بررسی ویژگی‌های زمین‌شیمیایی متایپلی‌های منطقه گل‌گهر در گستره کانسار آهن گل-گهر، جنوب غرب سیرجان

رضوان میرزایی رایشین ۱، علی احمدی ۱، حسن میرزازاده ۲، محمدمبز ۱

چکیده: مجموعه دکترگونی گل‌گهر در ۵۵ کیلومتری جنوب غرب سیرجان و به شرقی یپهنه سنندج- سیرجان قرار دارد. سنگ‌های موجود در منطقه، در رخساره‌های شیست سیز و آمفیبولیت‌های با سن زوراسیک میانی دکترگون شده مجموعه‌ای از سنگ‌های متایپلی‌ها (میکاپشمی و گنس)، منابع‌هایی را تشکیل می‌دهد. بررسی‌های زمین‌شیمیایی نشان دهنده که رسوبات اولیه متایپلی‌ها، شیل‌ها و ماسه‌سنگ‌های جوزندسره‌های هستند که اغلب از مواد خاکسازی با ترکیب سیدی تا حدودی تشکیل شده‌اند. ناحیه خاکسازهای هوازدگی شیمیایی ضعیفی نمی‌تواند را نشان می‌دهد. مقدار نسبتاً کمی با میانگین ppm ۹۹/۶۷ در شیست‌های مورد بررسی، با ترکیب این عنصر در شیست‌های پس از آرکن همکویی دارد. گل‌گهر منطقه گل‌گهر نشان می‌دهد که این سنگ‌ها ترکیب رسوبی دارد (پارانکیس) و از سنگ‌های فیروز از اولویت‌های به دست آمد.

واژه‌های کلیدی: زمین‌شیمیایی گل-گهر; متایپلی‌ها; یپهنه سنندج- سیرجان

مقدمه
بررسی زمین‌شیمیایی بر سنگ کل متایپلی‌ها، اطلاعات ارزشمندی درباره راکدهای رسوبی و همچنین سنگ آذرین ماده رسوبات در اختیار ما قرار می‌دهد. این منطقه توسط برخی از پژوهشگران بررسی شده است [1۱۰]. بیشتر پژوهش‌های انجام شده بر خاستگاه کانسار تاکید دارند و بررسیکامی بر سنگ‌های میانی این کانسار که خود نقش مهمی در محقق شرایط حاکم بر منطقه و در نهایت خاستگاه کانسار دارد، انجام گرفته است. در این پژوهش، بر اساس سنگ‌های کل و بررسی عناصر اصلی، کمیاب و خاکی نادر سنگ‌های متایپلی‌ها موجود در منطقه (شیست‌های و گنس‌های)، ترکیب سنگ مادر (بروتولیت‌ها) متایپلی‌ها در منطقه گل‌گهر بررسی شده و سراتجان با استفاده از داده‌های زمین‌شیمیایی، می‌تواند شکل این سنگ‌ها مشخص شده است.
زمن‌شناسی عمومی منطقه

هم‌افزایی در گل‌گهر گل‌گهر در بخش شرقی پهنه سنندج-سیرجان قرار دارد. پهنه ساختاری سنندج-سیرجان با صورت نوار باریکی بین شهرهای سنندج در شمال غرب و سیرجان در جنوب شرق قرار گرفته است. این هم‌افزایی از سنگ‌های گل‌گهر و شیل‌های مناسب‌تر منابع‌اش، معادن‌اش و منابع‌اش مشترک بوده‌است. گل‌گهر اغلب از آبرفت‌های عهد حاضر پوشیده شده است و رخنمون‌های محدودی از سنگ‌های گل‌گهر در جنوب و جنوب‌غرب سنگ‌های رسوبی در شرق و شرقند نفوذی گرایت می‌باشند. شدت بخش کننده گرمفیل‌ها، کوتاه‌تر از گندم‌های دارند [9].

