کانی سازی و بررسی سیال‌های درگیر در بخش شمالی کانسار طلا-مس کوه زر، دامغان (منطقه فیروزه-قیچی)

پیام روح‌بخش، محمدحسن کریمپور*1،*2، آزاده ملکرزاده شفابدی*2

1- گروه زمین‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد
2- گروه نوری، دانشگاه فردوسی مشهد

چکیده: کانسار طلا-مس کوه زر در ۱۰۰ کیلومتری جنوب شرق شهرستان دامغان قرار دارد. این منطقه از نظر ساختاری به خصوص کبریت تایتانیومی و کبریت تورمالین که در شرایط جوی‌ای قرار گرفته‌اند و به شکل کاسه‌های تورمالینی به‌شکل گراندیورت است. این واحدها مورد نفوذ اسکلت‌های کاروسیپوریه‌ها قرار گرفته‌اند و پیرامون کوره‌های تورمالینی یا سیال‌های درگیر، می‌تواند به‌صورت هم‌زمان یا به‌صورت مکرر، کاسه‌های تورمالینی و کیزیکه‌هایی را ایجاد کند.

کوره‌های تورمالینی در منطقه ژئوگرافیکی فیروزه‌قیچی توانسته‌اند که این سیال‌های درگیر نشان می‌دهد که این منطقه در گذشته به‌طور مکرر کاسه‌های تورمالینی در سیال‌های درگیر رví گذشته کرده‌است.

واژه‌های کلیدی: کانی سازی، سیال‌های درگیر، محلول مگمی‌کوه زر، مجموعه مگمی‌کوه زر، دامغان

*نویسنده مسئول، تلفن: ۰۲۱ ۸۹۹ ۶۴۱۶، میل: ۰۲۱ ۸۹۹ ۶۴۱۶، پست الکترونیکی: karimpur@um.ac.ir
البرز محصول می‌شود که در شرق این کمربند واقع است. ۳) شکل (۱) وجود ۳۲ تونل قدیمی در منطقه، آثار پراکنده‌ای از سیراب‌های ذوب، مغراسی، حفرای و دیگر کنده‌کاری‌ها و ترانش‌های بیانگر اهمیت منطقه فیروزه‌فیچی از دیری‌باز است. کاسار کوه زر در قرون گذشته نا صمیمی بوده و وضعیت خرابه و در دهه اخیر به عنوان معدن فیروزه مرد به‌هدر می‌رود. قرار گرفته است. بر اساس آمار موجود تا سال ۱۳۶۷، ۵۰.۰۸ گرم فیروزه از این کاسار استخراج شده است و مقدار ذخره احتمالی به‌تغییر می‌رسد ۴۰۰۰۰ کیلوگرم برابر می‌شود. ۴) از جمله پژوهش‌های این یکی از این مناطق، علاوه بر نهاده زمین‌شناسی ۱۹۵۰۰۰۰۰:۱ اصلی، می‌توان به بررسی‌های سطحی انجام شده در این منطقه با عنوان منطقه باغو اشاره کرد. بررسی‌های کشیدگی‌های سنجش‌گر، سنجش‌گر و روابط آن با کانی سازی مادری در منطقه باغو [۵]، بررسی کانی‌شناسی،
زمین شناسی منطقه
زمینشناسی منطقه به اساس نقشه 10000 معمالم [1]، شامل سه جزء گودال بهتریز، داسیت-اندزیت، داسیت-آندزیت و دگرسانه شده، توده‌های کوارتز دیورتیت و کوارتز مونزونوپورفیتی همه به سن آبسون-الیگوسنس هستند. در صورتی که بر اساس بررسی‌های ستون‌گذاری در این آندریت، تاکی آندزیت در واقع توده پیرؤکسن دیورتیت پورفیری و سینگه‌های داسیت و داسیت-آندزیت دگرسانه شده، توده هورنلیند ایت پورفیری و سینگه‌های هستند (شکل 2). هر سیتاگراتی در شال شرق منطقه رخمرون دارد و بافت آن، دانه‌ای و در برخی موارد پورفیری است و در قسمت‌های پورفیری، درشت بلورهایی از کوارتز، بلازیولکاس، فلدسپات، بیوتیت و سرانجام حضور تورمالین‌های سایر نکات در راک‌های و به شکل سنونی و شنااسی می‌شود. این ایجاد به طور گسترده در نیمه غربی منطقه رخمرون دارد و دغرسانی غالب آن پرولیتی ضعیف و در برخی موارد دغرسانی سرسپتی ضعیف تا متوسط، ازیلی و سپیسی-تورمالینی نر در آن کابل مشاهده است (شکل 2). این ایجاد هرود تحت استوکهایی از واحد کوارتز مونزونوپورفیری قسمت جنوب شرق منطقه، مرود نفوذ کودک‌های است. دغرسانی در کوارتز مونزونوپورفیری نهه به نوع پرولیتی ضعیف است. توده‌های بیوتیت مونزونوپورفیری و هورنلیند ایت پورفیری در شمال شرق منطقه رخمرون دارد. بافت بیوتیت مونزونوپورفیری از نوع دانه‌ای

