بررسی ویژگی‌های زمین‌شیمیایی متفاوت‌های منطقه گل‌گهر در گستره کانسار آهن گل-
گهر، جنوبغرب سیرجان
رضوان میرزابی رایی‌فرد، علی احمدی، حسن میرنژاد، محمدوبری‌فرد

1- گروه زمین‌شیمیایی دانشگاه علوم دانشگاهی سیرجان و لولیجان
2- دانشگاه زمین‌شیمیایی، پردیس علوم دانشگاه تهران
(دریافت مقاله: ۱۳۹۴/۹/۱۱، نسخه نهایی: ۱۳۹۴/۱۲/۶)

چکیده: مجموعه‌گرگویی گل‌گهر در ۵۵ کیلومتری جنوبغرب سیرجان و در بخش شرقی پهنه سنگ‌های موجود در منطقه، در خصوصیات شیب‌سپری و آمیزه‌بندی‌ای با سن زوراسیک، سنگ‌های گل‌گهر شده مجموعه‌ای از سنگ‌های زمین‌شیمیایی متفاوت‌های (میکاپیت و گنیس) منتقلیتی، منابع‌پذیری، منابع‌پذیری را تکثیف داده‌اند. بررسی‌های زمین‌شیمیایی نشان می‌دهد که رسوبات اولیه منتقلیت‌ها، شیل‌های گل‌گهر و سخت‌سندن‌های جنوب‌غربی هستند که اغلب از مواد خشک‌سازی با ترکیب اسپیدی تا حدی حاصل تکثیف و تبادل. ناحیه خشک‌سازی، هوازدگی‌های زمین‌شیمیایی ضعیف تا متوسط را نشان می‌دهد. مقدار نسبتاً کمی از بافت‌های ۶۵ در شیست‌های مورد بررسی، با تراکم این عناصر در شیست‌های پس از آرکن هموخوان داند. گل‌گهر نشان می‌دهد که این سنگ‌های ترکیب رسوبی دارد (پارانکیس) و از سنگ‌های قبیل از اولویت‌های دست آمده‌اند.

واژه‌های کلیدی: زمین‌شیمیایی گل‌گهر، منتقلیت، پهن‌هه سنگ‌های-سیرجان

مقدمه
مجمع‌گرگویی گل‌گهر در ۵۵ کیلومتری جنوبغرب شهیرستان سیرجان در استان کرمان و در بخش شرقی پهنه ساختاری سنگ‌های در سیرجان قرار دارد. این مجموعه به عنوان قدیمی‌ترین واحد سنگی این منطقه به‌شمار می‌آید و نسبتاً یکی از برگزیده‌ترین ماکاره‌های آهن در ایران است. واحدهای سنگی متفاوتی در منطقه وجود دارد که هم‌اکنون شرایط دگوگری در رخساردهای شیست سیسمی و آمیزه‌بندی‌ها را نشان می‌دهد. بررسی‌های کاپی‌شیمیایی و زنگ‌روشی‌زی‌شیمیایی سنگ‌های دگوگری موجود در منطقه، به شناخت ماهیت زمین‌شیمیایی و سنگ‌های رسوبی اولیه کمک می‌کنند. با توجه به شرایط و شیمیایی سنگ‌های رسوبی اولیه، به‌زوری عناصر پایدار در محیط‌های رسوبی، می‌توان سنگ‌های دگوگری موجود در منطقه را به‌نظر شیمیایی-شیمیایی کرد. به‌عبارت دیگر،...

Rezvanmizraei@pgs.usb.ac.ir

نویسنده: مسعود، تلفن: ۹۱۲۳۷۶۹۲۲۳۲۳۲۲ۢ
زمینشناسی عمومی منطقه

همیفت درگوگنی گلگهر در بخش شرقی پهنه سندج-سرجان قرار دارد. پهنه ساختاری سندج-سرجان بهصورت نوار باریکی بین شهرهای سندج در شمال غرب و سرجان در جنوب شرق قرار گرفته است. این همیفت از سنگهای درگوگنی مختلفی حیضو می‌باشند، گلگهر در درگوگنی را زوراسیک می‌دانند. [8]. منطقه گل-گهر اغلب از آبرفت‌های عهد حاضر پوشیده شده است و رخمنه‌های محدودی از سنگهای درگوگنی در جنوب و جنوب غرب سنگهای رسوبی در شرق و توده‌های مرطوبی گرایت بمیلینی شده، به شکل کند کم ارتفاع، در جنوب کاسار برونود دارند. [9].

