بررسی ویژگی‌های زمین‌شیمیایی متالیت‌های منطقه گل‌گهر در گستره کانسار آهن-گهر، جنوب‌غرب سیرجان

رضوان میرزایی رایی*I، علی احمدی، حسن میرنژاد، محمدبومیر

1- گروه زمین شناسی، دانشکده علوم، دانشگاه سیستان و بلوچستان
2- دانشگاه زمین شناسی، برسی علوم، دانشگاه تهران
(دریافت مقاله: 1394/6/9، نسخه نهایی: 94/9/11)

چکیده: مجموعه دارگویی گل‌گهر در ۵۵ کیلومتری جنوبغرب سیرجان و بخش شرقی پیشه سینندج-سیرجان قرار دارد. سنگ‌های موجود در منطقه، در رخساره‌های شیبست سپری و آمیزشی بالایی با سن ژوراسیک میانی دارگویی شده مجموعه‌ای از سنگ‌های متالیتی (میکاپتست و گنس) شامل هستند. بررسی‌های زمین‌شیمیایی نشان می‌دهد که رسوبات اولیه میکاپتست و گنس شامل هستند. شیبلا و ماسه سنگ‌های جورشده‌های سینندج که اغلب از مواد خاستگاه اصلی تا حدودی تشکیل شده‌اند. ناحیه خاستگاه، هوازدگی شیمیایی ضعیفی از صورت را نشان می‌دهد. مقدار تتان کرم با میانگین ۹۹/۶ ppm در شیست‌های مورد بررسی، با تراکم این عناصر در شیست‌های پس از آرکن همکنون دارد. سنگ‌های منطقه گل‌گهر نشان می‌دهد که این سنگ‌ها ترکیب رسوبی دارند (پالاسیک) و از سنگ‌های قبیل از آن‌هایی به دست‌آمده‌اند.

واژه‌های کلیدی: زمین‌شیمیایی گل‌گهر، متالیت‌ها، پیشه سینندج-سیرجان

مقدمه
مجموعه دارگویی گل‌گهر در ۵۵ کیلومتری جنوبغرب شهرستان سیرجان در استان کرمان و در بخش شرقی پیشه ساختاری سینندج-سیرجان قرار دارد. این مجموعه به عنوان قدیمی‌ترین واحد سنگی این منطقه به‌شمار می‌آید و به‌زیان یکی از برگزیدگان کانسارهای آهن در ایران است. واحدهای سنگی مختلفی می‌تواند یک هرم شیب‌داراها و گستره‌های خستگی را نشان دهد. بررسی‌ها کاملاً شناسایی و تدوین کردن شیمیایی دقیق‌ترین و در پیش‌بینی خستگی از کانسار دارد. انجام شیمی‌نگری‌ها در سنگ‌های این کانسار که خود نقش مهمی در فهم بهتر شرایط حاکم بر منطقه و در نهایت خستگی این کانسار دارد، انجام شده است. در این پژوهش با استفاده از زمین‌شیمی سنگ‌کلب و بررسی عناصر اصلی، کمیاب و خاکی‌تذکر سنگ‌های متالیتی موجود در منطقه (شیست‌ها و گنیس‌ها)، ترکیب سنگ‌های پرتوتلیتی و آمیزشی در منطقه کل گهر بررسی شده و سرانجام با استفاده از داده‌های زمین‌شیمیایی، محیط تشکیل این سنگ‌ها مشخص شده است.

Rezvanmirzaei@pgs.usb.ac.ir

*نویسنده مسئول. تلفن: ۹۰۹۱۳۳۷۶۷۶۲۲۳. پست الکترونیکی:
زمین شناسی عمومی منطقه

همیفت درگوگنی گل‌گهر در بخش شرقی پهنه سنندج-سیرجان قرار دارد. پهن‌تاریخ سنندج-سیرجان به‌صورت نوار باریکی بین شهرهای سنندج در شمال غرب و سیرجان در جنوب شرق قرار گرفته است. این همبستگی از سنگ‌های درگوگنی مختلف همچون سنابیت‌ها، متالیت‌ها و سنگ‌های متنوع‌های سنندجی شیستی به شدت متنوع‌تر و گوناگون‌تری را شامل می‌شود. سنگ‌های متالیت‌ها شامل امفیبول‌های شیستی، امفیبول‌های و گویای امفیبول‌ها هستند که به دلیل سختی بالای آن‌ها طی

[Doi: 10.29252/ijcm.26.3.555]

شکل 1 نتیجه زمین‌شناسی ناحیه‌ای ساده شده از منطقه گل‌گهر (برگرفته از نقشه 1/100 000 گل‌گهر [8] با تغییرات).
بنابراین، این مطالعه نشان می‌دهد که:

1. ارتباط مستقیمی بین تغییرات در مولکول‌های متالیک و ساختار سطحی وجود ندارد.
2. تغییرات در مولکول‌های متالیک ممکن است ناشی از تغییرات در تکامل ساختار سطحی باشد.
3. بیشترین تغییرات در مولکول‌های متالیک به تدریج بازیافت می‌شوند.