شکل 2 نقشه زمینشناسی منطقه فیروزه-خیچی.
روش بررسی
پس از بررسی‌های صحراپی سطحی و تونل‌های زیرزمینی قابل ورود، در مجموع ۱۲۰ نمونه برداشت شد. به منظور بررسی‌های سنجشاتی، دوگانه‌سنجی، کانال‌سنجی، توانیل‌سنجی، تعداد ۵۴ نقطه نازک، ۱۸ نقطه صاف‌سنجی و ۱۸ نقطه نازک صاف‌سنجی آماده شدند. سپس نشانه‌های شناسایی، دوگانه‌سنجی و گلاس‌سنجی تهیه گردید. به‌طور اجمالی Arc Gis منطقه‌ای از نرم‌افزار دیگری تهیه گردید. تعداد بیشترین نمونه از رزگمه‌های داخل تونل‌های مورسوم به قیچی ۲، محوطه مربوط به پهن‌خیاری دوگانه‌سنجی (QSP) گازبیت-برنی (QSP) و به‌طور معمولی از هر دو از بزرگ‌ترین همبازه‌های با کانال‌سنجی در رزگمه‌ها بوده است و لذا تعداد ۱۰ نمونه از کوارتین برای تهیه مقطع دور‌صقلی (ضخامت حدود ۱۰۰ میکرون) انتخاب شد. بررسی‌های سنج-۲ نگاری توسط میکروسکوپ قطعی و با عدسی ۵۰ انجام شد.
شکل 4 درگرسانی‌های منطقه فیروزه-فنجان‌الاف حضور کلی‌های ایپیدوت با برجنگی بالا و کلرتی به رنگ سیاه، مشخصه درگرسانی پروپیلیتی ضعیف در مقطع نازک (PPL). (ب) تبدیل بیش از 30 درصد پلاژیوکلازها به کلرتی، مشخصه درگرسانی پروپیلیتی متوسط در مقطع نازک (PPL). (پ) تبدیل پلاژیوکلاز به سریسیت در مقطع نازک (XPL). (د) درگرسانی QSP شدید با تبدیل بیش از 30 درصد فلدسپات QSP کلری از سریسیت در مقطع نازک (XPL). (س) سیلیسپتی (ب) نمونه دستی از سنگ درگسانی از نوع آزیلیتک به رنگ سفید. (ج) نمایی از درگسانی سیلیسپتی، تورمالین در مقطع نازک (PPL) کوارتنز. (ع) سریسیت. (علائم اختصاصی برگفته از منابع [12]).

در درگرسانی پروپیلیتی متوسط در بخش‌های جنوب شرق منطقه حضور دارد. نتایج چنین پروپیلیت‌های پوپیوری می‌تواند این درگرسانی شده است. این درگرسانی با تبدیل حسوب 30 درصد پلاژیوکلازها به کرنت و کرتیت تبدیل 10 درصد از کلروپتونوزا پلاژیوکلاز و تورمالن به ایپیدوت شده‌اند. همچنین حسوب 12 درصد از اسیداکت درگرسانی پروپیلیتی متوسط حدود 30 تا 40 درصد است. (ع) درگرسانی QSP ضعیف در مقطع نازک (PPL) در بخش‌های غرب و جنوب غرب توده‌های سینوگلاز، پیروپنت و پیروپین و تورمالین به ترتیب، کوارتنز و کرتیت در بخش‌های شمال غربی و شرقی ناحیه مشاهده شده است. در این مقاله در ساختار است. (ع) خشکسالی این بخش وجود کوارتنز به صورت پراکنده در منطقه شکل 4 درگرسانی‌های منطقه فیروزه-فنجان‌الاف حضور کلی‌های ایپیدوت با برجنگی بالا و کلرتی به رنگ سیاه، مشخصه درگرسانی پروپیلیتی ضعیف در مقطع نازک (PPL). (ب) تبدیل بیش از 30 درصد پلاژیوکلازها به کلرتی، مشخصه درگرسانی پروپیلیتی متوسط در مقطع نازک (PPL). (پ) تبدیل پلاژیوکلاز به سریسیت در مقطع نازک (XPL). (د) درگرسانی QSP شدید با تبدیل بیش از 30 درصد فلدسپات QSP کلری از سریسیت در مقطع نازک (XPL). (س) سیلیسپتی (ب) نمونه دستی از سنگ درگسانی از نوع آزیلیتک به رنگ سفید. (ج) نمایی از درگسانی سیلیسپتی، تورمالین در مقطع نازک (PPL) کوارتنز. (ع) سریسیت. (علائم اختصاصی برگفته از منابع [12]).

در درگرسانی پروپیلیتی متوسط در بخش‌های شرق و جنوب شرق منطقه حضور دارد. نتایج چنین پروپیلیت‌های پوپیوری می‌تواند این درگرسانی شده است. این درگرسانی با تبدیل حسوب 30 درصد پلاژیوکلازها به کرنت و کرتیت تبدیل 10 درصد از کلروپتونوزا پلاژیوکلاز و تورمالن به ایپیدوت شده‌اند. همچنین حسوب 12 درصد از اسیداکت درگرسانی پروپیلیتی متوسط حدود 30 تا 40 درصد است. (ع) درگرسانی QSP ضعیف در مقطع نازک (PPL) در بخش‌های غرب و جنوب غرب توده‌های سینوگلاز، پیروپنت و پیروپین و تورمالین به ترتیب، کوارتنز و کرتیت در بخش‌های شمال غربی و شرقی ناحیه مشاهده شده است. در این مقاله در ساختار است. (ع) خشکسالی این بخش وجود کوارتنز به صورت پراکنده در منطقه
دَگَرْسَانِی آزَیلی‌ی به طَوْر پَرَاکنَده در نیمِه غربی و به ویژه در شمال شرق منطقه قابل ماه‌اشد است. این دَگَرْسَانِی واحدهای سِی‌نَوْزُوْگَری‌یَت و تُورَالِی‌نِ بِی‌وی‌ت گِرَانِوْدِورِی‌بَت را مَنَاث کُرده است. این دَگَرْسَانِی در اَنر تیدِل‌ب‌لِازِوُکَلَارَه‌ا و فَلِدِسِی‌های قَلِب‌ی‌سَی سَنگ به مقدار بیش از ۳۰ درصد به کانی‌های رَسی تَشکِیل گذَه و در صَحَر رَنگ‌سَفید از خود نشان می‌دهد. اِن دَگَرْسَانِی رَذَخی قَسَم‌ه‌ا به دلیل حضور اَکسیدِهای اَنِه تانِبِه ناشی از اَکسید شَدِن سَلَف‌گَی‌های رَنگ مَاِلِه به تَارِنِجی به خود گرفته است.

دَگَرْسَانِی سِی‌لِسِسی‌سی‌شید – تُورَالِی‌نِ به طَوْر منطقه و پَرَاکنَده در بِی‌خ شَمال شرق، غرب و شَمال غرب مَحدِدوه و هَمراه با واحدهای سِی‌نَوْزُوْگَری‌یَت، بِی‌وی‌ت گِرَانِوْدِورِی‌بَت گِرَانِوْدِورِی‌بَت و تُورَالِی‌نِ به طَوْر وی‌زه در تُورَالِی‌نِ بِی‌وی‌ت گِرَانِوْدِورِی‌بَت دَیده می‌شود. حضور کَواِزُه‌های رَی‌پَرِز تَوَابع به مقدار ۷۰ تا ۸۵ درصد زَمَین‌سَنگ و ۱۰ درصد تُورَالِی‌نِ پَرَاکنَده و رَگَچَه‌ای در سنگ، ویژگی پَارِز اِن دَگَرْسَانِی است (شَکَل ۴، ب).

کَانِ سَازِی
بر اَساسِ بَرَسی‌های صَحرایی و میکرو‌سَکیوی، کَانِ سَازِی منطقه فِرِوزِه‌فِی‌چی به دو شَکَل پَرَاکنَده و رَگَچَه‌ای قابل

شَکَل ۵: نقشه کَانِ سَازِی منطقه فِرِوزِه‌فِی‌چی.
کارترز-نورمالی-بیریت، نوع IV. نورمالی-بیریت و نوع V: بیریت-کالکوپیریت-کلاک-نورمالی. این رگچه‌ها در توده‌های کوئرترز-موزنتونت پورفیری با دگرسانی QSP نورمالی-بیریت گواندورانت با دگرسانی سیلیسی-نورمالی، با دیده و شناسایی شدند (شکل ٦).

جلد ۴۶ شماره ۳ پاییز ۱۳۹۷
کانسیسازی و بررسی سیاله‌های در گذر در بخش شمالی کانسار... ۶۱۷
ترک‌ها و شکستگی‌های دیرزاد کالی (سیال‌های درگیر تانویه و تانویه کاذب) بدم می‌افتد [۱۵]. بنابراین می‌توان گفت که سیال‌های درگیر سیال و باید بررسی دقیق همراه انجام شود. کالی انتخاب شوند که تراکم رچگی این را از بیشتر پیش‌بینی کنند. این پیش‌بینی ریکه‌ها را به خود اختصاص می‌دهند. این پیش‌بینی با کمتر از ۵ تا بیش از ۹ دصرت گوشتی تبدیل شده‌اند و بیشتر در وسط سیال‌ها حضور دارند. در این بخش، نخست کوارتز و سپس پیت است. تکنیک است. طرفی، در برخی نمونه‌ها هم‌شکار کوارتز با دیده می‌شود. در مجموع، به نظر میرسد که پیش‌بینی هم‌زمان تا کمی پس از کوارتز در رچگی این تکنیک است. مقدار کالکوبیت در رچگی این بین ۱ تا ۱۵ دصرت است. این کالکوبیت به بیشتر نمونه‌ها و برخی از نمونه‌ها تبدیل شده است. مرحله کالکوبیت و هم‌زمان کاله آبی در سیال‌های درگیر بیشتر شده است.

سیال‌های درگیر با هدف بررسی شرایط فیزیک-شیمیایی سیال‌های درگیر به دست آمده در مدل اکتشافی مستقیم (به این ترتیب انتخاب شده) و بیشتر علاوه بر این، به واسطه بررسی سیال‌های درگیر، اطلاعات روزافزونی در مورد نقش فازهای سیال در فازهای عاملی سیال‌های درگیر خواهیم داشت و این میزان نوع و شکل داری کالی‌های سازی در شکل ۲‌هسته شده است.

\[\text{شکل} \ 7 \text{ نوای هم‌زمانی کالی‌های فازی و غیر فازی در بخش شمالی کانسار گز (منطقه فیروزه-فیچی).} \]
بهترین فراوانی را دارند (شکل 8 آلف).

دبای همبستگی سیال‌های درگیر اندازه گیری شده در نمونه‌های دوقلوی اولیه بین 55.9 تا 58.6 درجه سانتیگراد افتاده که خانه می‌دهد که سیال مسئول کانال‌ها در کانال کوپ از ارتفاع‌های 3 تا 4۵۰۰ می‌باشد تا تا ۵۵-۵۰ درجه سانتیگراد است. در مواردی از اندازه‌گیری شده از Tm (دبای تقلب) (شکل 8 آلف) گستردگی دمای همبستگی شکاف از ۵۳۰ تا ۵۱۶ درجه سانتی گراد (متوسط ۴۴۴ درجه سانتی‌گراد) و به درجه نمونه‌ای همبستگی به فاز عبور صورت گرفته است. همبستگی شکاف در فاز آبیم می‌دهد که سیال‌ها که می‌کنند از این به دام افتاده‌اند به احتمال زیاد به صورت دو باره است [18].

دبای همبستگی شکاف در میان‌های رگه نهایی ۴۲۵ درجه سانتی‌گراد در زمان ۴۷۰ تا ۴۴۰ درجه سانتی‌گراد در بیشتر است. همبستگی در دمای فراوانی در نمونه‌ها همبستگی به فاز عبور صورت گرفته است. همبستگی شکاف در زمان ۴۷۰ تا ۴۴۰ درجه سانتی‌گراد در بیشتر است. همبستگی در دمای فراوانی در نمونه‌ها همبستگی به فاز عبور صورت گرفته است. همبستگی شکاف در زمان ۴۷۰ تا ۴۴۰ درجه سانتی‌گراد در بیشتر است. همبستگی در دمای فراوانی در نمونه‌ها همبستگی به فاز عبور صورت گرفته است. همبستگی شکاف در زمان ۴۷۰ تا ۴۴۰ درجه سانتی‌گراد در بیشتر است. همبستگی در دمای فراوانی در نمونه‌ها همبستگی به فاز عبور صورت گرفته است. همبستگی شکاف در زمان ۴۷۰ تا ۴۴۰ درجه سانتی‌گراد در بیشتر است. همبستگی در دمای فراوانی در نمونه‌ها همبستگی به فاز عبور صورت گرفته است. همبستگی شکاف در زمان ۴۷۰ تا ۴۴۰ درجه سانتی‌گراد در بیشتر است. همبستگی شکاف در زمان ۴۷۰ تا ۴۴۰ درجه سانتی‌گراد در بیشتر است. همبستگی شکاف در زمان ۴۷۰ تا ۴۴۰ درجه سانتی‌گراد در بیشتر است. همبستگی شکاف در زمان ۴۷۰ تا ۴۴۰ درجه سانتی‌گراد در بیشتر است.
چگالی سیالهای در گیر اولیه بر اساس معادله مرجع \[16\] بین 0.59 تا 0.87 گرم بر سانتی‌متر مکعب (شکل ۸) و فشار سیال بین ۵۴۷ تا ۱۶۵ بر پاس است. گستره چگالی سیال به‌صورت های رگه‌های نوع I بین 0.59 تا 0.87 گرم بر سانتی‌متر مکعب بوده و بیشترین چگالی بین ۶۷ تا ۷۰ گرم بر سانتی‌متر مکعب است. گستره چگالی سیالهای رگه‌های نوع II بین ۷۰ تا ۹۷ گرم بر سانتی‌متر مکعب بوده و بیشترین چگالی بین ۷۷ تا ۸۲ گرم بر سانتی‌متر مکعب است. چگالی میانه-باره‌های رگه‌های نوع III بین ۶۲ تا ۷۲ گرم بر سانتی‌متر مکعب بوده و بیشترین آن بین ۷۷ تا ۸۲ گرم بر سانتی‌متر مکعب است. چگالی در میانبارهای رگه‌های نوع IV بین ۷۲ تا ۷۹ گرم بر سانتی‌متر مکعب در نتیجه بوده و بیشترین فراوی مربوط به ۷۰ تا ۷۲ گرم بر سانتی‌متر مکعب است. گستره چگالی میانبارهای رگه‌های نوع V بین ۶۴ تا ۶۹ گرم بر

بر اساس سیستم H2O-NaCl [۱۱] مقادیر شوری‌های

NaCl بین ۳۳۵ تا ۴۱۷ درصد وزنی معادل

بوده است (شکل ۸). برای سیالهای رگه‌های نوع I شوری از ۱۴۷ Wt.%NaCl تا ۱۶۴ Wt.%NaCl در تغییر است و بیشترین شوری در

گستره ۱۶ تا ۲۲ Wt.%NaCl است. شوری میانبارهای

رگه‌های نوع II و III ۳۲ Wt.%NaCl و بیشترین شوری ۲۲ Wt.%NaCl است و بیشترین شوری مربوط به گستره ۲۲ تا ۲۵ Wt.%NaCl است و بیشترین شوری را دارد. بیشترین

فراوی شوری سیالهای رگه‌های نوع V در گستره ۲۰ تا ۲۱ Wt.%NaCl است و بیشترین شوری در گستره ۲۱ تا ۲۴ Wt.%NaCl (شکل ۸).
به‌طور کلی دو نوع سیال کانساز تشخیص داده شد: 1) سیال A با شوری متوسط 24 درصد و 2) سیال NaCl متوسط 14 درصد و ویژگی‌های B ریگه‌های نوع IV و V و به گروه III در گروه سیال B و IV در گروه اندام B و IV در گروه سیال A تقریب می‌گردند. این نتایج احتمالاً نشان‌دهنده حضور کاتیون‌های Na⁺, Ca²⁺ و Mg²⁺ است.

پیکسان (2×1) معمولاً در سنین پیش‌بزرگی کمی ریزش دیده می‌شود که به دلیل عوامل مختلف در محیط کانساز باعث می‌شود که به‌طور طبیعی حفظ شود.

داشت: برنامه‌های تهیه فناوری، حس میزان ورودیکت و گروپی جایزه‌ای که آن را به دست آورده‌اند.

در پایان نمایندگان و کارشناسان مطالعه هر یک از گروه‌ها واقع شدند که به‌طور طبیعی حفظ شود.

در مطالعه حس میزان ورودیکت و گروپی جایزه‌ای که آن را به دست آورده‌اند.

در مطالعه حس میزان ورودیکت و گروپی جایزه‌ای که آن را به دست آورده‌اند.

در مطالعه حس میزان ورودیکت و گروپی جایزه‌ای که آن را به دست آورده‌اند.

در مطالعه حس میزان ورودیکت و گروپی جایزه‌ای که آن را به دست آورده‌اند.

در مطالعه حس میزان ورودیکت و گروپی جایزه‌ای که آن را به دست آورده‌اند.

در مطالعه حس میزان ورودیکت و گروپی جایزه‌ای که آن را به دست آورده‌اند.
شکل 9 نمودار شوری نسبت به دما و همگن شدنگی انواع سیال‌های درگیر کانسار کوه ز از (منطقه فیروزه-قچینی، روندهای ممکن تکامل سیال در نمودار دما-شوری برگرفته از مرجع [11]) است. روند 1- امیختی سیال A. با سیال سردرت و شوری کمتر. B. روندهای 2 و 3- امیختی سیال A. با سیال‌های دیگر با شوری مختلف ولی دما یکسان. روند 4- شوری فاز یافته مانده در اثر جوشش افزایش پیدا کرده است. روند 5- سردردشته سیال. روند 6- پاراک‌های سیال‌های درگیر و روند 7- توانش سیال‌های درگیر طی گرمایش.

شکل 10 دما و همگن شدنگی نسبت به شوری برای سیال‌های درگیر کانسار کوه ز در نمودار مراجع [29]
در پایان کشفی است که از آن جا که کمرونی ماگمایی البرز به سر سترویک در یک حوضه کششی پشت کامی ناشی از فورانوش عمیق صفحه عربستان به زیر صفحه ایران مرکزی تشکیل شده و بستر مناسب برای کالیسازی‌های مختلف آن زمان است. لذا شناخت هر چی بهتر از نظر چگونگی تشکیل و خاستگاه عنصر و محلول و ارتباط آن با توده‌های نفوذی و ساختمان‌های زمین‌شناسی گام مثبتی در جهت اکتشاف بهتر آن‌هاست.

قدردانی

این پژوهش با حمایت مالی دانشگاه فردوسی مشهد در ارتقاء با طرح پژوهشی شماره ۲۷۱۶۳۴۲۰ در تاریخ ۹۹/۰۴/۲۰ انجام شده است. از آقایان مهندس حاجی‌میرا جان شعبانی و برادرانی که برای انجام عملیاتی این پژوهش کمک کردند تقدیر و تشکر می‌گردد.

مراجع

[20] Hassanzadeh J., Exhumation of the west-central Alborz Mountains, Iran, Caspian subsidence, and collision- related tectonics’, Geology, 29(6), (2001) 559-562