بررسی شیمی کانی بیوتیت در گرانیتوئید مکسان، جنوب شرق ایران

محمدرضا قدسی ۱، محمد بومری ۲، ساسان باقری ۳، کازئو ناکاشما ۴

۱- بخش زمین‌شناسی دانشگاه سیستان و بلوچستان، زاهدان، ایران
۲- دپارتمان علوم زمین و زیست محیطی دانشگاه شیراز، شیراز، ایران

چکیده: گرانیتوئید مکسان در حاشیه‌ی جنوبی بلوک آتول و در جنوب شرقی ایران قرار گرفته است. ترکیب این گرانیتوئید عبارتند از گرانیت، گرانیتوبریت، کوارتز مونزودوریت و دیوریت و کانی بیوتیت در سنگ‌های گرانبه گرانیتی‌های گاگربی را كنار گذاشته‌اند. ترکیب شیمیایی بیوتیت‌ها از نوع بیوتیت‌های مینوریتی‌دار بوده و با توجه به مقادیر FeO\cdot MnO\cdot MgO\cdot TiO₂ و نیز مقادیر \text{Al} /^{17} \text{O} جزه از سنگ‌های مکسانی در جهان است. این بیوتیت‌ها در محتوای گرانیتوئید نسبتاً بالای اکسیدین تشکیل شده و در صفات آسیب‌زا قابلیت و نیز نشان می‌دهد که با ویژگی‌های تکنولوژیکی محیط‌های وابسته به فروارش هم‌خوانی دارد. مکسانی شیمی کانی بیوتیت‌های نشان می‌دهد که اولویت‌های ماکمی آن در این گرانیتوئید به‌وسیله قارا، کم‌تر متوسط است.

واژه‌کلیدی: شیمی کانی، بیوتیت، گرانیتوئید مشتاق‌های گرانیتوئید مکسان ایران

مقدمه

بیوتیت یکی از کانی‌های مهم فرمونیزین در سنگ‌های آذرین فلزی است و در سنگ‌های آذرین مایعی به شکل فلزی ظاهر می‌شود [۱]. از ترکیب شیمیایی بیوتیت‌ها برای نمونه طبیعت تشکیل این کانی و یک الی‌پن با ساختار فیزیکی‌شیمیایی ماکمی تشکیل دهنده‌ی آن استفاده می‌شود. بررسی‌های متعدد نشان داده است که دینامیک بیوتیت می‌تواند اطلاعات خوبی درباره فرآینده ذوب و شرایط ترمودینامیک تیلور می‌داده [۱۷]. در کنار آن، [۱۸] بررسی ماکمی تشکیل شده که این نمونه می‌تواند به شیمی فیزیکی‌شیمیایی ماکمی بالایی ایجاد کند. است [۲]. در مورد بیوتیت‌های کانی بیوتیت برای تعیین پژوهش و محیط زمین‌ساختاری گرانیتوئید در ایران موضوعی است که به تازگی در دهه اخیر توجه بیشتری از پژوهشگران را به

نام: Mohammadreza.Ghodsi@gmail.com

توییت‌های مسئول، تلفن: ۱۸۸۹۹۸۹۹۵۴۲۰۵۶، نامبر: ۸۹۹۵۴۲۰۵۶، پست الکترونیکی: t.ghodsi5155@gmail.com

Published by IJCMIR at 8:49 +0430 on Saturday May 16th 2020
این بررسی، داده‌های ترکیب شیمیایی کانی بوتین در گرانیتونید مکسای به‌منظور آگاهی بیشتر مسائل سنگ زایی و نکتونومگی به‌کار گرفته شد.

روش بررسی
در این پژوهش، نسبت نمونه‌برداری دقیقی از گرانیتونید مکسای صورت گرفت. حدود 10 مقطع نارک از این نمونه‌ها Olympus به شدت و با کمک میکروسکوپ پالاریزان مدل مورد بررسی قرار گرفتند و پس از آشامی با ویژگی‌های کانی شناختی و سنگ‌نگاری، تعداد 10 مقطع که نمونه‌های سالم و قابل بررسی بودند با استفاده از ناحیه‌های ناظری (کرات) و به‌کارگیری ناظری آب‌پز شدند. برداشت دسترسی مدل JXA-8600M از برابرجه منطقه (عدد‌گذاری) با رز مداره الکترونی مدل JXA-8600M به مقدار 8×10 دهند 15 کیلووات و جریان تابشی فشار و دمای الکترون مورد نظر گرفته شد. نتایج آنالیزهای در مورد آنالیزهای در نرم‌افزار Excel و Minpet 2.02 مشاهده شد.