شکل 1 نقشه زمینشناسی ناحیهای ساده شده از منطقه گلگهر (برگرفته از نقشه 1/10000 گلگهر [8] با تغییرات).
کانادا به روش طیف‌سنجی جرمی پلاسمای جفت شده القای لیزری (RA-ICP-MS) (تجربه شدن. نتایج این تجربه‌ها در جدول‌های 1 و 2 آمده است.

سنگ‌نگاری سنگ‌های درگوگون محله‌گر

سنگ‌های متاپلاتیتی در محله‌گر کل کپره‌گرها با سایر سنگ‌های از جمله سنگ‌های متاکرتیک و متاپلاتیتی در نزدیکی توده‌های دیده می‌شوند. این سنگ‌های م شبیه به فراوان ترین سنگ‌های موجود در محله‌گر هستند. سطح براق سنگ‌های متاپلاتیتی به دلیل فرآوری حضور میکاها، و شیستوارگی این سنگ‌ها، بازدارنده آن طی مشاهدات صحرایی مورث است. متاپلاتیت‌های موجود در محله‌گر بر حسب کانی‌های فراوان و مهم موجب در آن‌ها انواع مختلفی دارند که در زیر به توضیح آن‌ها می‌پردازن.

روش بررسی

نخست به منظور شناسایی منطقه‌های مورد مطالعه، نقشه Zmin شناسایی گرگ و بررسی شد و طی چند روز بارزده و مرحله، نمونه‌برداری از منطقه با استفاده از لوازم شد. به منظور بررسی سنگ‌نگاری سنگ‌های GPS منطقه، تعداد ۵۰ نمونه مختلف از سنگ‌های مختلف جمع‌آوری و ۱۰۰ عدد از آن‌ها جهت بهره مقطع نازک و نازک صیفی انتخاب گردید. مقاطع نازک و نازک صیفی جهت سنگ‌نگاری و نمونه برای تجزیه‌های سنگ‌نگاری انتخاب و بررسی شدند. بررسی‌های سنگ‌نگاری دقیق بر سنگ‌کل سنگ‌های درگوگون در محله‌گر انجام گرفت. تعداد ۶ نمونه از نتایج صورت‌گرفته در محله‌گر کپره‌گرها تبعیض

<p>| جدول 1: نتایج تجزیه سنگ کل شیست‌های محله‌گر کل | |
|---|---|---|---|---|---|---|
| Sample no. | GO2-16 | GO2-70 | GO2-74 | GO2-103 | GO2-88 | GO2-270 |
| Major elements oxides (wt%) | | | | | | |
| SiO₂ | 58.37 | 53.57 | 58.95 | 54.68 | 72.13 | 66.78 |
| TiO₂ | 0.57 | 0.62 | 0.76 | 0.64 | 0.81 | 0.88 |
| Al₂O₃ | 18.38 | 14.72 | 13.91 | 14.21 | 14.27 | 13.00 |
| Fe₂O₃ | 7.88 | 9.98 | 5.84 | 6.15 | 6.45 | 4.33 |
| MgO | 2.85 | 3.77 | 3.75 | 3.74 | 4.77 | 2.96 |
| CaO | 1.87 | 6.87 | 2.38 | 2.34 | 2.34 | 2.88 |
| Na₂O | 2.12 | 2.94 | 2.98 | 2.98 | 3.50 | 3.15 |
| K₂O | 0.33 | 3.00 | 3.66 | 3.66 | 4.99 | 2.83 |
| P₂O₅ | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 |
| MnO | 0.04 | 0.05 | 0.06 | 0.08 | 0.10 | 0.10 |
| L.O.I | 2.89 | 2.55 | 1.69 | 2.32 | 1.39 | 0.79 |
| جمع | 99.88 | 99.67 | 99.79 | 99.97 | 100.00 | |
| عناصر جایگذاری (ppm) | | | | | | |
| La | 3000 | 4500 | 2800 | 3100 | 3000 | 3100 |
| Ce | 5500 | 5800 | 7100 | 7100 | 7300 | 7300 |
| Pr | 890 | 810 | 680 | 680 | 760 | 760 |
| Nd | 3200 | 3200 | 4800 | 4800 | 4800 | 4800 |
| Sm | 750 | 750 | 640 | 640 | 640 | 640 |
| Eu | 150 | 150 | 120 | 120 | 120 | 120 |
| Gd | 110 | 110 | 850 | 850 | 850 | 850 |
| Tb | 1000 | 1000 | 850 | 850 | 850 | 850 |
| Dy | 220 | 220 | 240 | 240 | 240 | 240 |
| Er | 80 | 80 | 80 | 80 | 80 | 80 |
| Tm | 40 | 40 | 40 | 40 | 40 | 40 |
| Yb | 30 | 30 | 30 | 30 | 30 | 30 |
| Lu | 40 | 40 | 40 | 40 | 40 | 40 |</p>
<table>
<thead>
<tr>
<th></th>
<th>Trace elements (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>0.0</td>
</tr>
<tr>
<td>As</td>
<td>130.0</td>
</tr>
<tr>
<td>Ba</td>
<td>50.0</td>
</tr>
<tr>
<td>Be</td>
<td>70.0</td>
</tr>
<tr>
<td>Bi</td>
<td>95.0</td>
</tr>
<tr>
<td>Co</td>
<td>25.0</td>
</tr>
<tr>
<td>Cr</td>
<td>40.0</td>
</tr>
<tr>
<td>Cs</td>
<td>70.0</td>
</tr>
<tr>
<td>Cu</td>
<td>40.0</td>
</tr>
<tr>
<td>Ga</td>
<td>50.0</td>
</tr>
<tr>
<td>Ge</td>
<td>70.0</td>
</tr>
<tr>
<td>Hf</td>
<td>95.0</td>
</tr>
<tr>
<td>Ho</td>
<td>25.0</td>
</tr>
<tr>
<td>In</td>
<td>70.0</td>
</tr>
<tr>
<td>Mo</td>
<td>10.0</td>
</tr>
<tr>
<td>Nb</td>
<td>90.0</td>
</tr>
<tr>
<td>Ni</td>
<td>30.0</td>
</tr>
<tr>
<td>Pb</td>
<td>60.0</td>
</tr>
<tr>
<td>Rh</td>
<td>110.0</td>
</tr>
<tr>
<td>Sn</td>
<td>70.0</td>
</tr>
<tr>
<td>Sr</td>
<td>110.0</td>
</tr>
<tr>
<td>Ta</td>
<td>8.0</td>
</tr>
<tr>
<td>Th</td>
<td>120.0</td>
</tr>
<tr>
<td>U</td>
<td>3.0</td>
</tr>
<tr>
<td>V</td>
<td>130.0</td>
</tr>
<tr>
<td>W</td>
<td>10.0</td>
</tr>
<tr>
<td>Y</td>
<td>230.0</td>
</tr>
<tr>
<td>Zn</td>
<td>30.0</td>
</tr>
<tr>
<td>Zr</td>
<td>140.0</td>
</tr>
</tbody>
</table>

جدول 2: نتایج تجزیه سنگ کل گنایس‌های منطقه چغا گهر

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>GO4-11</th>
<th>GO4-12</th>
<th>GO4-13</th>
<th>GO4-14</th>
<th>GO4-15</th>
<th>GO4-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major elements oxides (wt%)</td>
<td>Trace elements (ppm)</td>
<td>Trace elements (ppm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>74.2</td>
<td>74.2</td>
<td>74.2</td>
<td>74.2</td>
<td>74.2</td>
<td>74.2</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>14.7</td>
<td>14.7</td>
<td>14.7</td>
<td>14.7</td>
<td>14.7</td>
<td>14.7</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>MgO</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>CaO</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>K₂O</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>MnO</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>LOI</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>Total</td>
<td>99.9</td>
<td>99.9</td>
<td>99.9</td>
<td>99.9</td>
<td>99.9</td>
<td>99.9</td>
</tr>
<tr>
<td>Rare earth elements (ppm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Ce</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Pr</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Nd</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Sm</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Eu</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Gd</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Tb</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Dy</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Er</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Tm</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Yb</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Lu</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Zr</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
</tbody>
</table>

جدول 3: نتایج تجزیه سنگ کل گنایس‌های منطقه چغا گهر
میکاسیست این سنگ‌ها از نظر سنگ‌گزاری دارای مجموعه کانی‌های کوارتز (0-300 درصد), موسکویت (0-150 درصد), بیوتیت (0-50 درصد), پلاژیوکلاز (0-150 درصد) در هستند. کوارتز به صورت شکل‌دار و نیمه‌شکل در این سنگ‌ها موجود دار با حضور مونوهجی از فراوان‌ترین کانی‌های موجود در این سنگ‌ها هستند. پلاژیوکلاز این سنگ‌ها موجود در این میوه تهافت سربیسی شده‌اند. حضورکانی‌های میکایی سبب شده‌اند به رنگ براق در این سنگ‌ها شده است. بیوتیت موجود در این سنگ‌ها در برخی نقاط به کانی‌های طبیعی شده و فراآینده‌های دگرگونی جهت یافته‌گی در این سنگ‌ها شده است (شکل 3). میکاسیست این سنگ‌ها غلب در برخی از سنگ‌های کوارتز (0-150 درصد) و فلدسپات قلیایی (0-100 درصد) کوارتز (0-100 درصد) و

شکل 2: تصاویر میکروسکوپی از میکاسیست‌های مختلفه (یا) منطقه گل‌گهر. (الف) میکاسیست‌های (Plg) و پلاژیوکلاز (Bt) و بیوتیت (Ms) به میکاسیست‌های (Cf, Opq) و شیل‌های (Grt) در منطقه (ح) درشت بیهویه کوارتز به میکاسیست‌های (Opq) به مرور کانی‌های کوارتز (F) به میکاسیست‌های (Qz) و فلدسپات قلیایی (Qz) به میکاسیست‌های کوارتز (Oq).
سیلیمانیت شیست: سیلیمانیت موجود در سیلیمانیت شیست-های منطقه گل گهر به صورت بلوهای طوبی و سوزنی شکل و گاهی به شکل دسته‌ای به داخل مشاهده می‌شود که سیلیمانیت شیست-های منطقه گل گهر تشکیل بافته‌شکنی در این سنگ‌ها شده است (شکل 2). نتایج نشان می‌دهد که این سنگ‌ها به شکل شیست‌های سیلیمانیت شیست-های موجود در منطقه گل گهر از نوع پارکینس حسن‌ت‌ماه‌ی هستند.

ویژگی‌های شیمیایی سنگ‌های موجود در منطقه گل گهر به مطالعه ترکیب سنگ‌های (پروتونیت) متابایت‌ها از نسبت به log Fe2O3/K2O (نمونه تجزیه‌ی 3) استفاده شده. این نسبت به log SiO2/Al2O3 در شکل 3 نشان می‌دهد که این سنگ‌های جزئی از سنگ‌های حضور دارنده، پلدوکسی‌های قبیلی شیست-های موجود در این گروه از سنگ‌ها به شکل داری نیز، شکل‌دار و وجود دارد. کالی-های کدر نیز به کنترل مغناطیسی هستند، بهبود پرگانده در منطقه گل گهر گل‌ی می‌شود.

گل‌کور: قلبها، پلدوکسی‌ها، موسکویت و پروتونیت از جمله کالی-های تشکیل دهنده این سنگ‌ها هستند (شکل 2). جزئی این سنگ‌ها مشابه شیست‌های سیلیمانیت شیست-های موجود در منطقه گل گهر به شکل شیست‌های سیلیمانیت شیست-های موجود در منطقه گل گهر از نوع پارکینس حسن‌ت‌ماه‌ی هستند.

سیلیمنیت شیست-های منطقه گل گهر به صورت بلوهای طوبی و سوزنی شکل و گاهی به شکل دسته‌ای به داخل مشاهده می‌شود که سیلیمانیت شیست-های منطقه گل گهر تشکیل بافته‌شکنی در این سنگ‌ها شده است (شکل 2). نتایج نشان می‌دهد که این سنگ‌ها به شکل شیست‌های سیلیمانیت شیست-های موجود در منطقه گل گهر از نوع پارکینس حسن‌ت‌ماه‌ی هستند.

ویژگی‌های شیمیایی سنگ‌های موجود در منطقه گل گهر به مطالعه ترکیب سنگ‌های (پروتونیت) متابایت‌ها از نسبت به log Fe2O3/K2O (نمونه تجزیه‌ی 3) استفاده شده. این نسبت به log SiO2/Al2O3 در شکل 3 نشان می‌دهد که این سنگ‌های جزئی از سنگ‌های حضور دارنده، پلدوکسی‌های قبیلی شیست-های موجود در این گروه از سنگ‌ها به شکل داری نیز، شکل‌دار و وجود دارد. کالی-های کدر نیز به کنترل مغناطیسی هستند، بهبود پرگانده در منطقه گل گهر گل‌ی می‌شود.

گل‌کور: قلبها، پلدوکسی‌ها، موسکویت و پروتونیت از جمله کالی-های تشکیل دهنده این سنگ‌ها هستند (شکل 2). جزئی این سنگ‌ها مشابه شیست‌های سیلیمانیت شیست-های موجود در منطقه گل گهر به شکل شیست‌های سیلیمانیت شیست-های موجود در منطقه گل گهر از نوع پارکینس حسن‌ت‌ماه‌ی هستند.

سیلیمنیت شیست-های منطقه گل گهر به صورت بلوهای طوبی و سوزنی شکل و گاهی به شکل دسته‌ای به داخل مشاهده می‌شود که سیلیمانیت شیست-های منطقه گل گهر تشکیل بافته‌شکنی در این سنگ‌ها شده است (شکل 2). نتایج نشان می‌دهد که این سنگ‌ها به شکل شیست‌های سیلیمانیت شیست-های موجود در منطقه گل گهر از نوع پارکینس حسن‌ت‌ماه‌ی هستند.

ویژگی‌های شیمیایی سنگ‌های موجود در منطقه گل گهر به مطالعه ترکیب سنگ‌های (پروتونیت) متابایت‌ها از نسبت به log Fe2O3/K2O (نمونه تجزیه‌ی 3) استفاده شده. این نسبت به log SiO2/Al2O3 در شکل 3 نشان می‌دهد که این سنگ‌های جزئی از سنگ‌های حضور دارنده، پلدوکسی‌های قبیلی شیست-های موجود در این گروه از سنگ‌ها به شکل داری نیز، شکل‌دار و وجود دارد. کالی-های کدر نیز به کنترل مغناطیسی هستند، بهبود پرگانده در منطقه گل گهر گل‌ی می‌شود.
شکل ۱۲: نمونه‌دار دوتایی Ni–Cr
برای شیست‌های مور مبتنی، میدان‌های مشخص شده برای شیست‌های آرکن و پس از آرکن برگرفته از مرجع [۱۷]. ب، نمونه‌دار سه تایی ۱۰، برای شیست‌های مور مبتنی کسره‌دار مشخص شده عبارتند از: A، جزایر کمی K۲O اなら، B، جزایر کمی قاره‌ای C، در نهایت قاره‌ای و D، کرنه غیر قاره‌ای. ب: ترکیب نمونه‌های گل‌گهر بر نمونه‌دار و SiO۲ نسبت به Fe۲O۳.

هوازدگی در ناحیه خاستگاه
شیمی عناصر اصلی و کمیاب گل‌گهر عهد حاضر درجه هوازدگی ناحیه خاستگاه را مشخص می‌کند [۱۷]. می‌توان آن را برای مثال‌های نیز استفاده کرد [۱۸]. درجه‌بندی توسط هوازدگی در ناحیه خاستگاه باعث تغییر شکل نسبی عناصر قلبی و قلبی خاکی و غنی‌شدن Ni در TiO۲ و Al۲O۳ با در نتیجه تشکیل سنتی‌های رسوبی [آوری می‌شود [۱۹-۲۱]. آثار هوازدگی را می‌توان از نظر گفتگوی توسط شیمیایی‌های شیمیایی درگیری و یا شیمیایی مشخص شناخته می‌کنند.

CIW = ۱۰۰[Al۲O۳/۳(AI۲O۳/۲ + CaO + Na۲O + K۲O)].

تشکیل داده می‌شود (جدول ۳). شیمیایی دگرگونی (CIW = ۱۰۰[Al۲O۳/۳(AI۲O۳/۲ + CaO + Na۲O)] هوازدگی در نظر می‌شود [۲۴، محاسبه می‌شود (جدول ۳). بطور کلی سنگ‌های آدرنی گرفته‌های شیمیایی دگرگونی ۵۰، ۱۰0 می‌باشد مشخص می‌شود. در حالی که هوازدگی گسترده رس‌های بالعکس به دلیل فعالیت‌های زمین‌ساختی است که با موقعیت زمین‌ساختی ساخته در یک نظام جرایی کمی قاره‌ای همخواری دارد (شکل ۴).
در میانگین ۴۴، است که نشان دهنده نمودارهای مورد بررسی تکیه K_{2}O به عنوان شاخص برای شناسایی تکیه خاستگاه سنگ‌های تخربی دارنده استفاده می‌شود [۳۴]. بر این اساس، تغییرات نسبت‌های K_{2}O/Al_{2}O_{3} را از سر رها کرده‌اند. می‌توان نتیجه گرفت که خاستگاه‌های مورد بررسی اغلب ترکیب اسیدی تا حذف‌ساز است. این نتایج نسبت Th/Sc بهترین شاخص برای خاستگاه‌های است. این نسبت در نمونه‌های مورد بررسی بین ۲.۶۳-۰.۹۰ با میانگین ۰.۹۰ است که با مقدار این نسبت در بوسته بالایی [۳۹] مشابهت دارد. به‌طور کلی، توجه به مطالعه پیشین نشان می‌دهد که با توجه به نتایج فوق، این نسبت K_{2}O/Al_{2}O_{3} به طور کلی در سنگ‌های خاستگاه و مورد بررسی ۰.۲ (در کانترل ۲۰۱4-۰۱۰۰) است. این نسبت با باینگر مقدار فلسفه‌خوابی کم و مهم در سنگ‌های خاستگاه پایین‌تر است.

استفاده از عناصر CaO/Al_{2}O_{3} و Zr/Al_{2}O_{3} در سنگ‌های مورد بررسی (در کانترل ۲۰۱۴) است. این نسبت با باینگر مقدار فلسفه‌خوابی کم و مهم در سنگ‌های خاستگاه و مورد بررسی ۰.۲ (در کانترل ۲۰۱۴-۰۱۰۰) است. این نسبت با باینگر مقدار فلسفه‌خوابی کم و مهم در سنگ‌های خاستگاه و مورد بررسی ۰.۲ است. این نسبت با باینگر مقدار فلسفه‌خوابی کم و مهم در سنگ‌های خاستگاه و مورد بررسی ۰.۲ است. این نسبت با باینگر مقدار فلسفه‌خوابی کم و مهم در سنگ‌های خاستگاه و مورد بررسی ۰.۲ است. این نسبت با باینگر مقدار فلسفه‌خوابی کم و مهم در سنگ‌های خاستگاه و مورد بررسی ۰.۲ است.
شکل ۷ نمودار علل‌بینی عناصر اصلی، کمیابی و جایی نادر به‌پنجاره شده نسبت به پوسته فارVARای بالا [۹۲۰] در گروه‌های منطقه گل‌گهر.

شکل ۸ گروه پراکنده عناصر خاکی نادر به‌پنجاره شده نسبت به پوسته فارVARای بالا [۹۲۰] در گروه‌های منطقه گل‌گهر.

شکل ۹ نمودار جهت تعیین ویژگی شیمیایی گنبد‌ها [۸۳] و موقعیت گنبد‌های مورد بررسی در آن.
Cretan

Nagardeganقال مقاله از شرکت ایمیدو و معاونت پژوهشی دانشگاه سیستان و خوزستان به خاطر تأثیر هزینه‌های این پژوهش کمال تکه و قدردانی را داده. همچنین، از راهنمایی‌های ارزشمند آقایان مهندس طالی و مهندس خرخزاد و سایر پرسنل محترم معدن شماره ۲ و ۴ گل گهر طی عملیات صحراپی نیز قدردانی می‌شود.

مراجع

