بلورشناسی، کانی شناسی و زئوپتیمی گالن، کانسن سرب نخلک (اصفهان)

محمدرضا جعفری، محمدحسین گربیپور.

گروه زمین شناسی، دانشکده طبیعی، دانشگاه فردوسی مشهد

چکیده: کانسن سرب نخلک یکی از قدیمی‌ترین و بزرگترین معادن سرب ایران در ۵۵ کیلومتری شمال شرق انارک قرار گرفته است. کانسن نخلک به صورت چینه‌کردن و دو بردار در سنگ میزانی کربنات‌های کلسیم بالایی دومولوپتی شده با اکنون هسته است. ماده معدنی درون‌نشین شامل گالن و رُزیج بوده که در منطقه‌ی گالن با سرلشیت همراه می‌شود. گالن به صورت درشت بلور و زئولوپ و یا بافت جانشینی و پرکنده فضای خالی و بلوری کووپاتندرال مشاهده می‌شود. ادخال کانسن مستقل مانند فاکتور (سری ترندرت) تنابنت، استفالت، بیریت و کالکسرپرت با ادزه چند میکرون تا چند میکرون حضور داشته که نوع و فراوایی ادخال‌ها متغیر

واژه‌های کلیدی: نخلک، گالن، کووپاتندرال، ادخال، زئوپتیمی، نقره.

مقیده

کانسن سرب نخلک به‌عنوان یکی از بزرگ‌ترین ذخایر سرب ایران، از دید باز مورد استفاده و بهره برداری قرار گرفته است. در زمین سفالیکر ناحیه گزاره‌خیابی، این ماده به عنوان یکی از مهم‌ترین ماده‌های از جمله عناصر کمیاب به صورت داخل درون گالن متمرکز شده‌اند. براساس ویژگی‌های کانسن گالن و دیگر ویژگی‌های زئوپتیمیشان، مدل کانسن سازی نوع در می‌رسید.

karimpur@um.ac.ir

نویسنده مسئول: تلفن - نامه: ۵۱-۷۸۹۹۷۳۳۳۳، پست الکترونیکی: karimpur@um.ac.ir

سال بیست و چهارم، شماره اول، بهار ۹۵، از صفحه ۱۸
که جانشینی نتیجه چاپ سرب هرمبا با عنصر آنتیمون و بیسموت (Ag⁺ + (Sb, Bi)³⁺ = 2Pb²⁺)، پر و نسبت مقاطع نازک (0.01 نمونه)، سیفی (2.5 نمونه) و تارک سیفی (6 نمونه) انتخاب و بررسی روز آن صورت ۲۰ واحد ALS-Chemex نمونه آلی‌سیر در آزمایشگاه ICP-MS کانادا از SidiChemex بررسی‌های خاص‌سایه شده بودند انجام گرفت. براساس بررسی‌های میکروسکوپی و نیز نتایج آلی‌سیر عنصر فری و کمیاب، تعداد ۷ نمونه مقطع سیفی برای آنالیز رژیم‌داری انتخاب، و در مجموع ۲۲ نقطه از این مقاطع در آزمایشگاه کانالر انتخاب شدند. دستگاه مورد استفاده از نوع ۵ و با ولتاژ ۷.۲۰۰ hoveria-XGT-۷۲۰۰۰ بی‌هوش که قطع شاع پرتو ۱۰ و ۱۰۰ میکرون بود و حذف تشخیص عناصر از سدیم تا اورانیوم در ۱/۰۰۰/۰ و یا با عبارتی بالاتر از ۱۰۰ در یک میلیون بوده است.

زمین‌شناسی
کانالر نخلک در جنوب‌شرقی شرقی رشته کوه نخلک و در جنوب کوری مرکزی ایران قرار گرفته است. به لحاظ تقسيم‌بندی های زمین‌شناسی، کوه نخلک در خرد ایران مرکزی و در بلک برد قرار گرفته است. چندان‌جایی کوه نخلک به ترتیب سن از قدیم به بهترین شغل ساختاری تشکیل‌های تربی، واحدهای سنگی تربی (گروه نخلک)، واحدهای سنگی کربنات کربنات جسی (واده صدر)، واحدهای تربی-کربنات گروه‌های واحدهای لاینوس (واده خالد) و دایک‌های استوک گروه‌های انسن است.[۱۶] مشکل.

