Volume 26, Issue 3 (10-2018)                   www.ijcm.ir 2018, 26(3): 527-540 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

aliyani F, Maanijou M, sabouri Z, miri M. Investigation of tectonic setting and thermobarometry of the Kangareh area gabbro body (southwest of Kurdistan) using pyroxenes mineral composition . www.ijcm.ir. 2018; 26 (3) :527-540
URL: http://ijcm.ir/article-1-1137-en.html
Bu-Ali Sina University
Abstract:   (51 Views)
The Kangareh gabbro body is located in south of the Kurdistan Povince and southwest of the Qorveh area. The area belongs to the Sanandaj-Sirjan zone. Tectonic evolutions during Mezozoic and magmatism, due to subduction of the Neo-Tethys oceanic lithosphere beneath the Iran microplate, led to formation of various igneous bodies in this area. Chemical analysis of pyroxene minerals and whole rock analysis show that the Kangareh body has metaluminous nature and belongs to tholeiite to calc-alkaline magma series. The studied samples have geochemical properties of subduction related igneous rocks such as negative Nb, P, Ti and Zr anomalies and positive Rb, Sr and Eu anomalies. The results of this study also indicate that the Kangareh gabbro body formed in an island-arc tectonic setting. On this basis, it can be concluded that there were island-arcs in adjacent to the Iran continental margin (Sanandaj-Sirjan zone) during Mesozoic that were attached to the Iran continental margin (the Qorveh area) after closure of Neo-Tethys ocean.
Full-Text [PDF 116 kb]   (32 Downloads)    
Type of Study: Research | Subject: Special
Received: 2018/09/24 | Accepted: 2018/09/24 | Published: 2018/09/24