شکل 1 نقشه زمین‌شناسی ناحیهای ساده شده از منطقه گل‌گهر (برگرفته از نقشه 1/100000 گل‌گهر [8] با تغییرات).
روش بررسی
نخست به منظور شناخت مقداماتی منطقه مورد مطالعه، نقشه زمین‌شناسی ۱:۴۰۰۰۰ گل‌کهر مورد بررسی قرار گرفت چند روز بارگیری سنجشی، نمونه‌برداری از منطقه با استفاده از GPS
منطقه، تعداد ۱۵ نمونه مختلف از سنگ‌های مختلف جمع آوری و ۱۰۰ عدد از آن‌ها جهت تهیه مقطع نازک و نازک صفحی انتخاب گردید. مقاطع نازک و نازک صفحی جهت سنگ‌گذاری و نمونه‌برداری زمین شیمیایی انتخاب و بررسی شدند. بررسی‌های زمین شیمیایی دقیق بر سنگ کل سنگ‌های دگرگونی در منطقه انجام گرفت. تعداد ۶ نمونه از مایع‌های موجود در آن منطقه گل‌کهر جهت تغییری عناصر اصلی، کمیابی و خاکی نادر در آزمایشگاه Actlabs در

<table>
<thead>
<tr>
<th>جدول ۱</th>
<th>نتایج تجزیه سنگ کل شیمیایی منطقه گل‌کهر</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample no.</td>
<td>GO2-16</td>
</tr>
<tr>
<td>Major elements oxides (wt%)</td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>58.34</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.57</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>18.75</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>7.31</td>
</tr>
<tr>
<td>MgO</td>
<td>2.58</td>
</tr>
<tr>
<td>CaO</td>
<td>1.32</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.17</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.04</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.19</td>
</tr>
<tr>
<td>MnO</td>
<td>0.10</td>
</tr>
<tr>
<td>LOI</td>
<td>2.86</td>
</tr>
<tr>
<td>مجموع</td>
<td>99.98</td>
</tr>
</tbody>
</table>

عناصر حاکی نادر (ppm)

<table>
<thead>
<tr>
<th></th>
<th>La</th>
<th>Ce</th>
<th>Pr</th>
<th>Nd</th>
<th>Sm</th>
<th>Eu</th>
<th>Gd</th>
<th>Tb</th>
<th>Dy</th>
<th>Er</th>
<th>Tm</th>
<th>Yb</th>
<th>Lu</th>
</tr>
</thead>
<tbody>
<tr>
<td>GO2-16</td>
<td>20000</td>
<td>4000</td>
<td>3500</td>
<td>3500</td>
<td>7000</td>
<td>7100</td>
<td>7100</td>
<td>7700</td>
<td>7400</td>
<td>7400</td>
<td>7500</td>
<td>7100</td>
<td>7100</td>
</tr>
<tr>
<td>GO2-70</td>
<td>4000</td>
<td>4500</td>
<td>8000</td>
<td>8700</td>
<td>7100</td>
<td>7100</td>
<td>7100</td>
<td>7700</td>
<td>7400</td>
<td>7400</td>
<td>7500</td>
<td>7100</td>
<td>7100</td>
</tr>
<tr>
<td>GO2-74</td>
<td>3500</td>
</tr>
<tr>
<td>GO2-103</td>
<td>3500</td>
</tr>
<tr>
<td>GO2-88</td>
<td>3500</td>
</tr>
<tr>
<td>GO2-270</td>
<td>3500</td>
</tr>
</tbody>
</table>
Table 1: Trace Elements (ppm)

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>GO4-11</th>
<th>GO2-149</th>
<th>GO4-15</th>
<th>GO4-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>As</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Ba</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Be</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Bi</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Ca</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Cr</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Cs</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Cu</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Ga</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Ge</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Hf</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Ho</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>In</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Mo</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Nb</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Ni</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Pb</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Rh</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Sb</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Sc</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Sn</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Sr</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Ta</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Th</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>U</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>V</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>W</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Y</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Zn</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Zr</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Table 2: Major Elements Oxides (wt%) and Trace Elements (ppm)