واحدهای سنگی کربنات-۱ آواری کربنات بالایی با ضخامت ۲۵۸ متر شامل کلیوکار، آهک و دوولومین سبزاب، ساسکس آهک، آهک ماساله‌ای و آهک چرمی بوده‌اند که در بردارنده ماده مشابه مدل ۱۷ به همراه ستون‌های مسیاه، کربنات بالایی سنگ میزبان، دکلرسانی لوله‌ای‌های زیر کاری‌های غیرهندسه و چیسته، سه ارتباط با غالب‌های آذین و همچنین با فاجعه پرکنده فضای خالی، ویژگی‌های کاری‌های سیاسی و شاهد سیستم‌های مدل کاری‌های نه می‌سی‌بی برای کاری‌های سرب نخلک پیش‌نهاده شده است.

روش بررسی
پس از ازبندی از کلیه رگه‌های معدنی، نمونه‌های مختلف از سری‌کارسات جمع‌آوری شدند. نمونه‌های مناسب برای تهیه
شکل 1 نفتی شناسی کوه نخلک (با تغییرات از ۱۵).

بحث و بررسی
کانی سازی
کانی سازی در کوه نخلک به صورت چینه‌گران (Stratabound) و ناهمراد (Epigenetic) دو نوع سنگ‌های کرتینی کرتینه باشته است. در این نوع سنگ‌های کرتینی، هم‌هاردها در شرایط تحت‌الزمی‌ها آنها، از جمله فشار و گرمایش، به صورت ارتباطی به یکدیگر می‌باشند. در صورت کربنات و ماده‌ای معدنی بوده که در منطقه بین‌ترین کانی‌های سوزیت‌دار و دانه‌ای کانی‌های اصلی و اولیه و سطوحی کانی‌های اصلی و اولیه می‌باشند. گالن در مرحله‌ای اول کانی سازی به صورت ریزبند و نازک‌لایه به صورت قشری به روی تمامی شکافها و سطوح شکاف‌ها و فضاهای داخلی حضور داشته که بی‌دلیل کانی‌های دما و واکنش سریع شاره‌های کانسیس و اثر بندرک در سنگ‌های کست، در نتیجه سایش کانی‌های اولیه، کمیاب یا به صورت ادخال درون گالن حضور دارند که از این جمله هم‌هداردها در شرایط تحت‌الزمی‌ها آنها، از جمله فشار و گرمایش، به صورت ارتباطی به یکدیگر می‌باشند. در صورت کربنات و ماده‌ای معدنی بوده که در منطقه بین‌ترین کانی‌های سوزیت‌دار و دانه‌ای کانی‌های اصلی و اولیه و سطوحی کانی‌های اصلی و اولیه می‌باشند. گالن در مرحله‌ای اول کانی سازی به صورت ریزبند و نازک‌لایه به صورت قشری به روی تمامی شکافها و سطوح شکاف‌ها و فضاهای داخلی حضور داشته که بی‌دلیل کانی‌های دما و واکنش سریع شاره‌های کانسیس و اثر بندرک در سنگ‌های کست، در نتیجه سایش کانی‌های اولیه، کمیاب یا به صورت ادخال درون گالن حضور دارند که از این جمله هم‌هداردها در شرایط تحت‌الزمی‌ها آنها، از جمله فشار و گرمایش، به صورت ارتباطی به یکدیگر می‌باشند. در صورت کربنات و ماده‌ای معدنی بوده که در منطقه بین‌ترین کانی‌های سوزیت‌دار و دانه‌ای کانی‌های اصلی و اولیه و سطوحی کانی‌های اصلی و اولیه می‌باشند. گالن در مرحله‌ای اول کانی سازی به صورت ریزبند و نازک‌لایه به صورت قشری به روی تمامی شکافها و سطوح شکاف‌ها و فضاهای داخلی حضور داشته که بی‌دلیل کانی‌های دما و واکنش سریع شاره‌های کانسیس و اثر بندرک در سنگ‌های کست، در نتیجه سایش کانی‌های اولیه، کمیاب یا به صورت ادخال درون گالن حضور دارند که از این جمله هم‌هداردها در شرایط تحت‌الزمی‌ها آنها، از جمله فشار و گرمایش، به صورت ارتباطی به یکدیگر می‌باشند. در صورت کربنات و ماده‌ای معدنی بوده که در منطقه بین‌ترین کانی‌های سوزیت‌دار و دانه‌ای کانی‌های اصلی و اولیه و سطوحی کانی‌های اصلی و اولیه می‌باشند. گالن در مرحله‌ای اول کانی سازی به صورت ریزبند و نازک‌لایه به صورت قشری به روی تمامی شکافها و سطوح شکاف‌ها و فضاهای داخلی حضور داشته که بی‌دلیل کانی‌های دما و واکنش سریع شاره‌های کانسیس و اثر بندرک در سنگ‌های کست، در نتیجه سایش کانی‌های اولیه، کمیاب یا به صورت ادخال درون گالن حضور دارند که از این جمله هم‌هداردها در شرایط تحت‌الزمی‌ها آنها، از جمله فشار و گرمایش، به صورت ارتباطی به یکدیگر می‌باشند. در صورت کربنات و ماده‌ای معدنی بوده که در منطقه بین‌ترین کانی‌های سوزیت‌دار و دانه‌ای کانی‌های اصلی و اولیه و سطوحی کانی‌های اصلی و اولیه می‌باشند. گالن در مرحله‌ای اول کانی سازی به صورت ریزبند و نازک‌لایه به صورت قشری به روی تمامی شکافها و سطوح شکاف‌ها و فضاهای داخلی حضور داشته که بی‌دلیل کانی‌های دما و واکنش سریع شاره‌های کانسیس و اثر بندرک در سنگ‌های کست، در نتیجه سایش کانی‌های اولیه، کمیاب یا به صورت ادخال درون گالن حضور دارند که از این جمله هم‌هداردها در شرایط تحت‌الزمی‌ها آنها، از جمله فشار و گرمایش، به صورت ارتباطی به یکدیگر می‌باشند. در صورت کربنات و ماده‌ای معدنی بوده که در منطقه بین‌ترین کانی‌های سوزیت‌دار و دانه‌ای کانی‌های اصلی و اولیه و سطوحی کانی‌های اصلی و اولیه می‌باشند. گالن در مرحله‌ای اول کانی سازی به صورت ریزبند و نازک‌لایه به صورت قشری به روی تمامی شکافها و سطوح شکاف‌ها و فضاهای داخلی حضور داشته که بی‌دلیل کانی‌های دما و واکنش سریع شاره‌های کانسیس و اثر بندرک در سنگ‌های کست، در نتیجه سایش کانی‌های اولیه، کمیاب یا به صورت ادخال درون گالن حضور دارند که از این جمله
گالن است و این جرخه نا رسوب گذاری کامل شاره ادامه دارد [18].