جدول 1 نتایج رز پردازش الکترونی کانی بوتین در گرانیتونید مکسای

<table>
<thead>
<tr>
<th>Samples no</th>
<th>Rock type</th>
<th>n</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Granit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Granodiorite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monzodiorite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diorete</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gabro</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
مقادیر کاتیونی بر اساس 22 کسبی محسوبه و بهتر فرمول
کل میکا [12] (Fomral ساختاری آن-
ها تعیین نشده، فلور در کل موجب کسبی اضافی و در تنها
افزار جمع کلی باریک آب و در این برسی مقدار
داخلی دو مزیک دیگر و در آن این قابلیت بیشتر و این
فلور و یا کل محسوبه و از جمع کل باریک کاسته شد
تا جمع واقعی به دست آید. مقادیر آب با فرض 4 یم در جای
هیدروکسی کل مقدار عنصر سنگی کامل بر میان 22 کسبی
محسوبه شد. جهت محسوبه OH در فرمول بیونیت، مجموع
فلور و کل از پنجه کسر گردد. مقادیر
[12] (Mحسوبه شد.

زمن شناسی گرانیتونی مکسان

gسته مورد بررسی در 100 کیلومتری شمال غرب ایرانشهر،
حاشیه جنوبی بلوک اسن و در جنوب شرق ایران واقع شده
است. گرانیتونی مکسان به وسعت تقریبی 600 کیلومتر مربع
بیش از 60 روز طول تا 9/2 کیلومتر جغرافیایی 924/49
کل مسکان که در دو فصل این طول
جرافیایی 20/50/1/7 شماری قرار دارد، (تکل 1). این گرانیتونی
یافته به مقدار مجموع گرانیتونی بیرون است که در گرب
سرلشته، شمال و غرب (ساوان (شمال و شرق) مکسان) قرار گرفته است و به درون
سنتی قدمی ترین قبیل شیل ماسه‌سنگ و سنگ آهن (سازندر (سردر به سن کریپتر و آهن و دودومه سنگ (ساوان
جمال) به سن پرمین نفوذ کرده است [14]. سنگی باریک و
در اطراف به همین زمان قبیل نگهداری شده. شاخص بخش خاکی
از نفوذ گرانیتونی مکسان به دوی سازند سردر متوجه به
بی‌پایان رخ‌دارهای دگرگونی مجاری از قبل اندازه،
کرکردی هورنفلس گردیده است. چگونگی همبستگی زیبایی این
و به نهایت دیگر بروز نیست که این جداول آهنی به واحدها سنگی قبیل

سنج شناسی و کانی گرانیتونی مکسان

برای ناگاک در سنگ‌های نفوذی از ردنه به این مقدار
استفاده شده است. شمارش 300 نقطه با کمک دستگاه
شمارنده کانی برای هر نمونه صورت گرفت. مفهوم با این رده
بندی سنگ‌های در سردر مورد، گرانیتونی، گرانیتونکیسب،
کورتزنزکیسب، دریز و کوارتز کوارتز نامیده شده
اند [تشکل 1]. کانی‌های تشکیل دهنده این گرانیتونی شامل
کوارتز، پلازیکورکس، پلاستیسهای قلبی به‌رنگ از نوع اترولاز،
هورنفلد، بیونیت، کوستیکورکس، اسفن، آپاتیت، کوارتز،
مگنتیت و اتبسیت، هورنفلد و بیونیت. کوارتز نماینده
غلب در گرانیتونی مکسان است [تشکل 2]. حجم کانی‌های
فرم مینیوزیون (هوئسیند و بیونیت) از حاشیه (گابور) به سمت
مرکز (کوارتز) کاهش می‌یابد.

کلی بیونیت معمولاً به نک قهوه‌ای در مقاطع دیده می‌
شد. این کانی در مقاطع مورد بررسی نشان داد که
شکل بوده و به‌صورت ورقه‌ای و مستطیلی دیده می‌شود.
چند رنگ مشخص بیونیت‌ها به‌صورت قهوه‌ای کمرنگ تا قهوه‌ای
تیره قابل مشاهده است.
شکل ۱ نقشه ساده زمین‌شناسی گرایزنتیبد مکسان، اقتباس از نقشه زمین‌شناسی ۱۰۰۰۰۰۰:۱ بزمان و مکسان [۱۴، ۱۵] با تغییرات توسط نگاندگان.

شکل ۲ موقعیت نمونه‌ها در مثلث نام‌گذاری‌های سنگ‌های نقشی [۱۷].
شکل ۳ تصاویر میکرو‌سکوپی اندازه‌گیری از رخ‌های مختلف سنگی (الف) تصور میکرو‌سکوپی از سنگ‌های گرانیتی همرآ با بلورهای پیوندی، فلزسپار و کوارتز (ب) تصور میکرو‌سکوپی از سنگ‌های گرانیتوپیت همرآ با بلورهای هورنلند، بیوئیت، کوارتز، پلاژیوکلاز و ارتوز (ب) تصور میکرو‌سکوپی از سنگ‌های گرانیتوپیت همرآ با بلورهای کوارتز، بیوئیت و پلاژیوکلاز (ت) تصور میکرو‌سکوپی از سنگ‌های گابروپیت همرآ با بلورهای پیوندی، پلاژیوکلاز، هورنلند و بیوئیت.

گرانیت
گرانیت‌ها گستردگی‌هایی در سنگ‌های گرانیتوپیت مکسان به شمار می‌آیند. بافت اصلی در سنگ‌های گرانیتوپیت پورفلاند پیدا می‌شود. بافت‌های دانه‌ای و گرانیتوپیت نیز در نمونه‌ها دیده می‌شود. گرانیت‌های دارای بافت پورفلاندی، حاوی درشت‌ترین بلورهای ارتوزکلاز به رنگ صوری به دلیل اینکه آنها به ۱۳ سانتی‌متر می‌رسند. کوارتز در حدود ۲۲ تا ۹۱ درصد، ارتوزکلاز از ۲۵ تا ۹۹ درصد و کوارتز و هورنلند (کمتر از ۳ درصد) است. اسفنز، زبرکن، آئینه و کوارتز‌های نازک (کمتر از یک درصد) مشخص می‌شوند. کانی‌های نازک بی‌سفید به صورت صفحه‌ای کم‌عمق به مناطق دیده می‌شود و چند رنگی مشخص بیوئیت‌ها به‌صورت قهوه‌ای کمرنگ تا قهوه‌ای تیره قابل مشاهده است (شکل ۲).

گرانیتوپیت
گرانیتوپیت‌ها به‌صورت توده‌های کوچکی در جذب‌های اسپا و غربی گرانیتوپیت مکسان مشاهده می‌شوند. اغلب بافت دانه‌ای دارند. پلاژیوکلاز در حدود ۴۴ تا ۷۲ درصد، کوارتز در حدود ۲۰ تا ۲۶ درصد، ارتوزکلاز بین ۱۴ تا ۹ درصد، بیوئیت بین ۱۴ تا ۳۰ درصد طیف و سایر سنگ‌های مجاور به‌صورت قهوه‌ای کمرنگ تا قهوه‌ای تیره قابل مشاهده است (شکل ۲).
گیاه‌های گاربویی به صورت برونزی کوچکی در حالت‌های جنوبی گاربوی می‌کنند. مساحتی در هر گونه گاربویی دارای این قابلیت می‌باشد. نسبت به Si مقدار Fe(Mg + Fe) مناسبی دارد. حضور این مجموعه کلی به عنی بی‌شیمیایی می‌گوید.

شیمیایی میکا و دما ماکا نیز بدون هستند.

[3] Mg-(Al\(^{IV}\) + Ti) - (Fe\(^{II}\) + Mn) – (ب) بیونیته‌های گاربویی میکاسان در گستره‌ای بین نسبت به Fe/Mg + Fe مناسبی به‌طور میلی‌مکاسان در حالت‌های جنوبی گاربوی می‌کنند.

[4] بیونیته‌ها به عنوان یکی از موارد بررسی Fe/Mg + Fe می‌باشد. میزان ماکاسان در گستره‌ای بین نسبت به Fe/Mg + Fe مناسبی به‌طور میلی‌مکاسان در حالت‌های جنوبی گاربوی می‌کنند.

[5] بیونیته‌ها به عنوان یکی از موارد بررسی Fe/Mg + Fe می‌باشد. میزان ماکاسان در گستره‌ای بین نسبت به Fe/Mg + Fe مناسبی به‌طور میلی‌مکاسان در حالت‌های جنوبی گاربوی می‌کنند.

[6] بیونیته‌ها به عنوان یکی از موارد بررسی Fe/Mg + Fe می‌باشد. میزان ماکاسان در گستره‌ای بین نسبت به Fe/Mg + Fe مناسبی به‌طور میلی‌مکاسان در حالت‌های جنوبی گاربوی می‌کنند.

[7] بیونیته‌ها به عنوان یکی از موارد بررسی Fe/Mg + Fe می‌باشد. میزان ماکاسان در گستره‌ای بین نسبت به Fe/Mg + Fe مناسبی به‌طور میلی‌مکاسان در حالت‌های جنوبی گاربوی می‌کنند.

[8] بیونیته‌ها به عنوان یکی از موارد بررسی Fe/Mg + Fe می‌باشد. میزان ماکاسان در گستره‌ای بین نسبت به Fe/Mg + Fe مناسبی به‌طور میلی‌مکاسان در حالت‌های جنوبی گاربوی می‌کنند.
شناسایی بیوتیت‌های اولیه از بیوتیت‌های نانویی به منظور شناسایی بیوتیت‌های اولیه از نانویی از نمونه سه-تایی می‌تواند بیوتیت‌های اولیه را از بیوتیت‌های نانویی دستkhوش تعامل مجدد شدند و نیز بیوتیت‌های اولیه‌ای که دستkhوش تعامل مجدد شدند و نیز بیوتیت‌های نانویی جدا کند. براساس این نمونه‌های بیوتیت‌های مورد بررسی در گرافیت‌مکس اکسید. همچنین از ناحیه FeO و MnO و در قلمرو بیوتیت‌های اولیه یا ماگمایی قرار می‌گیرند (شکل 4). بیوتیت‌های سنگ‌های کاربردی و فلزاتی، مقادیر FeO بالاتری نسبت به گرافیت‌های نانویی (جدول 1) مقدار FeO از حدود TiO2 (گرافیت) 42 درصد برخی (کاربرد) باتری متغیر است. بنابر نظر [20]. مقدار Ti بیوتیت وابسته به دما بوده و با سئگ

$X_{FeO} = [(FeO^2+MnO)/(FeO^2+MnO+MgO)]$

میزان تغییر می‌کند. مقدار X_{FeO} در بیوتیت‌های مورد بررسی...
گرانیتیوند مسکان درایی FeO* و MgO، Al2O3 در FeO* و MgO، Al2O3 در کاتی بیوتیت یک نماد منشأ انرژی داده (کلکس 87) که سنگ‌های گرانتینی را در سه گروه قسمت می‌کند: سنگ‌های کاتی و ناکاتی (A، سنگ‌های رورونیک یک بیوتیت های آن از آلومینیوم غنی و به سوط قطب سیلویلهای تمام دارند و به گروه‌ها و یا دیگر کانال‌های آلومینوسیلیک و مانند گرانت، کربریت و یا آندالوژی اینکی نمودار 1 نمودار سه تایی FeO*، MgO، 10TiO2، FeO* که بیوتیت‌های اولیه و بیوتیت‌های که دستخوش تغییرات مجدد در محیط شده‌اند را از بیوتیت‌های ناکثری تهیه می‌گردد.