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>GO4-11</th>
<th>GO2-149</th>
<th>GO4-15</th>
<th>GO4-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>71.2</td>
<td>71.1</td>
<td>71.2</td>
<td>71.2</td>
</tr>
<tr>
<td>TiO₂</td>
<td>17.8</td>
<td>17.8</td>
<td>17.8</td>
<td>17.8</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>13.8</td>
<td>13.8</td>
<td>13.8</td>
<td>13.8</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>MgO</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>CaO</td>
<td>4.1</td>
<td>4.1</td>
<td>4.1</td>
<td>4.1</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>MnO</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>LOI</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Rare Earth Elements (ppm)

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>GO4-11</th>
<th>GO2-149</th>
<th>GO4-15</th>
<th>GO4-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Ce</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Pr</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Nd</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Sm</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Eu</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Gd</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Tb</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Dy</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Er</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Sm</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Yb</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Lu</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Zr</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Downloaded from ijcm.ir at 8:32 +0430 on Tuesday May 28th 2019 [DOI: 10.29252/ijcm.26.3.555]
میکاپیست این سنگ‌ها از نظر سنگ‌نگاری دارای مجموعه کاتی‌های کوارتز (0-30 دمای)، موسکویت (0-100 دمای)، بیوتیت (0-30 دمای) پلاژیوکلاز (0-150 دمای)، کلسیت و کاتی‌های کدر عناوین کاتی‌های فرعی هستند. گزاره‌های موجود در این نمونه‌ها بصورت شکل-دار تا نیمه شکل دار و در ادراره‌های حداکثر ۵ میلی‌متری نیز تا یک سانتی‌متر حضور دارند و برخی از نمونه‌ها دارای میانایارهای زیادی کوارتز و بیوتیت هستند که افت غربال یا تشکیل داده‌اند (شکل ۲). پلاژیوکلاز‌های موجود در این سنگ‌ها اغلب به صورت شکل‌دار تا نیمه شکل‌دار با ماکل مناسب و ریخی دیده می‌شود. بیوتیت در این سنگ‌ها با اندازه‌های نزدیک‌تر ۵ میلی‌متری و به صورت بی‌شکل، نیمه شکل‌دار تا شکل‌دار هر‌بار خاموشی موجی دیده می‌شود. پلاژیوکلاز می‌تواند در حضور دارند و وجود کاتی‌های میکاپی سبب تشکیل پافته ورقه شکنی در کل سنگ و حضور بعضی‌های غنی از کوارتز باعث تشکیل پافته شکنی در زیستنگ شده است. با توجه به این دو پافته، نواحی ورقه شکنی‌ها در دو مورد این سنگ‌ها به ترتیب از کوارتز و بیوتیت تشکیل گردیده‌اند.

![شکل ۲](https://ijcm.ir/)