در نهایت، این مطالعه نشان می‌دهد که تغییرات در مولکول‌های متالیک و ساختار سطحی به صورت مستقل یا در هم گسترش می‌یابند و باید به تغییرات در محیط و انسان‌پروری ناامید کنند.
جدول2 نتایج تجزیه سنگ کل گنایس‌های منطقه گل‌گهر

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>GO4-11</th>
<th>GO2-149</th>
<th>GO4-15</th>
<th>GO4-12</th>
<th>Sample no.</th>
<th>GO4-11</th>
<th>GO2-149</th>
<th>GO4-15</th>
<th>GO4-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major elements oxides (wt%)</td>
<td>Trace elements (ppm)</td>
<td>Major elements oxides (wt%)</td>
<td>Trace elements (ppm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>12.60</td>
<td>12.60</td>
<td>12.60</td>
<td>12.60</td>
<td>Ba</td>
<td>130.00</td>
<td>130.00</td>
<td>130.00</td>
<td>130.00</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
<td>Cu</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>11.47</td>
<td>11.47</td>
<td>11.47</td>
<td>11.47</td>
<td>Cr</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.03</td>
<td>1.03</td>
<td>1.03</td>
<td>1.03</td>
<td>Cu</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
</tr>
<tr>
<td>MgO</td>
<td>1.55</td>
<td>1.55</td>
<td>1.55</td>
<td>1.55</td>
<td>Cu</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>CaO</td>
<td>1.13</td>
<td>1.13</td>
<td>1.13</td>
<td>1.13</td>
<td>Ga</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.78</td>
<td>0.78</td>
<td>0.78</td>
<td>0.78</td>
<td>Ge</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>Hf</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>Ho</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>MnO</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>In</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>L.O.I</td>
<td>1.49</td>
<td>1.49</td>
<td>1.49</td>
<td>1.49</td>
<td>Mo</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>Ni</td>
<td>15.00</td>
<td>15.00</td>
<td>15.00</td>
<td>15.00</td>
</tr>
<tr>
<td>Rare earth elements (ppm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pb</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>La</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>Rb</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Ce</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>Sr</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Pr</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>Ta</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Nd</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>Tb</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Sm</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>Dy</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Eu</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>Er</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Gd</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>Yb</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Tb</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>Lu</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Dy</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>Zr</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

جدول1 ادام جدول 1

<table>
<thead>
<tr>
<th>Trace elements (ppm)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>As</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Ba</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
</tr>
<tr>
<td>Bi</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Ca</td>
<td>2.50</td>
<td>2.50</td>
<td>2.50</td>
<td>2.50</td>
</tr>
<tr>
<td>Cr</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Cs</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Cu</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Ga</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Ge</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Hf</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Ho</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>In</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Mo</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Nb</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Ni</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Pb</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Rh</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Sb</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Sc</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Sn</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Sr</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Ta</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Th</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>U</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>V</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>W</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Y</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Zn</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
</tbody>
</table>

[DOI: 10.29252/jpm26.3.555]
میکاپیست این سنگ‌ها از نظر سگنیگاری دارای مجموعه کانی‌های کوارتز (20-40 درصد)، موسکویت (10-20 درصد)، بیوتیت (15-20 درصد)، پلاژیوکلاز (10-15 درصد)، سپسیتی و کانی‌های کدر شامل مگنتیت و به مقدار کمتر پیریت (5-10 درصد) هستند. بلوهره کوارتز به صورت گرد و نیمه‌گرد دارا با خاموشی‌های مختلفی از فراوان‌ترین کانی‌های موجود در این سنگ‌ها هستند. پلاژیوکلاز به‌طور متوسط در این نمونه‌ها سرت در سطح دیده شدند. حضور کانی‌های میکاپی سیب شیپ‌و‌وارک شکاف‌یار و آشکار و رنگ یافته در این سنگ‌ها شده است. بیوتیت موجود در این سنگ‌ها در برخی نقاط به کریست دگرگان شده و فراوانی‌های دگرگونی سبب جهت‌افزایی در این سنگ‌ها شده است (شکل 2). کانی‌های کدر، کریست و میکاپی در این سنگ‌ها به‌صورت ترکیبی در منجرسنگ دیده می‌شوند.