پلورشنسی گالن نخلک
گالن نخلک به صورت یک شکل تا شکل دار و به اندازه به میکرو نمی‌گردد. گالن‌های درشت‌بلور بیشتر به صورت پرکندنی فضای خالی و گالن‌های رزبلور به شکل سیمانی بین قطعات سنگ میزان برشی حضور دارند.

حضور سولفات‌ها در اندام‌های زیر و درشت تواند به سرعت متفاوت اختلاف شاره‌های کلسیم با هم نسبت داده شود [19] با این حال عواملی مانند فضای رشد و تعداد و سرعت هسته‌ای نیز در اندام‌های بلور با موتر است. کامی گالن دارای سیستم بلوری مکعبی مکعبی‌های سنگی است. در یک
بلور گالن دو سطح مکعبی (100) و نیز سطح هشت‌وجهی (111) قابل تواضع یافت است. در نتیجه بلورهای با مشخصات متفاوت و به شکل‌های مکعبی هشت‌وجهی و نیز به شکل‌های ترکیبی همانند کوبه‌کانه‌راند مشاهده می‌شود [20].

عبارتند از پبرت، کالی‌پریسیت، سفالریت و سولوفاسیت. کالی‌پریسیت، PbMoO₄، کالی‌پریsidت، (PbO)، مرزهای فرعی و کمیاب شمل: انگلریت، بلانثریت، (PbMoO₄)، بیلی‌میت، ممالکیت، (PbO)، و (PbMoO₄)، (PbO)، (PbMoO₄)، مینیمیت (Cl)، کالی‌پریسیت، میانیت (Cl) و اکسیدهای آهن و منگنز می‌شوند. علاوه بر باریت، به مقدار کمتر کلسیت و دوپیت به عوامل کامی‌های باطله در کاسار حضور دارند.