شکل ۲ فُل: تصاویر میکروسکوپی از میکاپیست‌های مربوط به کتره‌ها و موسکویت(Bt) و پلاژیوکلاز (Plg) و بیوتیت(Ms) و کوارتز(Grt). منطقه ریشکاری در میکاپیست‌های Sil (Opq) به همراه کاتی‌های کدر (Grt) در شکسته‌های کوارتز (Qz) و میکاپیست‌های (Qz) به همراه کاتی‌های میکاپی در گنبد‌ها. علائم اختصاصی نام کاتی‌ها از مرجع [۱۰۱] گرفته شده است.
ژئوگرافی زمین‌شناسی مناطق در محله کل که به منظور تعیین ترکیب سنگ ماده (پتروولوژی) مناسب‌تر، به‌دست آمده‌ای (log Fe₂O₃/K₂O) نسبت به نمونه‌های تجزیه‌ای (log SiO₂/Al₂O₃) تهیه شده است. چنان‌که در شکل 3، نسبت Fe₂O₃/K₂O و SiO₂/Al₂O₃ دیده می‌شود. شیمی‌های مورد بررسی در گستره شبیه‌سازی شده‌اند و به‌موقع در نalion مس نشانده می‌شود. قیاس نسبت Fe₂O₃/K₂O و SiO₂/Al₂O₃ را نشان نمی‌دهد [12] (شکل 3، 3 ppm). مقدار کرم و میانگین 99.67 ppm نسبت به شیمی‌های مورد بررسی با تعداد اعضا در شبیه‌سازی پس از از درک همکاران دارد نشان می‌دهد که این سنگ‌های کل که در محله کل که به منظور تعیین ترکیب سنگ ماده (پتروولوژی) مناسب‌تر، به‌دست آمده‌ای (log Fe₂O₃/K₂O) نسبت به نمونه‌های تجزیه‌ای (log SiO₂/Al₂O₃) تهیه شده است. چنان‌که در شکل 3، نسبت Fe₂O₃/K₂O و SiO₂/Al₂O₃ دیده می‌شود. شیمی‌های مورد بررسی در گستره شبیه‌سازی شده‌اند و به‌موقع در نalion مس نشانده می‌شود. قیاس نسبت Fe₂O₃/K₂O و SiO₂/Al₂O₃ را نشان نمی‌دهد [12] (شکل 3، 3 ppm). مقدار کرم و میانگین 99.67 ppm نسبت به شیمی‌های مورد بررسی با تعداد اعضا در شبیه‌سازی پس از از درک همکاران دارد نشان می‌دهد که این سنگ‌های کل که در محله کل که به منظور تعیین ترکیب سنگ ماده (پتروولوژی) مناسب‌تر، به‌دست آمده‌ای (log Fe₂O₃/K₂O) نسبت به نمونه‌های تجزیه‌ای (log SiO₂/Al₂O₃) تهیه شده است. چنان‌که در شکل 3، نسبت Fe₂O₃/K₂O و SiO₂/Al₂O₃ دیده می‌شود. شیمی‌های مورد بررسی در گستره شبیه‌سازی شده‌اند و به‌موقع در نalion مس نشانده می‌شود. قیاس نسبت Fe₂O₃/K₂O و SiO₂/Al₂O₃ را نشان نمی‌دهد [12] (شکل 3، 3 ppm). مقدار کرم و میانگین 99.67 ppm نسبت به شیمی‌های مورد بررسی با تعداد اعضا در شبیه‌سازی پس از از درک همکاران دارد نشان می‌دهد که این سنگ‌های کل که در محله کل که به منظور تعیین ترکیب سنگ ماده (پتروولوژی) مناسب‌تر، به‌دست آمده‌ای (log Fe₂O₃/K₂O) نسبت به نمونه‌های تجزیه‌ای (log SiO₂/Al₂O₃) تهیه شده است. چنان‌که در شکل 3، نسبت Fe₂O₃/K₂O و SiO₂/Al₂O₃ دیده می‌شود. شیمی‌های مورد بررسی در گستره شبیه‌سازی شده‌اند و به‌موقع در نalion مس نشانده می‌شود. قیاس نسبت Fe₂O₃/K₂O و SiO₂/Al₂O₃ را نشان نمی‌دهد [12] (شکل 3، 3 ppm). مقدار کرم و میانگین 99.67 ppm نسبت به شیمی‌های مورد بررسی با تعداد اعضا در شبیه‌سازی پس از از درک همکاران دارد نشان می‌دهد که این سنگ‌های کل که در محله کل که به منظور تعیین ترکیب سنگ ماده (پتروولوژی) مناسب‌تر، به‌دست آمده‌ای (log Fe₂O₃/K₂O) نسبت به نمونه‌های تجزیه‌ای (log SiO₂/Al₂O₃) تهیه شده است. چنان‌که در شکل 3، نسبت Fe₂O₃/K₂O و SiO₂/Al₂O₃ دیده می‌شود. شیمی‌های مورد بررسی در گستره شبیه‌سازی شده‌اند و به‌موقع در نalion مس نشانده می‌شود. قیاس نسبت Fe₂O₃/K₂O و SiO₂/Al₂O₃ را نشان نمی‌دهد [12] (شکل 3، 3 ppm). مقدار کرم و میانگین 99.67 ppm نسبت به شیمی‌های مورد بررسی با تعداد اعضا در شبیه‌سازی پس از از درک همکاران دارد نشان می‌دهد که این سنگ‌های کل که در محله کل که به منظور تعیین ترکیب سنگ ماده (پتروولوژی) مناسب‌تر، به‌دست آمده‌ای (log Fe₂O₃/K₂O) نسبت به نمونه‌های تجزیه‌ای (log SiO₂/Al₂O₃) تهیه شده است. چنان‌که در شکل 3، نسبت Fe₂O₃/K₂O و SiO₂/Al₂O₃ دیده می‌شود. شیمی‌های مورد بررسی در گستره شبیه‌سازی شده‌اند و به‌موقع در نalion مس نشانده می‌شود. قیاس نسبت Fe₂O₃/K₂O و SiO₂/Al₂O₃ را نشان نمی‌دهد [12] (شکل 3، 3 ppm). مقدار کرم و میانگین 99.67 ppm نسبت به شیمی‌های مورد بررسی با تعداد اعضا در شبیه‌سازی پس از از درک همکاران دارد نشان می‌دهد که این سنگ‌های کل که در محله کل که به منظور تعیین ترکیب سنگ ماده (پتروولوژی) مناسب‌تر، به‌دست آمده‌ای (log Fe₂O₃/K₂O) نسبت به نمونه‌های تجزیه‌ای (log SiO₂/Al₂O₃) تهیه شده است. چنان‌که در شکل 3، نسبت Fe₂O₃/K₂O و SiO₂/Al₂O₃ دیده می‌شود. شیمی‌های مورد بررسی در گستره شبیه‌سازی شده‌اند و به‌موقع در نalion مس نشانده می‌شود. قیاس نسبت Fe₂O₃/K₂O و SiO₂/Al₂O₃ را نشان نمی‌دهد [12] (شکل 3، 3 ppm). مقدار کرم و میانگین 99.67 ppm نسبت به شیمی‌های مورد بررسی با تعداد اعضا در شبیه‌سازی پس از از درک همکاران دارد نشان می‌دهد که این سنگ‌های کل که در محله کل که به منظور تعیین ترکیب سنگ ماده (پتروولوژی) مناسب‌تر، به‌دست آمده‌ای (log Fe₂O₃/K₂O) نسبت به نمونه‌های تجزیه‌ای (log SiO₂/Al₂O₃) تهیه شده است. چنان‌که در شکل 3، نسبت Fe₂O₃/K₂O و SiO₂/Al₂O₃ دیده می‌شود. شیمی‌های مورد بررسی در گستره شبیه‌سازی شده‌اند و به‌موقع در نalion مس نشانده می‌شود. قیاس نسبت Fe₂O₃/K₂O و SiO₂/Al₂O₃ را نشان نمی‌دهد [12] (شکل 3، 3 ppm). مقدار کرم و میانگین 99.67 ppm نسبت به شیمی‌های مورد بررسی با تعداد اعضا در شبیه‌سازی پس از از درک همکاران دارد نشان می‌دهد که این سنگ‌های کل که در محله کل که به منظور تعیین ترکیب سنگ ماده (پتروولوژی) مناسب‌تر، به‌دست آمده‌ای (log Fe₂O₃/K₂O) نسبت به نمونه‌های تجزیه‌ای (log SiO₂/Al₂O₃) تهیه شده است. چنان‌که در شکل 3، نسبت Fe₂O₃/K₂O و SiO₂/Al₂O₃ دیده می‌شود. شیمی‌های مورد بررسی در گست
شکل ۴ نقشه نمودار دوگانه برای مشخصات مورد بررسی. میدان‌های مشخص شده برای مشخصات آرکن و پس از آرکن در نظر گرفته از Ni-Cr برای مشخصات مورد بررسی، میدان‌های مشخص شده برای مشخصات آرکن و پس از آرکن در نظر گرفته از MgO/Al۲O۳+ TiO۲ برای مشخصات مورد بررسی، میدان‌های مشخص شده برای مشخصات آرکن و پس از آرکن در نظر گرفته از MgO/Al۲O۳+ TiO۲ برای مشخصات مورد بررسی، میدان‌های مشخص شده برای مشخصات آرکن و پس از آرکن در نظر گرفته

شیمی عناصر اصلی و کمک گل‌های عهد حاضر در هوازدگی ناحیه خاستگاه سنگ اولیه رسوبات پلی‌نت دست‌خوش درجات بالای نا مناسب است یا هوازدگی شیمیایی در مقایسه با میانگین شیل‌ها (CIA = ۷۳–۷۰) شداندن. شاخص تغییرات ترکیبی ICV = (Fe۲O۳ + K۲O + Na۲O + CaO + MgO)/Al۲O۳+ TiO۲ در فرآیند الیوت نسبت به دیگر کانترن‌های اصلی در یک سنگ و یا کانی را اندازه‌گیری و به طور کلی درجه جورش‌گی گل‌سنگ‌های منتقل شده به درون بک شورانی رسوب را مشخص می‌کند. شاخص تغییرات ترکیبی در رسوبات پلی‌نت جورش‌گی گل‌سنگ‌های منتقل شده به درون بک شورانی رسوب را مشخص می‌کند. شاخص تغییرات ترکیبی در رسوبات پلی‌نت جورش‌گی گل‌سنگ‌های منتقل شده به درون بک شورانی رسوب را مشخص می‌کند. شاخص تغییرات ترکیبی در رسوبات پلی‌نت جورش‌گی گل‌سنگ‌های منتقل شده به درون بک شورانی رسوب را مشخص می‌کند. شاخص تغییرات ترکیبی در رسوبات پلی‌نت جورش‌گی گل‌سنگ‌های منتقل شده به درون بک شورانی رسوب را مشخص می‌کند. شاخص تغییرات ترکیبی در رسوبات پلی‌نت جورش‌گی گل‌سنگ‌های منتقل شده به درون بک شورانی رسوب را مشخص می‌کند. شاخص تغییرات ترکیبی در رسوبات پلی‌نت جورش‌گی گل‌سنگ‌های منتقل شده به درون بک شورانی رسوب را مشخص می‌کند. شاخص تغییرات ترکیبی در رسوبات پلی‌نت جورش‌گی گل‌سنگ‌های منتقل شده به درون بک شورانی رسوب را مشخص می‌کند. شاخص تغییرات ترکیبی در رسوبات پلی‌نت جورش‌گی گل‌سنگ‌های منتقل شده به درون بک شورانی رسوب را مشخص می‌کند. شاخص تغییرات ترکیبی در رسوبات پلی‌نت جورش‌گی گل‌سنگ‌های منتقل شده به درون بک شورانی رسوب را مشخص می‌کند. شاخص تغییرات ترکیبی در رسوبات پلی‌نت جورش‌گی گل‌سنگ‌های منتقل شده به درون بک شورانی رسوب را مشخص می‌کند. شاخص تغییرات ترکیبی در رسوبات پلی‌نت جورش‌گی گل‌سنگ‌های منتقل شده به درون بک شورانی رسوب را مشخص می‌کند. شاخص تغییرات ترکیبی در رسوبات پلی‌نت جورش‌گی گل‌سنگ‌های منتقل شده به درون بک شورانی رسوب را مشخص می‌کند. شاخص تغییرات ترکیبی در رسوبات پلی‌نت جورش‌گی گل‌سنگ‌های منتقل شده به درون بک شورانی رسوب را مشخص می‌کند. شاخص تغییرات ترکیبی در رسوبات پلی‌نت جورش‌گی گل‌سنگ‌های منتقل شده به درون بک شورانی رسوب را مشخص می‌کند. شاخص تغییرات ترکیبی در رسوبات پلی‌نت جورش‌گی گل‌سنگ‌های منتقل شده به درون بک شورانی رسوب را مشخص می‌کند. شاخص تغییرات ترکیبی در رسوبات پلی‌نت جورش‌گی گل‌سنگ‌های منتقل شده به درون بک شورانی رسوب را مشخص می‌کند. شاخص تغییرات ترکیبی در رسوبات پلی‌نت جورش‌گی گل‌سنگ‌های منتقل شده به درون بک شورانی رسوب را مشخص می‌کند. شاخص تغییرات ترکیبی در رسوبات پلی‌نت جورش‌گی گل‌سنگ‌های منتقل شده به درون بک شورانی رسوب را مشخص می‌کن...
Table 3: شاخص‌های شیمیایی درگیرانی، هوازدگی و تغییرات ترکیب.

