربانی - کارزانتی [۱۹]، فرال داغ [۴۴] و کوموننار (Kömürhan) [۴۲] از شکل ۱۱ نشان داده شده که این کاربرد مورد بررسی شیاه‌های An، En، K2O/Na2O بسیاری از سنگهای مربوط به محیط فروش نشان می‌دهند. Mg⁸ تغییرات مقدار آنورتین پلاژیوکلاژهای نسبت به کلیوپیریکس‌های گلوبیک تشکل شده در پرشه میان اقیانوسی (MOR) و محیط جزیر بیشتر قوسی را به کمک می‌کند. کلیوپیریکس‌های سنگهای سنگهای گلوبیک افیولوگی کرمانشاه بر نوید مورد هم‌مانی (MOR) An، mol%–Mg⁸ و محیط مربوط به قوس سپس به سنگهای اقیانوسی و محیط مربوط به قوس را نشان می‌دهند (شکل ۱۲) بنابراین ممکن است در محیط پیش قوسی یا پیش افیولوگی تشکل شده باشد.

کلیوپیریکس‌های گلوبه‌های همسانگرد افیولوگی کرمانشاه SiO₂۱۰۰–TiO₂–Na₂O بر نوید مقدار محیط زمین‌ساختی (۲۲) مشخص‌های تولید‌های جزیر بیشتر قوسی ra به نمایش می‌گذارد و در محیط پیش افیولوگی زون تشکیل شده (شکل ۱۲). به طور کلی نتایج این بررسی برای استانت کرمانشاه گلوبه‌های موجود در گلوبه‌ها همسانگرد افیولوگی کرمانشاه مشخص‌های جزیر بیشتر قوسی را نشان می‌دهد و می‌توان با نوید این استانت، خاتمه پیش افیولوگی را برای افیولوگی کرمانشاه در زمین‌ساخت تازه‌تر و گزین‌تر نشان دهنده از جمله خاصیت‌های نقش‌دار تولید‌های جزیر بیشتر قوسی دانسته [۳۴]. وجد برخی از مستندات این نتایج اتفاقی در این نتایج می‌باشد که نمایش می‌گذارد که در محیط پیش افیولوگی، میزان Cu/OH، SiO₂/TiO₂، و Fe₂O₃/MgO، Na₂O/K₂O، SiO₂/TiO₂، و Fe₂O₃/MgO، Na₂O/K₂O محیط افیولوگی درمانی گلوبه‌ها تأخیر می‌شود [۳۴] وتولید‌های جزیر بیشتر قوسی (IAT) و نیز پونتینیتی ممکن است دیگر شوندن [۴۴]–۲۳۸۳۲–۳۲–۳۲۳–۳۲۳–۳۲۳.[۴۱] همکاری دارد.

ایفیولوگی‌های تشکیل شده در جایگاه پیش افیولوگی به سه محیط مختلف تعلق دارند: جزیرات قوسی، حوضه‌های پیش قوس و پیش قوس. در محیط پیش افیولوگی، میزان Cu/OH، SiO₂/TiO₂، و Fe₂O₃/MgO، Na₂O/K₂O، SiO₂/TiO₂، و Fe₂O₃/MgO، Na₂O/K₂O محیط افیولوگی درمانی گلوبه‌ها تأخیر می‌شود [۴۴]–۲۳۸۳۲–۳۲–۳۲۳–۳۲۳–۳۲۳.[۴۱] همکاری دارد.

۱۰۰ Amفیلول‌های مورد بررسی مشابه آمفیبول‌های محیط

| [۲۲] SiO₂۱۰۰–TiO₂–Na₂O شکل ۱۰ (الف و ب) نوید مقدار محیط زمین‌ساختی |
شکل ۱۱ نمودار برای کلینوپیروکسنسهای کابروهای همسانگرد افیولیت کرمانشاه. گستره افیولیت ترودوس [۴۱] پوزانی - کازانتی [۷].

قزل داغ [۴۲] و کوموران [۴۳] نیز برای مقایسه نشان داده شده است.

شکل ۲۲ مقدار آنورتانیت پلاژیولازهای نسبت به Mg۸ کلینوپیروکسنسهای تشكل دهنده کابروهای همسانگرد افیولیت کرمانشاه. گسترهای MORB و کابروهای مربوط به فوس [۴۲]، گستره افیولیت پوزانی - کازانتی [۷]، قزل داغ و تکیرویا [۴۵] چنان که از بررسی‌های تجربی نیز مشخص شده است فشار نیز کمتر از پیروکسنسهای نسبت به کلسیم به جای الیتین تا پیروکسنسهای نسبت به انورتانیت می‌شود [۴۳]. علاوه بر این گفته می‌شود که میزان پاک‌گرایی در مقایسه با

پیروکسنسهای نسبت به کلسیم به جای الیتین تا پیروکسنسهای نسبت به انورتانیت می‌شود [۴۳]. علاوه بر این گفته می‌شود که میزان پاک‌گرایی در مقایسه با و اندزیت بارانی آبادی متوالی نمی‌شود [۴۴]. پلاژیولازهای نسبت به کلسیم این موضوع را تأیید می‌کند.
نواحي‌دانگان مقاله از برپوش قلبیک پاتویج لسیف (پژوهشگر ارشد آزمایشگاه زمین‌شناسی و فعالیت‌های زمین‌شناسی و کانون‌شناسی سوبالش این گروه حضور فعالیت‌های علم‌پژوهی و شناخته می‌شود. در زمینه فعالیت‌های ماکیفیک - فراوانی فناهج چن خودی) برای انجام تجزیه‌ریزی داده‌های الکترونی قدردانی می‌گردند.

مراجع
[7] Parlag O., Höck V., Delaloye M., "Subrasubduction zone origin of the Pozanti-Karsanti ophiolite (southern Turkey) deduced from
[38] Tanirli M., Rizaoglu T., "Whole-rock and mineral chemistry of mafic cumulates from the Low-Ti ophiolite in the southern part of Kahramanmaraş, Turkey", Russian Geology and Geophysics 57 (2016) 1398-1418.