بررسی کامل ترین دنباله‌های کانال‌برای در بافت‌های قشری نشان می‌دهد که گالن در ۲ بهره‌ای زمانی (Interval) و باریت در دو برهه زمانی تشکیل شده‌اند (شکل ۲). ایجاد این بافت به دلیل تغییرات فیزیکی‌شیمیایی به صورت بارخورده در هنگام رسوب‌گذاری بوده که حاصل آن تغییرات در تغییرات کانال‌ها است. اصلی‌ترین عامل فیزیکی‌شیمیایی تغییرات گرنی‌گنگی اکسیدهای (IO₃) به وسیله با بلاودن گرنی‌گنگی اکسیدهای کانال باریت تشکیل و در نتیجه اکسید مرکز می‌شود. به این امید آن کاهش اکسیدهای در شاره‌ای کانال‌های اصلی و فرعی کاسار نخلک.

<table>
<thead>
<tr>
<th>Minerals</th>
<th>Hypogene mineralization</th>
<th>Supergene mineralization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dolomite</td>
<td>........................</td>
<td>........................</td>
</tr>
<tr>
<td>Galena</td>
<td>........................</td>
<td>........................</td>
</tr>
<tr>
<td>Barite</td>
<td>........................</td>
<td>........................</td>
</tr>
<tr>
<td>Pyrite</td>
<td>........................</td>
<td>........................</td>
</tr>
<tr>
<td>Sphalerite</td>
<td>........................</td>
<td>........................</td>
</tr>
<tr>
<td>Calcopryrite</td>
<td>........................</td>
<td>........................</td>
</tr>
<tr>
<td>Fahlore</td>
<td>........................</td>
<td>........................</td>
</tr>
<tr>
<td>Cerrusite</td>
<td>........................</td>
<td>........................</td>
</tr>
<tr>
<td>Anglesite</td>
<td>........................</td>
<td>........................</td>
</tr>
<tr>
<td>Covellite</td>
<td>........................</td>
<td>........................</td>
</tr>
<tr>
<td>Malachite</td>
<td>........................</td>
<td>........................</td>
</tr>
<tr>
<td>Mimetite</td>
<td>........................</td>
<td>........................</td>
</tr>
<tr>
<td>Wulfenite</td>
<td>........................</td>
<td>........................</td>
</tr>
<tr>
<td>Minium</td>
<td>........................</td>
<td>........................</td>
</tr>
<tr>
<td>Plattenrite</td>
<td>........................</td>
<td>........................</td>
</tr>
</tbody>
</table>

شکل ۲: دنباله‌ای پارازنتی کانال‌های اصلی و فرعی کاسار نخلک.
عملیاتی در حضور این عنصر دما است بطوری که سولفیدهای حاوی Bi با گسترش کاناسارهای دمای بالا قرار داشته که کاناسارهای وابسته به اکسیژن و انٹیفوشنی از این نوع هستند [24]. هماچنین در کاناسارهای نوع MVT از منطقه زیادی از محتوا Ag و Bi به شکل بلوری وجود داشت که نشان می‌دهد، دیگر فاکتوریها به ویژه دما دارای اهمیت بوده‌اند. نظر ایجاد شکل بلور خاص در کاناسارهای [23] بررسی‌های اخیر دماسنجی روی شرایط در کنار نخل‌کش نشان می‌دهد. دمای کاناسار نخل در گستره‌ی کاناسارهای نوع دری می‌باشد. قرار دارد. دمای تشکیل کاناسارهای MVT میانه 250 تا 300 درجه سانتی‌گراد بوده، با این حال اغلب دما بین 0 تا 150 درجه سانتی‌گراد است [24]. هماچنین از نظر رخ یا جاذبیت روی یا جاذبیت شرکت‌های جزئی در کاناسار نخل ممنوع از نوع مکمکی بوده و اثری از رخ به‌حال نوع جاذبیت و به الگوهای آن دیده‌نیز به شکل (2) و (3) است. رخ یا جاذبیت به شکلی در کاناسارهای Pb به علت جاذبیت بلوری کاناسار به عنوان ایجاد پیچ و ناب در شیشه‌های بلوری شدن [25] Pb و جویاگتها و می‌تواند به عنوان حامل پیچ و ناب شیشه‌های بلوری در نظر گرفته شود [20].