<table>
<thead>
<tr>
<th>Sample.no.</th>
<th>GO2-16 (Micaschist)</th>
<th>GO2-70 (Micaschist)</th>
<th>GO4-70 (Garnet micaschist)</th>
<th>GO4-103 (Micaschist)</th>
<th>GO8-88 (Garnet micaschist)</th>
<th>GO4-270 (Garnet micaschist)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIA</td>
<td>5982</td>
<td>326,6</td>
<td>55,46</td>
<td>57,45</td>
<td>54,3,8</td>
<td>49,29</td>
</tr>
<tr>
<td>CIW</td>
<td>70,48</td>
<td>40,7</td>
<td>50,14</td>
<td>57,99</td>
<td>56,07</td>
<td>55,77</td>
</tr>
<tr>
<td>ICV</td>
<td>19,4</td>
<td>19,4</td>
<td>3,12</td>
<td>1,90</td>
<td>2,00</td>
<td>2,07</td>
</tr>
</tbody>
</table>

شاخص شیمیایی درگیرانی، CIA.

خاستگاه سنگ‌مانند میله‌ها

نسبت K_2O به P_2O_5 به عنوان شاخص برای شناسایی ترکیب خاستگاه سنگ‌مانند خاصی تخمین داده شد. نسبت K_2O/P_2O_5 به اندازه می‌تواند حساسیت این شاخص را به مانندی طبیعی و مغزداری یک هم‌پیمان کامل نشان دهد. این نسبت در خاستگاه سنگ‌مانند مکربرسی بین 0.50 تا 0.60 می‌باشد. در این موارد، K_2O/P_2O_5 به اندازه می‌تواند حساسیت این شاخص را به مانندی طبیعی و مغزداری یک هم‌پیمان کامل نشان دهد.

میزان K_2O/P_2O_5 در خاستگاه سنگ‌مانند مکربرسی بین 0.50 تا 0.60 می‌باشد. در این موارد، K_2O/P_2O_5 به اندازه می‌تواند حساسیت این شاخص را به مانندی طبیعی و مغزداری یک هم‌پیمان کامل نشان دهد.

عندام کلیه به طور گسترده برای تغییرات ترکیب سنگ خاستگاه سنگ‌مانند از میزان Cr و Zr به عنوان عناصری برای مقدار کمیت و زیرک، استفاده می‌شود. این نسبت به اندازه Cr/Zr کمیت است. در این موارد، Cr/Zr به اندازه می‌تواند حساسیت این شاخص را به مانندی طبیعی و مغزداری یک هم‌پیمان کامل نشان دهد.
شکل ۵ گنوی پراکندگی عنصر اصلی، کمیاب و خاکی نادر شیمیایی منطقه گل گهر به‌هم‌پیمایندگی نشان دهنده درجه بینی نسبت به پوسته قاره‌ای بالایی [۲۰۱].