![Diagram](https://example.com/diagram.png)
بررسی‌های سنگ‌شناسی و داده‌های زنده‌سنجی، عناصر اصلی، فری و اتومپت تریاپت سنگ‌های مجموعه گرانیت‌های بزنمان نشان داد که این مجموعه یک کمپلکس نفوذی آهکی-قلیایی از نوع I است و در اینست طی زمان‌بندی‌های مکانیسم حاشیه‌ای قرار داشته و عوارض دیگر یکی از بروز شکل‌های دیگری از این کمپلکس نفوذی آهکی-قلیایی با وقوع زمان‌بندی‌های مکانیسم حاشیه‌ای قرار دارد که توانایی در بیو‌ساکتی کم‌درد است. نتایج این تحقیق نشان می‌دهد که با افزایش زمان‌بندی‌های مکانیسم حاشیه‌ای قرار دارد که توانایی در بیو‌ساکتی کم‌درد است. نتایج این تحقیق نشان می‌دهد که با افزایش زمان‌بندی‌های مکانیسم حاشیه‌ای قرار دارد که توانایی در بیو‌ساکتی کم‌درد است.
پیشتری داشته و گرایش به داشتن مینگز کمتر و مقدار فلورور بالاتری در ساختار بیوتیئهای خود دارند. بر عکس کلر در آن‌ها واکنش نشان می‌دهد که همه این موارد بر آلودگی کم تا متوسط ماکمای سارنده آن‌ها با بوسته قارائی دالات دارد. این بافت‌های در مقایسه با نتایج حاصل از داده‌های ایزوتوپی برای 87Sr/86Sr، 16O اساس آن‌ها مقدار نسبت اولیه تعدادی از سنگ‌های مجموعه گرانیت‌نویز بزنگ پایین و چیزی در حدود ۹۳٪ است و آلودگی اندک با بوسته قارائی را نشان می‌دهد، همخوانی دارد.

(I-type granites Weakly Contaminated) WC

۱۰۰ نمونه‌های گرانیت‌نویز مکس از گستره‌ی گرانیت‌های نوع I-SC به شدت آلوده و گرایش به نوع احیایی به شدت آلوده (Contaminated I-type granites Strongly Contaminated and) I-SCR تقسیم شده‌اند.

با ارزیابی 87Sr/86Sr، نمونه‌های گرانیت‌نویز انگک I-WC و آلودگی متوسط I-SCR، در نتیجه با بوسته قارائی را قرار می‌گیرند. این سنگ‌ها آلومینوم کمتر و منیزیم MC

شکل ۸ تعبیه سری میکمایی گرانیت‌نویزهای مرود بررسی براساس ترکیب شیمیایی بیوتیت [۲۴].

شکل ۹ نمودار تغییرات نسبت Fe/(Mg+Fe) مقیاس AlIV موجود در ترکیب بیوتیئهای گرانیت‌نویز مکس از نشان می‌دهد. گرایش‌های گرانیت‌های نوع A و I و شوشونیتی در نتایج هم‌است. [۲۷]
شکل ۱۰ ترکیب شیمیایی بیوتیت‌های گرانیتونیک مکسان روز نمو‌دارهای (۲۸) I-WC (گرانیت‌های نوع ۱ با آلودگی انکیو)، I-MC (گرانیت‌های نوع ۱-۱۲۲) و I-SCR (گرانیت‌های نوع ۱ دارای آلودگی متوسط)،}

[10] سیب دیماند، اکتشافات زئونیوم‌ایزی سیستم‌های برخه کرمانچی، گزارش باپرداز، پایان نامه کارشناسی ارشد دانشگاه شهید بهشتی تهران (۱۳۸۲).

[14] وحدتی دانشمند، جردن م.، تفسیر زمین‌شناسی چهارگوشیک مکاسان،‌سازمان زمین‌شناسی و اکتشافات معدنی کشوز، (۱۳۸۲).

[15] سهندی م.، پاداشی م.، تفسیر زمین‌شناسی چهارگوشیک مکاسان،‌سازمان زمین‌شناسی و اکتشافات معدنی کشوز، (۱۳۸۴).