1. [1] Hoseini M., "Geological map of Qorveh 1:100000", No.5560, Geological Survey of Iran, Tehran (1977).
2. [2] Torkian A., Khalili M., Sepahi A. A., "Petrology and geochemistry of the I-type calc-alkaline Qorveh granitoid complex, Sanandaj-Sirjan zone, western Iran", Neues Jahrbuch für Mineralogie Abhandlungen 185 (2008) 131-142.
3. [3] Mahmoudi S., Corfu F., Masoudi F., Mehrabi B., Mohajel M., "U-Pb dating and emplacement history of granitoid plutons in the northern Sanandaj-Sirjan Zone, Iran", Journal of Asian Earth Sciences 41 (2011) 238-249. [DOI:10.1016/j.jseaes.2011.03.006]
4. [4] Sepahi A. A., Maanijou M., Salami S., Gardideh S., Khaksar T., "Mineral chemistry and geothermobarometry of Moshirabad pluton, Qorveh, Kurdistan, western Iran", Island Arc (2012) 170-187. [DOI:10.1111/j.1440-1738.2012.00813.x]
5. [5] Maanijou M., Aliani F., Miri., M. M., Lentz D. R., "Geochemistry and petrology of igneous assemblage in the south of Qorveh area, west Iran", Chemie der Erde 73 (2013) 181– 196. [DOI:10.1016/j.chemer.2013.04.001]
6. [6] Azizi H., Zanjefili-Beiranvand M., Asahara Y., "Zircon U-Pb ages and petrogenesis of a tonalite-trondjemite-granodiorite (TTG) complex in the northern Sanadaj-Sirjan zone, northwest Iran: Evidence for Late Jurassic arc-continent collision", Lithos 216-217 (2015a) 178-195. [DOI:10.1016/j.lithos.2014.11.012]
7. [7] Azizi H., Najari M., Asahara Y., Catlos E. J., Shimizu M., Yamamoto, K., "U-Pb zircon ages and geochemistry of Kangareh and Taghiabad mafic bodies in northern Sanandaj-Sirjan Zone: Evidence for intra-oceanic arc and back-arc tectonic regime in Late Jurassic", Tectonophysics 660 (2015b) 47-64. [DOI:10.1016/j.tecto.2015.08.008]
8. [8] Yajam S., Montero P., Scarrow J. H., Razavi S. M. H., Bea F., "The spatial and compositional evolution of the Late Jurassic Ghorveh-Dehgolan plutons of the Zagros Orogen, Iran: SHRIMP zircon U-Pb and Sr and Nd isotope evidence", Geologica Acta 13 (2015) 25-43.
9. [9] Miri M. M., "The petrological and geochemical study igneous bodies yn Tekyeh-Bala area (SW Kurdistan) with special view on iron mineralization", MSc thesis, Bu-Ali-Sina University, Hamedan, Iran (in Persian) (2011) 143 p.
10. [10] Aliani F., Maanijou M., Miri M. M., "Petrolgy of the Tekyeh-Bala area granite veins (northeast Sonqor), some evidences for A2-type granitoids", Petrology 9 (2012) 1-16 (in Persian).
11. [11] Middlemost E. A. K., "Naming materials in the magma/igneous rock system", Earth Science Reviews (1994) 215-224. [DOI:10.1016/0012-8252(94)90029-9]
12. [12] Shand S. J., "Eruptive Rocks, their genesis, composition, classification and their relation to ore deposits", D. Van Nostrand Company. New York (1943) 444 pp.
13. [13] Sun S. S., McDonough W. F., "Chemical and isotopic systematic of oceanic basalts; implications for mantle composition and processes", In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins. Geological Society of London (1989) 313–345 (Special Publication No. 42).
14. [14] McDonough W., Sun S. S., "The composition of the Earth", Chemical Geology 120 (1995) 223-253. [DOI:10.1016/0009-2541(94)00140-4]
15. [15] Haschke M., Siebel W., Gunther A., Scheuber, E., "Repeated crustal thickening and recycling during the Andean orogeny in north Chile", Journal of Geophysical Research. 107 (2002) DOI: 10.1029/2001JB000328. [DOI:10.1029/2001JB000328]
16. [16] Henderson P., "Rare Earth Element Geochemistry", Elsevier Science (1984) 501 pp.
17. [17] Foley S. F., Wheller G. E., "Parallels in the origin of the geochemical signatures of island arc volcanic and continental potassic igneous rocks: the role of residual titanites", Chemical Geology 85 (1990) 1–18. [DOI:10.1016/0009-2541(90)90120-V]
18. [18] Rollinson H. R., "Using geochemical data: evaluation, presentation, interpretation", Longman Scientific and Technical press (1993) 352 pp.
19. [19] Tatsumi Y., Hamilton D. L., Nesbitt R. W., "Chemical characteristics of fluid phase released from subducted and natural rocks", Journal of Volcanology and Geothermal Research 29 (1986) 293-309. [DOI:10.1016/0377-0273(86)90049-1]
20. [20] Alvaro J. J., Ezzouhairi H., Vennin E., Ribeiro M. L., Clausen S., Charif A., Ait-Ayad N., Moreira M. E., "The early-Cambrian Boho volcano of the El Graraa massif, Moroco: Petrology, Geodynamic setting and coeval sedimentation", Journal of African Earth Science 44 (2006) 396-410. [DOI:10.1016/j.jafrearsci.2005.12.008]
21. [21] Rao D. R., Rai H., "Signatures of rift environment in the production of garnet amphibolites and eclogites from Tso-Morari region, Ladakh, India: A geochemical study", Gondwana Research 9 (2006) 12-523.
22. [22] Weaver, B. L., Tarney, J., "The scourie dyke suite: Petrogenesis and geochemical nature of the Proterozoic subcontinental mantle", Contributions to Mineralogy and Petrology 78 (1981) 175-188. [DOI:10.1007/BF00373779]
23. [23] Kurkcuoglu B., "Geochemistry and petrogenesis of basaltic rocks from the Develidog volcanic complex, Central Anatolia, Turkey", Journal of Asian Earth Science 37 (2010) 42-51. [DOI:10.1016/j.jseaes.2009.07.004]
24. [24] Yan J. Zhao J. X., "Cenozoic alkali basalts from Jingpohu, NE China: The role of lithosphere asthenosphere interaction", Journal of Asian Earth Science 33 (2008) 106-121. [DOI:10.1016/j.jseaes.2007.11.001]
25. [25] Coban H., "Basalt magma genesis and fractionation in collision and extension-related provinces: A comparison between eastern, central and western Anatolia", Earth Science Reviews 80 (2007) 219-238. [DOI:10.1016/j.earscirev.2006.08.006]
26. [26] Morimoto N., "Nomenclature of pyroxenes", Fortschr mineral 66 (1988) 237-252.
27. [27] Irvine T. N., Baragar, W. R. A., "A guide to the chemical classification of common volcanic rocks", Canadian Journal of Earth Sciences 8 (1971) 523–548. [DOI:10.1139/e71-055]
28. [28] Peccerillo A., Taylor S. R., "Geochemistry of Eocene calc-alkaline volcanic rocks from theKastamonu area, Northern Turkey", Contributions to Mineralogy and Petrology 58 (1976) 63-81. [DOI:10.1007/BF00384745]
29. [29] Le Base M. J., "The role of aluminum in igneous clinopyroxenes with relation to their parentage", American Journal of Science 260 (1962) 267-288. [DOI:10.2475/ajs.260.4.267]
30. [30] Wilson M., "Igneous Petrogenesis", London: Unwin Hyman press (1989) 466 pp. [DOI:10.1007/978-1-4020-6788-4]
31. [31] Verma S. P., Guevara M., Agrawal S., "Discriminating four tectonic settings: Five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log-ratio transformation of major-element data", Journal of Earth System Science 115 (2006) 485-528. [DOI:10.1007/BF02702907]
32. [32] Mullen E. D., "MnO/TiO2/P2O5: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis", Earth and Planetary Science Letters 62 (1983) 53-62. [DOI:10.1016/0012-821X(83)90070-5]
33. [33] Agrawal S., Guevara M., Verma S., "Tectonic discrimination of basic and ultrabasic volcanic rocks through log-transformed ratios of immobile trace elements", International Geology Review 50 (2008) 1057-1079. [DOI:10.2747/0020-6814.50.12.1057]
34. [34] Pearce J. A., "Trace element characteristics of lavas from destructive plate boundaries", In: R. S. Thorpe (ed) Andesites: Orogenic Andesites and Related Rocks. John Wiley & Sons, Chichester (1982) 525-548.
35. [35] Beccaluva L., Macciotta G., Piccardo G. B., Zeda, O., "Clinopyroxene composition of ophiolite basalts as petrogenetic indicator", Chemical Geology 77 (1989) 165-182. [DOI:10.1016/0009-2541(89)90073-9]
36. [36] Putrika K. D., "Thermometers and Barometers for Volcanic Systems", Reviews in Mineralogy and Geochemistry 69 (2008) 61-120. [DOI:10.2138/rmg.2008.69.3]
37. [37] Greene A. R., Debari S. M., Kelemen P. B., Blusztajn J., Clift P. D., "A Detailed Geochemical Study of Island Arc Crust: the Talkeetna Arc Section, South–Central Alaska", Journal of Petrology 47 (2006) 1051-1093. [DOI:10.1093/petrology/egl002]
38. [38] Pearce J.A., "Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust", Lithos 100 (2008) 14-48. [DOI:10.1016/j.lithos.2007.06.016]

Add your comments about this article : Your username or Email:

© 2018 All Rights Reserved | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb