شناسایی و پی‌جویی ناهنجاری‌های زمین‌شیمیایی همراه با کانی‌های مس در چهارگوش شمال اصفهان

زهره اعلامیه، مهین منصوری اصفهانی، سیدحسن طباطبایی، نگار ماهور بختیاری

چکیده: در نقشه یک بندر هزار زمین‌شناسی نطنز در شمال شرق اصفهان و در پنهن ساختاری از پارسیانی-دختر قرار دارد. این چهارگوش، پنج کمپ مناسبی برای کانی‌های مس، سرب و روی است. در این پژوهش تغییر قضاوی ناهنجاری‌های زمین‌شیمیایی عناصر کانی‌های مس و روی از روش آماری بررسی شورده است. در این راستا، حاصله بررسی در محیط سامانه GIS، وضعیت و رنگ پیش‌آمدها به ارتباط مناسبی با روی و سرب رفت. آماری و آنتیوئن در نزدیکی ناهنجاری‌های معدنی مس موجود در منطقه مورد بررسی هستند. علاوه بر این، ناهنجاری‌های بخش جنوبی نقشه، در ماین‌های جدیدی را برای پی‌جویی های اکتشافی آینده معرفی کرد.

واژه‌های کلیدی; اروپیه دختر، نطنز، رسوب/بررسی کانی‌های مس، فرماندار

مقدمه

یپی‌جویی‌های زمین‌شیمیایی برای ساخت‌داده‌های رسوب‌های آبراهی، روی مقرن به صرفه از نظر زمان و هزینههای است. این روی اثر مهمی برای شناسایی حوضه‌های آبراهی، مانع ناهنجاری و ذخایر نفت در مراحل نخستین پی‌جویی است. این‌ها و در مناطق‌های ک판گیاری و شکوه آبراهه گستریده، باعث افزایش داشتن نقشه بیشتری دارد. به منظور مدل‌سازی ناهنجاری‌های تک‌عنصری و در واقع شناسایی حوضه‌های آبراهی ناهنجاری‌های برایی عرض و طبیعت بررسی‌های محاسبه رقیق، شدگی تجزیه و تحلیل زمین‌پره می‌شوند. مهم‌ترین گام در پدیداری و یک‌تایی ناهنجاری‌های زمین‌شیمیایی، بررسی‌های رسوب‌های آبراهی، تبعیض مقدار حساسیت و جدایی که در ناهنجاری‌های مقدار تحقیق از جمله‌های ۶۷ انگام می‌شود، تا

مکمل

گسترده مورد بررسی از گره‌های زمین‌شیمیایی، تغییرات ساخت‌داده‌های رسوب‌های آبراهی روش‌های مختلف در مورد زمان و هزینه است. این روش اثر مهمی برای شناسایی حوضه‌های آبراهی، مانع ناهنجاری و ذخایر نفت در مراحل نخستین پی‌جویی است. این‌ها و در مناطق‌های ک판گیاری و شکوه آبراهه گستریده، باعث افزایش داشتن نقشه بیشتری دارد. به منظور مدل‌سازی ناهنجاری‌های تک‌عنصری و در واقع شناسایی حوضه‌های آبراهی ناهنجاری‌های برایی عرض و طبیعت بررسی‌های محاسبه رقیق، شدگی تجزیه و تحلیل زمین‌پره می‌شوند. مهم‌ترین گام در پدیداری و یک‌تایی ناهنجاری‌های زمین‌شیمیایی، بررسی‌های رسوب‌های آبراهی، تبعیض مقدار حساسیت و جدایی که در ناهنجاری‌های مقدار تحقیق از جمله‌های ۶۷ انگام می‌شود، تا

mansoori@cc.iut.ac.ir

توییت‌سده مسئول، تلفن: ۰۲۱ ۶۳۹۱۲۷۷۶، پست الکترونیکی: mansoori@cc.iut.ac.ir

سام بیست و ششم، شماره سوم، پاییز ۹۷، از صفحه ۶۲۵ تا ۶۳۴
گرفته‌نامه ریزش‌های خاک‌سازی و جغرافیایی (GIS)
نام: مهدی میرمختاری
محل: دانشگاه تهران
تاریخ: ۱۳۹۰/۰۹/۱۸

۶۲۶

جستجوی فرمات در این پژوهش با استفاده از اطلاعات زمین‌شناسی (GIS) تهیه شده است.

زمین‌شناسی

ناحیه مورد بررسی در بین طول هایی شرقی ۳۰° تا ۵۱° و عرض های شمالی ۳۳° تا ۳۴° واقع است. (شکل ۱) این

منطقه از نظر ساختاری به بخش‌های نوار اورامیه دختر قرار دارد و بیشتر از سطح‌های آذرین پوشیده شده است. بر پایه

برگ زمین‌شناسی نشان می‌دهد که سطح‌های سازنده را (درجه دوم) و روسی (درجه سوم) می‌توان به دو طبیعی (هور یا کوه‌های گردها) و غرب نسبی (نواحی از رودخانه‌های سفید) تقسیم کرد.

در این پژوهش، به‌طور کلی، سطح‌های سازنده به دو گروه تقسیم شدند:

- سطح‌های سازنده دوست
- سطح‌های سازنده نیز

در این پژوهش، سطح‌های سازنده دوست به طور کلی به دو گروه تقسیم شدند:

- سطح‌های سازنده دوست
- سطح‌های سازنده نیز

در این پژوهش، سطح‌های سازنده دوست به طور کلی به دو گروه تقسیم شدند:

- سطح‌های سازنده دوست
- سطح‌های سازنده نیز

در این پژوهش، سطح‌های سازنده دوست به طور کلی به دو گروه تقسیم شدند:

- سطح‌های سازنده دوست
- سطح‌های سازنده نیز

در این پژوهش، سطح‌های سازنده دوست به طور کلی به دو گروه تقسیم شدند:

- سطح‌های سازنده دوست
- سطح‌های سازنده نیز

در این پژوهش، سطح‌های سازنده دوست به طور کلی به دو گروه تقسیم شدند:

- سطح‌های سازنده دوست
- سطح‌های سازنده نیز

در این پژوهش، سطح‌های سازنده دوست به طور کلی به دو گروه تقسیم شدند:

- سطح‌های سازنده دوست
- سطح‌های سازنده نیز

در این پژوهش، سطح‌های سازنده دوست به طور کلی به دو گروه تقسیم شدند:

- سطح‌های سازنده دوست
- سطح‌های سازنده نیز

در این پژوهش، سطح‌های سازنده دوست به طور کلی به دو گروه تقسیم شدند:

- سطح‌های سازنده دوست
- سطح‌های سازنده نیز

در این پژوهش، سطح‌های سازنده دوست به طور کلی به دو گروه تقسیم شدند:

- سطح‌های سازنده دوست
- سطح‌های سازنده نیز

در این پژوهش، سطح‌های سازنده دوست به طور کلی به دو گروه تقسیم شدند:

- سطح‌های سازنده دوست
- سطح‌های سازنده نیز

در این پژوهش، سطح‌های سازنده دوست به طور کلی به دو گروه تقسیم شدند:

- سطح‌های سازنده دوست
- سطح‌های سازنده نیز

در این پژوهش، سطح‌های سازنده دوست به طور کلی به دو گروه تقسیم شدند:

- سطح‌های سازنده دوست
- سطح‌های سازنده نیز

در این پژوهش، سطح‌های سازنده دوست به طور کلی به دو گروه تقسیم شدند:

- سطح‌های سازنده دوست
- سطح‌های سازنده نیز

در این پژوهش، سطح‌های سازنده دوست به طور کلی به دو گروه تقسیم شدند:

- سطح‌های سازنده دوست
- سطح‌های سازنده نیز

در این پژوهش، سطح‌های سازنده دوست به طور کلی به دو گروه تقسیم شدند:

- سطح‌های سازنده دوست
- سطح‌های سازنده نیز

در این پژوهش، سطح‌های سازنده دوست به طور کلی به دو گروه تقسیم شدند:

- سطح‌های سازنده دوست
- سطح‌های سازنده نیز

در این پژوهش، سطح‌های سازنده دوست به طور کلی به دو گروه تقسیم شدند:

- سطح‌های سازنده دوست
- سطح‌های سازنده نیز

در این پژوهش، سطح‌های سازنده دوست به طور کلی به دو گروه تقسیم شدند:

- سطح‌های سازنده دوست
- سطح‌های سازنده نیز

در این پژوهش، سطح‌های سازنده دوست به طور کلی به دو گروه تقسیم شدند:

- سطح‌های سازنده دوست
- سطح‌های سازنده نیز

در این پژوهش، سطح‌های سازنده دوست به طور کلی به دو گروه تقسیم شدند:

- سطح‌های سازنده دوست
- سطح‌های سازنده نیز

در این پژوهش، سطح‌های سازنده دوست به طور کلی به دو گروه تقسیم شدند:

- سطح‌های سازنده دوست
- سطح‌های سازنده نیز

در این پژوهش، سطح‌های سازنده دوست به طور کلی به دو گروه تقسیم شدند:

- سطح‌های سازنده دوست
- سطح‌های سازنده نیز

در این پژوهش، سطح‌های سازنده دوست به طور کلی به دو گروه تقسیم شدند:

- سطح‌های سازنده دوست
- سطح‌های سازنده نیز

در این پژوهش، سطح‌های سازنده دوست به طور کلی به دو گروه تقسیم شدند:

- سطح‌های سازنده دوست
- سطح‌های سازنده نیز

در این پژوهش، سطح‌های سازنده دوست به طور کلی به دو گروه تقسیم شدند:

- سطح‌های سازنده دوست
- سطح‌های سازنده نیز

در این پژوهش، سطح‌های سازنده دوست به طور کلی به دو گروه تقسیم شدند:

- سطح‌های سازنده دوست
- سطح‌های سازنده نیژ
بیشتر نشانه‌های مس در غرب منطقه در مزر توده نفوذی جوان با واحدهای رسوبی قدمی دیده می‌شود (شکل 1).

روش بررسی
بررسی‌های اکتشافی در مقیاس ناحیه‌ای و شناسایی نواحی امید‌بخش معدنی با استفاده از اطلاعات زمین‌شناسی رسوب‌های ابراهیمی در کل حوضه آبریز با گسترش ۲۵۰۰ کیلومتر مربع واقع در برگه زمین‌شناسی نطنز با میزان ۱۰۰۰۰۰۰۰۱:۱ انجام شده است. در این پژوهش، از مواردی مانند سرپرستی رودخانه‌های ناحیه و جایگاه ساختمان‌های زمین‌شناسی مربوط به عملکرد مایعات زمین‌ساختی در منطقه می‌توان به چنین نتایج‌هایی اشاره نمود که بر اساس نتایج زمین‌شناسی نطنز، چنین نشانه‌های معدنی مس و سرب در ناحیه مورد بررسی وجود دارد (شکل 1).

افزون بر آن، تعدادی گسل با روند شمال شرقی باعث جابجایی و اقیانوس باعث وجود در منطقه شده است (شکل ۱ب). گسل‌ها بیشتر از نوع قاعدی سه‌بعدی و بخش‌هایی از گسل متعلق به نوع گسل مکوس باعث رسوب‌های آهکی گرانیتی بر روی‌های انساخی و درآوری انساخی انسان در شمال غرب نطنز شده است. از جمله ساختارهای زمین‌شناسی مربوط به عملکرد چهار‌لوگوس و ناودینس در رسوب‌های مربوط به ایگوس و پلاسکو در شمال ناحیه اشاره کرد. بر اساس نتایج زمین‌شناسی نطنز، چنین نشانه معدنی مس و سرب در ناحیه مورد بررسی وجود دارد (شکل ۱ب).

![Map of Deh-zireh and Natanz faults](image_url)

Legend

1. Sediments (Quaternary)
2. Marl, sandstone and conglomerate (Miocene-Pliocene)
3. Plutonic rocks (Post Eocene-Oligocene and miocene-Oligocene)
4. Red sandstone, shale, marl and conglomerate in base (Oligocene)
5. Sandy limestone with alteration of limestone, marl and gypsum (Oligo-Miocene Qom F.)
6. Basalt, trachyandesite and pyroclastic rocks with conglomerate, sandstone and nummulitic limestone (Eocene)
7. Conglomerate, sandstone with thick bedded orbitolina limestone (Cretaceous)
8. Brownish shale and sandstone (Sorkh shale-Nayband and shemshak F.) (Triassic and Jurassic)
9. Metaandesite, metabasalt, pyroclastic, sandstone, shale (Silurian Niur F.)
10. Red arkose sandstone and shale (Cambrian)
های آبراهیما بر آبراهیما در محیط سامانه اطلاعات جغرافیایی مشخص گردید، (شکل ۲ ب). در این پژوهش، نخست اثر زمینه بر نمونه‌های سرور ابراهیما به‌کمک روش تحلیل حوزه آبریز نمونه، حذف شده است. حوزه آبریز با ابتدای چندضلعی‌های معرف حوزه، پرآورد نسبت‌های مساوات واحدهای سینک، پرآورد عباراتی نک- عنصری زمینه محلی قابل انتساب به واحدهای سینک، تصحیح بزمانده‌ای نک عناصری برای رقیق‌شناختی یابین دستی، و رده-بنی بر اساس بزمانده‌ای نک عناصری تصحیح رقیق‌شناختی تحلیل شده است. به منظور پرآورد تراکم نک عنصری زمینه ناشی از سنگ‌سنن‌سنسی برای هر نمونه حوزه آبریز، از روش محاسبه میانگین وزن‌دار استفاده شد. پس از محاسبه مقادیر زمینه عناصر مس، طلا، سرب، روی، آرسینک و آنتیمون برای هر یک از هر واحد سینک محاسبات آماری و چگونگی توزیع عناصر بررسی شدند. مدل ناهنجاری‌های زمین‌شیمیایی می- تواند با در نظر گرفتن هم‌سانتی‌گرادی، و تغییر‌پذیری داده-های زمین‌شیمیایی و با هندسه و ویژگی‌های مستقل از مقیاس چندرسانه‌ای زمین‌شیمیایی بهبود یابد [۸]. پس از بررسی و توزیع فضاهای داده‌ای زمین‌شیمیایی رسوی باید اطلاعات واحدهای سینک و ساختارهای منطقه مورد بررسی مربوط به نقشه زمین‌شناسی نشانه‌های زمین‌شناسی ۱۰۰۰ انتفاخ (DEM) نمایش نقشه آبراه‌ها به‌کمک تصویر مدل رقیم GIS ب) تماسیش شبکه آبراه‌ها بر آبراهیما بر آن.
شناختی و بررسی ناهنجاری‌های زمین‌شیمیایی همراه با کانی سازی

شناختی و بررسی ناهنجاری‌های زمین‌شیمیایی همراه با کانی سازی

آربه‌ای‌ها را چندفکتی در نظر گرفته‌اند. در ترتیب روش فرکتالی عبارت - ساختار را می‌توان برای این بندی ناهنجاری‌ها در ابعاد نهایی مقدای‌های (۷) و ساختارهای

الأبتشی (A) محصور شده توسط مazines تراکم زمین‌شیمیایی (7) که ترکیب‌های مذکور به صورت

لگاریتمی رسم شده (شکل‌های ۴ و ۵). شکست در شبکه خطوط راست را به‌نوعی ناهنجاری را نشان می‌دهد [۱۰۱]. در این پژوهش، ناهنجاری‌های ترکیب‌های فرکتالی رده بندی شدند و مکان آنها بر نقشه شناسایی و مشخص شد.

بحث و بررسی

بررسی داده‌های زمین‌شیمیایی رسوایی آربه‌ای‌های در حوضه آربه‌ای نمونه تراکم‌های نک عنصری در رسوایی آربه‌ای‌های در هر نقطه از مکان برداشت‌های زمین‌شیمیایی معرف نمود برای انتخاب و هوازیگی متقابل بالاتر استند [۱۱]. علت اصلی تغییر عبارتی نک عنصری چرخش ده‌های سنگی تا‌الکست نقاط نمونه‌برداری این است. بطوریکه مقدار تراکم‌های زمین‌شیمیایی نمونه‌های رسوایی آربه‌ای‌ها ارتباط معنی‌دار با ساختار جوامع سنگی و ارتباط منفی با ساختار کلی یک حوضه آربه‌ای دارد [۱۲]. بنابراین، عبارت‌های زمین‌شیمیایی وابسته به زمین

![Shallow Dewatering](image)

شکل ۳ منحنی لگاریتمی عبارت - ساختار در بهبهان چهارگوش ۱۰۰۰۰۰ تن‌برای (الف) مس و (ب) طلایه.
آمده در جدول 1 ارائه شده است. پس از محاسبه میانگین وزن‌دار مشخص شد که بیشترین مقادیر M_j مس در سیگه‌های رسوبی آواری با سن ترپس و زوراسیک (واحد شماره 2) به مقدار 33.34 ppm و طلا در رسوبات تخریبی کرتاسه (واحد M_j شماره 4) به مقدار 89.89 ppm وجود دارد. بیشترین مقادیر سرب، روم و آرسنیک در سیگه‌های رسوبی انتشایی سیلوریون (واحد شماره 2) که در غرب منطقه مورد بررسی رخ داشته باند ترتیبی 75.78 و 4.65 به دست آمد (جدول 1). بیشترین مقادیر M_j آنتیمون در سیگه‌های رسوبی آواری با سن ترپس و زوراسیک (واحد شماره 3) به مقدار 4.45 ppm و 4.45 ppm وجود دارد.

![نمودار 1: توزیع میانگین عنصری و سیستمیماهی در جدول 1.](https://sampleimage.com/image1.png)

$$Y_i = \frac{\sum_{j=1}^{n} M_{ij}}{\sum_{j=1}^{n}}$$

در این رابطه M_{ij} میانگین وزن‌دار عبارت واحد زمین شناسی (آزمایشگاه) X_{ij} و $j=1, 2, \ldots, n$ (اصلی $i=1, 2, \ldots, 9$) به دست آمده از واحد زمین شناسی Y_i به دست می‌آید.

در حوزه‌های آبخیز در رابطه زیر برای میانگین مس:\n
$$X_i = \frac{\sum_{j=1}^{n} M_{ij}}{\sum_{j=1}^{n}}$$

که عبارت N عنصری میانگین وزن‌دار است.

نتایج تحلیل حوزه‌های آبخیز باعث خاصیت مس، طلا، سرب، روی، آرسنیک و آنتیمنوان پس از بررسی و برداشت برای هر جامعه سنگی بطور مستقیم در این آمار و آنالیز آماری - شبدنی، طبیعی مقدار میانگین عنصری نامبرده بر هر یک از 10 جامعه سنگی بطور مداوم مشخص شدند. نتایج به دست آمده در جدول 1 مقدار زمین محاسبه شده به روش میانگین وزن‌دار در جامعه‌های منفرد سنگی در ناحیه مورد بررسی در جامعه سنگی در راهنمای شکل 1 معرفی شده‌اند.
توجه به دست آمده از روش فرکتالی غزار-ساخت برای مقادیر بایه‌می‌کننده‌های عنصر، سلولار، سرب، روز، آرسنیک و آنتی‌میونهای شماره 5 در نمونه، این عناصر در حوضه آبزی و نمونه، برای هر یک از دسته‌گروه‌های این به کمک نمودارهای متون فراوانی براورد شدند. روش‌های آماری مختلفی برای تعیین مقادیر زمینه، حد آستانه و ناهنجاری وجود دارد که بر یک درای امتیازها و مشکلاتی هستند. در بعضی از روش‌ها، افزایش یا کاهش تراکم عنصر ملکاً اصلی و در برخی، احتمال پیداکاری تراکم عنصر در نظر گرفته می‌شود. در این پژوهش با توجه به مقادیر کوچک عدید، از روش فرکتال غزار-ساخت برای عناصر سرب، سلولار، آرسنیک و آنتی‌میون استفاده شده و اطلاعات زمین‌شناسی‌های غزار عنصر سخت‌بندی شده است. (جدول 2)، مکان ناهنجاری‌هایی که به کمک نرم‌افزار GIS بر نقشه‌های

جدول 2 مقادیر آماری محاسبه شده برای عنصر، سرب، سلولار، آرسنیک و آنتی‌میون برآمد از روش‌های آماری پنجه یکصد هزار متر.