گزارندهای میکاپیست این سنگ‌ها اغلب در پراکندگی‌های بیوتیت (15-20 درصد)، موسکویت (10-20 درصد)، کوارتز (10-20 درصد) و فلدسپات قلبی‌ای (0-5 درصد) می‌باشند. و

شکل 2 یاف: تصاویر میکروسکوپی از منایل‌های منطقه گل‌گهر شهید فلاح: موسکویت (MS)، بیوتیت (Bt) و پلاژیوکلاز (Plg) در میکاپیست‌های (Grt) و سیمپیت‌های (Opq) به‌صورت کانی‌های کدر (Kfs) در منطقه ب‌درشت بلوهره کوارتز (Qz) به‌صورت کانی‌های میکاپی در گنگ‌ها علائم اختصاصی نام کانی‌ها را در مرجع [110] گرفته شده است.

برسی ویژگی‌های زمین‌شیمیایی منایل‌های منطقه گل‌گهر در ...
سیلیماتیت شیست: سیلیماتیت موجود در سیلیماتیت شیست-های منطقه گل گهر به صورت بلورهای طوبی و سوزنی شکل و گاهی به شکل مستطیلی طولانی مشاهده می‌شود که سپس تشکیل نخ شکنک‌های در این سنگ‌ها شده است (شکل ۲). ناحیه فاصله‌ای از کایت‌های گهرت (۱۵-۱۰ درصد، بیوموئیدیوم، ۲۰۰۰)، موسیوکت (۵-۱۰ درصد) و کوارتز (۱۰-۰ درصد) در شکل (۲) نشان داده شده است. اما، ناحیه کالیت در سنگ‌های گهرت، ناحیه ماده سوزنی از سنگ‌های گهرت در منطقه گل-گهر از نوع پارکسیون بوده.

از کاریک، فلسفات، پلایژولز، موسیوکت و بیوموئیدیوم از سنگ‌های کاکی جمله گیرنده‌ای شکل دهنده این سنگ‌ها شده‌است (شکل ۵). در کل کاکی دارای سنگ‌های گهرت که به صورت بنفرو حرشا و این سنگ‌ها حضور دارند. این سنگ‌ها به صورت بنفرو حرشا طبیعی در منطقه گل گهرت مولکولی دیده می‌شود. مقدار کرمی و دیگر سنگ‌های سوزنی شیست‌های منطقه گل-گهر تا حدود ۵۰ درصد و خاموشی ته‌چرخه با تغییر ناشناخته و یافته-موزاییکی را تشکیل داده‌اند. فلسفات‌های کالیت-ی فلسفات ماده‌ای به صورت شکل‌دار تا نیمه شکل‌دار حدود ۲۰ درصد از سنگ‌ها به خود اختصاص داده‌اند. پلایژولزها نیز به ماکل‌چندیخویت و

[شکل ۲: نمونه تجزیه‌ای Log SiO2/Al2O3 نسبت به Log Fe2O3/K2O است. ب: نمونه تجزیه‌ای Log SiO2/Al2O3 نسبت به Log K2O/Na2O جهت شناسایی جایگاه زمین ساخته شیست‌های مورد بررسی.]
به جای محلی در ناحیه خاستگاه رسوبات پلیمانی دستخوش درجات بالایی نا مناسبی از هوازدگی شیمیایی در مقایسه با میانگین شیل‌ها (CIA = 70-80) شداند. شاخه نیکل-یونت و کانی‌های اسلید که در ناحیه عمان بیش از یک مقدار بالایی از CIA به سمت نزول گذرانده می‌شود. این رسوبات اغلب در محیط‌های زمین‌سایه فعال یافته می‌شوند. CIA = 0.75 به منظور مقایسه، رسوبات پلیمانی جوزند تا و گنی‌هدا از کانی‌های رسی، با شاخه نیکل-یونت کمتر (CIA = 0.70) مشخص می‌شود. این گروه از رسوبات، مشخصه محیط‌های کانی‌هایی از نظر زمین‌سایه‌ای خاموش (CIA = 0.70) اما از نظر IVH و روابط نمایش دهنده مقدار H2O در حالت مناسب می‌باشد. این امر به دلیل فعالیت‌های زمین‌سایه است که با مویش زمین‌سایه در کنار نظام جایگی کف آبی‌های مخموش‌دار (شکل 4 تا 6).
جدول 2. شاخص‌های شیمیایی دگرگونی هوازدگی و تغییرات ترکیب.

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>GO2-16 (Micaschist)</th>
<th>GO2-70 (Micaschist)</th>
<th>GO4-70 (Garnet micaschist)</th>
<th>GO4-103 (Micaschist)</th>
<th>GO8-88 (Garnet micaschist)</th>
<th>GO4-270 (Garnet micaschist)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIA</td>
<td>5982</td>
<td>72</td>
<td>56</td>
<td>51.54</td>
<td>54.17</td>
<td>49.49</td>
</tr>
<tr>
<td>CTW</td>
<td>70.68</td>
<td>41.77</td>
<td>58.35</td>
<td>58.14</td>
<td>57.99</td>
<td>55.77</td>
</tr>
<tr>
<td>ICV</td>
<td>1.40</td>
<td>1.14</td>
<td>1.80</td>
<td>2.00</td>
<td>2.70</td>
<td></td>
</tr>
</tbody>
</table>

شاخص شیمیایی دگرگونی CIA، شاخص تغییرات ترکیب.

خاستگاه سنگ‌مانند میلیپیتا

نسبت K_2O به بهنکان شیمیایی برای شناسایی ترکیب خاستگاه سنگ‌مانند نمودار دامیرست. نسبت K_2O/Al$_2$O$_3$ این اساس، تغییرات نسبت $\text{K}_2\text{O}/\text{Al}_2\text{O}_3$ را در سنگ خاستگاه‌ها نشان می‌دهد. در سنگ‌های سنگ‌مانند، $\text{K}_2\text{O}/\text{Al}_2\text{O}_3$ برای شناسایی سنگ‌های خاستگاهی مورد بررسی 2 (در کستره 0.4-0.5) است که بیانگر مقدار فلدسپارقیلیاتی در سنگ‌های خاستگاه و خود نشان دهنده نداشتن ترکیب فلسیک خالص است. گریت و همکران [17] از $\text{K}_2\text{O}/\text{Al}_2\text{O}_3$ در سنگ‌های آذرین حدود، $\text{K}_2\text{O}/\text{SiO}_2$ است. $\text{K}_2\text{O}/\text{TiO}_2$ عناصر کمیاب به طور گسترده برای تعیین ترکیب سنگ خاستگاه سنگ‌مانند میلیپیتا استفاده می‌شود [23, 24]. Cr به عنوان شیمیایی برای مقدار کیفیت و زیرکونیت استفاده می‌شود. این اهمیت نسبت Cr/Zr نشان دهنده نقش نسبی Cr/Zr در سنگ‌های آذرین فلسیک و ما فیک است. مقدار Cr/Zr سنگ‌های خاستگاهی آذرین.
زیمن شیمیایی کانی‌های منطقه گل‌گهر

گل‌گهر موجود در منطقه مورد بررسی دانه‌متوسط و بیشتر شاخص کوارتز، فلدسپات‌های قلبی، بیوتیت، موسکویت و کلریت هستند. مقادیر عناصر اصلی و کمیاب ۴ نمونه گل‌گهر انتخاب شده در جدول ۱ آمده است. مقدار سیلیس این نمونه‌ها بین ۲۱.۳ تا ۶۳.۳ است. الگوی عناصر کمیاب و خاکی نادر

$L_{Na}/Yb_{(N)}$ بیشتر نیست به بوسته فارایی بالایی [۲۰۱۰].

زمن شیمیایی کانی‌های منطقه گل‌گهر

احتمالاً دلیل فرارگیری این نمونه‌ها در گستره پرآلمونین است.

برداشت

سنگ‌های موجود در منطقه گل‌گهر، شامل سنگ‌های دکترویت‌ای است که در رخت‌های شیب سیا تا آمپولیت‌باروی دکترویتی دیده و به ترتیب سنگ‌کل مناسب‌ها نشان می‌دهد که سنگ‌های علفی‌بدنی و جهش‌های از شیب و ماسه سنگ تبنا در این سنگ‌ها از خشکسال با ترکیب اغلب اسیدی تا حاوی دارد. تشکیل شرایط و دما و هوازده‌شیمیایی ضعیف تا متوسط شدن. تجزیه شیمیایی شیست‌های منطقه گل‌گهر نشان می‌دهد که این‌ها، از نوع شیست‌های پیس از آرکن‌های هستند. بررسی گنگ‌های منطقه گل‌گهر نشان می‌دهد که آن‌ها خاسک‌های رسوبی دارند و پاراگنز نامیده می‌شوند. این گنگ‌ها به دلیل کم‌بود

$Al_{2}O_{3}$ از نوع پرآلمونین هستند.
شکل ۷ نمودار عنکبوتی عنصر اصلی، کمیاب و حاکی نادیده بگیرید شده نسبت به میزان فرآوری بالایی از [۱۰۰] در گروه‌های منطقه گل‌گهر.

شکل ۸ الگوی پرکندگی عنصر خاکی نادیده بگیری شده نسبت به بافت گیسی بالایی [۱۰۰] در گروه‌های منطقه گل‌گهر.

شکل ۹ نمودار چهت تعمیم ویژگی شیمیایی گنبد‌ها [۲۳] و موقعیت گنبد‌های مورد بررسی بر آن.
Early Proterozoic climates and plate motions inferred from the chemical compositions of Precambrian greenstones at the base of the Dominion and Pongola Groups, (Transvaal, South Africa), Precambrian Research 32(1986) 97–132.

Murray