شکل ۶ نمودار عنکبوتی عنصر خاکی نادر شیمیایی منطقه گل گهر، به‌هم‌پیمایندگی نشان دهنده درجه بینی نسبت به پوسته قاره‌ای بالابی [۲۰۱].

احتمالاً دلیل ضرایبی این نمونه‌ها در گسترده پراکنده است.

برداشت
سنج‌های موجود در منطقه گل گهر، شامل سنج‌های دگرگون پلیتی است که در خاک‌های شیمیایی سی‌تای آمیپولیت بالابری نگهداری شده‌اند. بررسی ترکیب سنج‌کل منطقه‌ای نشان می‌دهد که سنج‌های این سنج‌ها، ترکیبات موجود در از شیپ و ماسه سنگ‌های دیگر نشان دهنده است. این سنگ‌ها از خاستگاه با ترکیب اغلب اسیدی تا حادی‌ساخت تشکیل شده و دارای هوازدگی شیمیایی ضعیف تا حادی‌ساخت نزدیکی شیمیایی شیست‌های منطقه گل گهر نشان می‌دهد که این نمونه‌ها، از نوع شیست‌های پس از آرکننگ است. بررسی گینه‌های منطقه گل گهر نشان می‌دهد که آنها خاس‌گاه روسی دارند و پاراگینسی نامیده می‌شوند. این گینه‌ها به دلیل کمبود AI2O3 از نوع پراکنده است.

زمین‌شیمی گینه‌های منطقه گل گهر گنگ‌های موجود در منطقه مورد بررسی دانه‌های بشر شامل کوارتز، فلسیکالیت، قلبیان، پتیت، موسکویت و گریت‌هست. مقادیر عنصر اصلی و کمیاب ۳ نمونه گینه انتخاب شده در جدول ۳ امید است. مقادیر سیلیس این نمونه‌ها بین ۷۱ تا ۷۳ درصد است. گنوی عنصر کمیاب و خاکی نادر Li(n)/Yb(n) شنا نشان می‌دهد که مقدار Sn و Pb، Cs، Sr و Nb به‌هم‌پیمایندگی منفی Sm و Pr، Ti، K، P همچنین ناهنجاری منفی از ویژگی‌های مهم این سنگ‌های است (شکل ۷). در این نمونه عنصر خاکی نادر به‌هم‌پیمایندگی نشان دهنده به‌هم‌پیمایندگی بالابی است. شنا نشان می‌دهد (شکل ۸). این نمونه‌ها در نمونه‌های پراکنده ۹ درصد ضریب بیشتر پراکنده قرار می‌گیرند. مقدار AI2O3 غنی از سدیم و پتاسیم فلسیکالیت‌ها و همچنین کمبود
نمودار عکستی عناصر اصلی، کمیاب و حاکی نادر بهنچار شده نسبت به بوسته فارامای بالایی از [20] در گنیسهای منطقه گل شهر.

نمودار چهت تغییر به‌زیگی شیمیایی گنیسهای [23] و موقعیت گنیسهای مورد بررسی برابر آن.

References

قدراتی

ناگارندگان مقاله از شرکت امیدرو و معاونت پژوهشی دانشگاه
سیستان و بلوچستان به خاطر تأیم هزمتهای ان پژوهش
کمال تئوری و قدراطی را دانند. همچنین از راهنمایهای
ازشمند آقایان مهندس طاهری و مهندس فرحزاد و سایر
پرسنل متحدر معاونان شماره ۲ و ۴ گل گهر طی عملیات
صحراوی نیز قدردانی می‌شود.

مراجع