<table>
<thead>
<tr>
<th>محلایی</th>
<th>Cu (ppm)</th>
<th>Au (ppb)</th>
<th>Pb (ppm)</th>
<th>Zn (ppm)</th>
<th>As (ppm)</th>
<th>Sb (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>کمترین</td>
<td>8.18</td>
<td>0.55</td>
<td>10</td>
<td>13</td>
<td>18.2</td>
<td>1</td>
</tr>
<tr>
<td>بیشترین</td>
<td>1858.31</td>
<td>126.4</td>
<td>1000</td>
<td>1000</td>
<td>1942</td>
<td>9.19</td>
</tr>
<tr>
<td>میانگین</td>
<td>91.34</td>
<td>8.38</td>
<td>48.67</td>
<td>14.74</td>
<td>41.9</td>
<td>4.12</td>
</tr>
<tr>
<td>میانه</td>
<td>298.5</td>
<td>7.82</td>
<td>400</td>
<td>1000</td>
<td>1942</td>
<td>9.19</td>
</tr>
<tr>
<td>انحراف معیار</td>
<td>91.5</td>
<td>10.4</td>
<td>90.1</td>
<td>85.32</td>
<td>4.29</td>
<td>0.46</td>
</tr>
<tr>
<td>چوگی</td>
<td>1481</td>
<td>15.6</td>
<td>11.2</td>
<td>7.95</td>
<td>10.41</td>
<td>9.73</td>
</tr>
</tbody>
</table>

شکل 5 منحنی لگاریتمی غزار - مساحت در پهنای چهارگوش 1000000 تنظیم برای (الف) آرسنیک و (ب) آنتی‌میون.
شکل ۶ نقشه‌های توزیع فضایی مقداری بالایی از میزان‌های آلیه‌های فلزاتی (الف) و (ب) عصر مس و ب عنصر طلا با استفاده از روش فکتالی عبارت‌سازی - مساحت.

شکل ۷ نقشه‌های توزیع فضایی مقداری بالایی از میزان‌های آلیه‌های فلزاتی (الف) و (ب) عنصر روی با استفاده از روش فکتالی عبارت‌سازی - مساحت.
پراکندگی در سطوح‌های آهکی - دولومیتی دیده می‌شود، کنده - کاری‌های پراکنده معمولاً نیز در آن‌ها به چشم می‌خورد که به نظر می‌رسد که خاستگاه گرمسایی دارد. براساس نتایج پراکنده از برداشت‌های میدانی، در بخش جنوبی، حضور تراورت و همجنس کانی‌های سنگی در هم منطقه در ۸ کیلومتری شمال غرب نطنز و ۷.۵ کیلومتری جنوب غرب کمجان، ساختار نتیجه‌گیری می‌شود. به‌طوری‌که محلول‌های گرمسایی در نزدیکی توده‌های نفوذی و اندک سطوح‌های رسوبی و آنتشفانی در منطقه‌های مورد بررسی به‌شمار می‌آیند (شکل‌های ۹الف و ب).

بسه‌ترین ناهنجاری مس و آرسنیک رسوب‌های آب‌هایی در بخش جنوب و مرکز پنججه مورد بررسی و طلا و آنتیومان در نیمه جنوبی این دیده می‌شود. در اولین شرایط‌های فاز آنتشورتی و پس از آن نفوذ نوده‌های کوچک اسیدی تا حد واسط از نوع گردنگی تا کوارتزگردنگی در قسمت جنوبی منطقه نطنز رخ داده است که نتیجه این نفوذ هنوز به صورت جشنه‌ای تراورتی‌ساز در منطقه دیده می‌شود. در شمال غرب نطنز درون سنگ‌های آنتشورتی، رگه‌های سیلیسی در پازره‌های کالکوپیریت با روند شال‌غربی - جنوب شرق دیده می‌شود. در جنوب غربی روستای کمجان مس و سرب بسروت (مالاکیت) واقع در بخش جنوبی منطقه مورد بررسی.

شکل ۸الف - نقشه‌های توسعه فضایی مقابر باقی‌مانده یاف (عصر آرسنیک و ب) عنصر آنتیومان با استفاده از روش فرکانس غیر-عصار - مساحت.

شکل ۹الف - رخ‌سوزی آن‌های سیلیسی در سنگ‌های آنتشورتی منطقه، ب - نمایی از سنگ میزبان کربنات به همره کانی سایر مس (مالاکیت) واقع در بخش جنوبی منطقه مورد بررسی.