بلورهای کاناسار نخل موجود در فضای خالی به دلیل باز بودن شرکت‌های برونزی به سرویس تبدیل شده و علیرغم جسیم‌ها، بلور کاناساری کامل پایین نشده با این حال، بلورهای کاناساری درون سنگ‌های سبز و نیز در زمینه‌بیارت به شکل دسته‌ای و خفیف شده که می‌توان شکل بلوری کاناساری را تصویرسازی کرد (شکل 3). بررسی‌های بلورشناسی نشان می‌دهد که کاناسار نخل بیشتر از نوع ترکیبی مکمکی مس شیمیایی است.

بلورهای کاناسارهای نوع دری مسنده به منطقه (Viburnum Trend) واقع در میسوری آمریکا به عنوان یکی از تولیدگانی سرمایه‌دار در دنیا می‌باشد و شکل مکمکی و هشتبه همه شکل‌های ترکیبی (مکمکی) هسته‌های مسی (2011). نکته جالب در مورد شکل‌های بلورشناسی کاناسار ندخل است که این شکل‌ها از نظر ترکیب شیمیایی تفاوت قابل توجهی با یکدیگر دارند. این نکته نشان می‌دهد که در برخی فاکتورهای مهم مانند مکمکی حالت و شکل‌های مکمکی مولی می‌باشد. معمولاً با استفاده از شکل‌های مکمکی به علت خاص حضور Bi قابل توجهی با یکدیگر دارند. این نکته نشان می‌دهد که در برخی فاکتورهای مهم مانند مکمکی حالت و شکل‌های مکمکی مولی می‌باشد. معمولاً با استفاده از شکل‌های مکمکی به علت خاص حضور Bi قابل توجهی با یکدیگر دارند. این نکته نشان می‌دهد که در برخی فاکتورهای مهم مانند مکمکی حالت و شکل‌های مکمکی مولی می‌باشد. معمولاً با استفاده از شکل‌های مکمکی به علت خاص حضور Bi قابل توجهی با یکدیگر دارند. این نکته نشان می‌دهد که در برخی فاکتورهای مهم مانند مکمکی حالت و شکل‌های مکمکی مولی می‌باشد. معمولاً با استفاده از شکل‌های مکمکی به علت خاص حضور Bi قابل توجهی با یکدیگر دارند. این نکته نشان می‌دهد که در برخی فاکتورهای مهم مانند مکمکی حالت و شکل‌های مکمکی مولی می‌باشد. معمولاً با استفاده از شکل‌های مکمکی به علت خاص حضور Bi قابل توجهی با یکدیگر دارند. این نکته نشان می‌دهد که در برخی فاکتورهای مهم مانند مکمکی حالت و شکل‌های مکمکی مولی می‌باشد. معمولاً با استفاده از شکل‌های مکمکی به علت خاص حضور Bi قابل توجهی با یکدیگر دارند. این نکте‌
کاتی نشانی گالن نخلک
گالن میمربینی کاتی سولفیدی اولیه کاتی نخلک است که به
لحاظ اهمیت، شرک کاتی‌نشانی آن در در هنوز مندرج زدن
(سرپرستی های می‌شوید) و (Hypogene)
کاتی نشانی درون‌زاد: کاتی گالن به به نتهایی در حدود
99 درصد از کاتی‌نی‌نی‌زدن کاتی‌نی‌زدن را شامل می‌شود.
دیگر سولفورها تنا بصرف محمای و مربی سیباوقسیی
در گالن حضور دارد که از جمله میمربینی آنها کاتی‌نی‌زدن
اسفارتی، کاتی‌کوپریم (فاهور) هستند.
با توجه به حالت منفرد و نیمه خودشکل کاتی‌نی‌زدن
کاتی‌کوپریم و اسفارتی، این گالن‌هایی‌که از درون زمین تشكیل
و به عبارت درگ در گالن حیس شده‌اند. محلی‌های
سولفورساز، حالت‌های سیباوقسی نیشان می‌دهند که ناشی
از تشکیل آنها بصرف محمای زرد بوده است. حضور ادخال
در تمامی نمونه‌ها کسانی نیست و از نظر زرد، منجر و
اندازه با یکدیگر تفاوت‌های دارد: به طوری که در گالن
مرحله‌ی اول نسبت به دو مرحله‌ی دیگر کم‌تر ادخال
منشأ‌های می‌شوید. همچنین گالن‌هایی در چند درون‌بات
فسی نسبت به گالن‌هایی ریز بطور درون‌باتی معمولاً
از ادخال متنوع‌تر و ازاد و قرارگیری برخورداری به
که این نقوش کاتی‌ناشانی در زنده‌شی، این دو نوع گالن نیز
نیترگذاری بوده است (شکل 5). ادخال‌ها در سطح کال‌نی بی انظ
و به صورت پرکندن توزیع شده‌اند که شریت مختصری از برخی
از آنها در ادامه آورده آمده است.

استفاراتی: سمت‌ی این گالن در انداده، بین چند میکرون تا حاکم
100 میکرون به صورت نیمه خود شکل حضور دارد. پراکندگی
این گالن در تمامی زیرهای به یکسانی بوده و در زنده‌شی مانند
رگه‌های 3 از قرارگیری برخورداری است که نتایج متفاوتی

شکل 4 انواع رخ و جداندگی در کاتی گالن نخلک که بصرت کاملاً مکمل است.
نیز شناخته شده‌اند و دارای فرمول شیمیایی منفاوت و نسبتاً پیچیده‌ای هستند [27]. این کانی‌ها درون گالن‌های درشت بلوار فراوانی بیشتری داشته و معمولاً در محیط برونزاژ همراه با آنها، کانی کوپیت نیز مشاهده می‌شود که ناشی از فرازند اکسیش است. علاوه بر ادخال‌های سولفیدی پاد شده ادخال‌های خود شکل دومینیت نیز در گالن قابل مشاهده‌اند.

کانی شناسی برون‌زاد: عوامل زیادی در ایجاد فرازند برونزاژ در کانسارهای سرب و روی با سنگ مزیزان رسوبی دخیل هستند. همانند: کانی شناسی اولیه، موقعیت سطح ایستایی و

* نوسان‌های آن، سنج‌شناسی سنگ مزیزان، شیمی شاره و رژیم آب و هوا و این عوامل مسئول تغییرات در Eh-pH روی منطقه‌ای کانی‌های هستند [28]. محیط برونزاژ در کانسار نخلک به دلیل شکستگی فراوان در سنگ‌های مزیزان دارای سیستم باز و در تعادل با انصراف بوده و مقدار ذرات O2 و CO2 در آن مشابه انصراف است؛ همچنین به دلیل محیط گرم و خشک فعالیت بیولوژیک خاک در آن باعث شده بوده و pH ماتر منجر از سنگ مزیزان و ترکیب کانی‌ای است که شرح برجسته از این کانی‌ها در ادامه آورده شده است (شکل 5).

سوزیت: مسیرهای ترکیبی پایه‌ساز سرب کاسار نخل است که به دو شکل کم‌تر متمایز رخ داده است: سوزیت ریز بلوک که بصورت درجا جانشین گالن شده و سوزیت درشت بلوک بهصورت پرکنده فضای خالی شکستگی‌ها و حفره‌ها مشاهده می‌شود (شکل ۶alfa). در حالت میکروسکوپی سوزیت و با مقدار کمتر، اکنونیت با بافت‌های جانشینی همجون جانشینی خورده‌گی (Caries)، جانشینی شبکه‌ای (Boundary)، اسکلتی، جانشینی در راستای رخ (Cleaveage replacement) و جانشینی بر جایمانده (Replacement relict texture) مشاهده می‌شود. در کاسارهای با سولفید آهن پایین، گالن می‌تواند به طور مستقیم به کربنات سرب اکسید شده و نیازی به فاز اسمطه سولفات سرب ندارد. تاثیر سنگ میزبان کربناتی و نیز مقدار بسیار پایین کلیه‌ای اکسید کنده محیط برونز در بالاتر از محدوده نگهدارنامه و در اکستننش در بالاتر از محدوده نگهدارنامه در دو دلیل است: ۱- حضور سنگ میزبان کربناتی کاسار نخل و ۲-پایه‌ساز

شکل ۶ کانی‌شناسی برونیز نخلک. الالف: نمونه‌های جدایگان توانی سوزیت و مسیومی؛ ب: ولفینت بلوکی دوران حفظ‌های سنگ‌های سپاس از بلوک.
گلدنامیت [31] در مورد حضور مولیبدن درون ساختار گالن تردد داشته و معتقد بود که این عناصر به صورت ادخال‌های بی‌مولیبدن درون کان حضور داشته است. مهار جزئی بی‌مولیبدن در مراحل آخر بروز صورت می‌گیرد که به تغییر ولفینت درون فضای خالی بارندی مس و مس [30].
این کانی در محیط بروزند به صورت زیر تنشکل می‌شود [32]:
\[
PbS + CuSO_4 \rightarrow CuS + PbSO_4
\]
\[
PbS + MoS_2 + 2H_2O + 7O_2 \rightarrow PbMoO_4 + 3SO_4^{2-} + 4H^+
\]
\[
PbS + CuSO_4 CuS + PbSO_4
\]
\[
Cu_2CO_3(OH)_2 \rightarrow Cu_2CO_3(OH)_{2-} + H^+
\]
\[
Cu_2CO_3(OH)_{2-} + H^+ \rightarrow Cu_2CO_3(OH)_{2-} + H^+
\]

کانی‌های کولوتی، مالاکیت (CuS)، و کانکاتنیت (CuSO_4 Cu(OH)_2) از جمله کانی‌های تاثیرگذار است که مس آن‌ها از ادخال‌های کانکوریت و تتراندیت-تنانیت درون کان نخستین می‌شود. مس خارج شده از ساختار سولفیدهای مس اولیه با سولفیدهای موجود در محیط ترکیب شده و به صورت زیر تنشکل کولوتی می‌شود [22].
جدول ۱ مقدار پتانسیل ساکن برای سولفیدهای گالن، پیریت و اسفلتیت [۳۷،۲۷،۳۶]

<table>
<thead>
<tr>
<th>سولفید</th>
<th>Won [۳۵]</th>
<th>Karavaiko [۳۶]</th>
<th>Da Silva et al. [۳۷]</th>
</tr>
</thead>
<tbody>
<tr>
<td>پیریت</td>
<td>۰.۰۶</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>اسفلتیت</td>
<td>۰.۲۳</td>
<td>۰.۷۸۲</td>
<td>۰.۲۳۱</td>
</tr>
<tr>
<td>گالن</td>
<td>۰.۰۱۷</td>
<td>۰.۲۴۵</td>
<td>۰.۴۲۵</td>
</tr>
</tbody>
</table>

روی کتیوی گالن نخلك، نشان از نتوونی از عنصر XPMA و فریس سبیل ازشمش است (جدول ۲). عنصر فریس هم‌مرتبین عنصر کمیاب درون گالن است. زیرا بالاترین مقدار فراوانی را بین درگر عنصر دارد و با لحاظ اقتصادی نیز مصوب جابی ازشمش می‌روید. ممکن است ترکیب (By-Product) سالو در مورد زنونیمیه گالن نخلك چگونگی حضور نقره و دیگر عنصر کمیاب است. به همین دلیل که محتوی از آن‌الایز ادخال‌های آنالیز نقطه‌ای شدنی (جدول ۲) نمونه‌های غیر به نتایج آنالیز ادخال‌ها در شکل (۸) آورده شده است. آنالیز نقطه‌ای نشان داد که گالن زینده، از نظر عنصر کمیاب فهری به‌وده. حال آنکه در آنالیز نقطه‌ای ICP-MS گالن کل روس Fe3+ و گالن آلیز نقطه‌ای ادخال‌ها نتوونی از عنصر کمیاب شاهد می‌شود. ترکیب XPMA نتایج کاست نگاری است. آنالیز ICP-MS و نیز XPMA نم‌های که از رابطه کاکلی استحکام بین نتوون و فراوانی ادخال‌ها و زنونیمیه گالن وجود دارند. گالن زینده در آنالیز نقطه‌ای نم‌های در تمامی نمونه‌های ترکیبی قطبی گس و فهری از عنصر کمیاب نشان دهد. به عبارت دیگر شکل اصلی حضور عنصر کمیاب در گالن نخلك به صورت ادخال کاست نسبتا مستقل بوده و حضور به صورت محلول جامد از هم در نرم پر خوردار است.

محتوی عنصر کمیاب درون گالن می‌تواند به ویژگی‌های زنیمی کاکل و باشته و بوده و اطلاعه برای شرایط تغییری در ماده معدنی از آن‌الایز. در دو عنصر آنیمیون و زنیمی از عنصر اصلی جایگزین در اکثر هست که به عنوان نشانگر شرایط کاکل‌سازی آن‌الایز استفاده می‌شود. پیش از مالاکوف [۴] بیش درون، باشته و باشته کاکل‌سازی و باشته با اکسیکن و نوع انشفوشی نش گس و به اعتقاد نشکنی و جوئنوس [۷۷] آنیمیون به مقدار بالا در گالن کاست نسبتا با دمای باین تمرکز می‌آید.

جریان گالواییک به کلی گالن و دیگر سولفیدهای گالن و پیریت و اسفلتیت در اثر ایجاد سیل گالن متوکید شود و در نتیجه سولفید مجاور گالن نیز اکسید شود. که این حالت مورد جفت گالن-پیریت رخ داده است. بوشیشی از کاکل‌های انگلزی و در ادامه سرورودی رون سطح گالن ایجاد می‌شود که متغیر از اکسیکن بی‌بستی گالن بی‌شود که این ویژگی گالن به سیر گالن معرف است [۳۷] چنانکه منتظر شد حضور پیریت هم‌مرتبین نش نش شکل کاکل انگلزی‌درا بوده و در واقع با اعمال فرایند اکسپلای کننده گالواییک بین پیریت و گالن یکسان شده و یاف و پیشرفت وارد انگلیسی بی‌بستی باعث افت اکسیداسیون پیریت باعث کاهش Fe3+ و Fe2+ در نتیجه کاکل انگلزی نشان داد که حذف پیشرفت دوباره و اکسیداسیون پیریت باعث افزایش Fe2+ و Fe3+ می‌شود.

روی گالواییک می‌شود. ترکیب گالواییک باعث ادامه اکسیداسیون پیریت خواهد شد. در این حالت به نمونه‌های با ادخال‌های پیریت در حال اکسپلیدشند و اسفلتیت دست خورده برخوردار خواهیم کرد (شکل ۷الف، ب).

زنونیمیه گالن نخلك

در زمان تنها نشست‌ها ماده‌مندی عنصر کمیاب موجود در شاره‌ای کاکل به صورت محلول جامد و با بیشتر ادخال گالن می‌شود. [۳۸] کاکل‌های مستقل به درون کاکل میزان درد می‌شود. درون خود خود به حین بهره آنتی‌مایون و بیشتر از حجم ماهور. این عنصر به شمار می‌روید. کبالت‌ها و ZnS نم‌های درون MVT کاکل‌هایی و زنونیمیه ساده دارند، با این حال در Entrepreneur (Viburnum Trend) (یکی از پیچیدن‌های آن‌الایز) گالن و FeNi .Co .Cu .Sb و Ag Sb و Ag
<table>
<thead>
<tr>
<th>شماره</th>
<th>شناسه ICP</th>
<th>سرب</th>
<th>آرسنیک</th>
<th>بیلیم</th>
<th>سبزی</th>
<th>زئین</th>
<th>سرب</th>
<th>نتایج بالاتر</th>
<th>کانادا</th>
<th>ارائه‌ای</th>
<th>غلظت (ppm)</th>
<th>میزان‌ها</th>
<th>میزان‌های مورد نیاز</th>
<th>میزان‌های مورد نیاز</th>
<th>میزان‌های مورد نیاز</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>M1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
</tr>
<tr>
<td>6</td>
<td>M2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
</tr>
<tr>
<td>7</td>
<td>M3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
</tr>
<tr>
<td>8</td>
<td>M4</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
</tr>
<tr>
<td>9</td>
<td>M5</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
</tr>
<tr>
<td>10</td>
<td>M6</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
</tr>
<tr>
<td>11</td>
<td>M7</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
</tr>
<tr>
<td>12</td>
<td>M8</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
</tr>
<tr>
<td>13</td>
<td>M9</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
</tr>
<tr>
<td>14</td>
<td>M10</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
</tr>
<tr>
<td>15</td>
<td>M11</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
</tr>
<tr>
<td>16</td>
<td>M12</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
</tr>
<tr>
<td>17</td>
<td>M13</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
</tr>
<tr>
<td>18</td>
<td>M14</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
</tr>
<tr>
<td>19</td>
<td>M15</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
</tr>
<tr>
<td>20</td>
<td>M16</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
</tr>
<tr>
<td>21</td>
<td>M17</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
</tr>
</tbody>
</table>
جدول ۲ مقدار میانگین عناصر نقره، آرسینک، بیسموت و آنتیمون و نسبت Sb/Ag کال (کل) نخلک و دیگر کالسارهای شیمیایی

<table>
<thead>
<tr>
<th>کالسار</th>
<th>Ag (ppm)</th>
<th>As (ppm)</th>
<th>Bi (ppm)</th>
<th>Sb (ppm)</th>
<th>Sb/Bi</th>
<th>مراجع</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nakhlak</td>
<td>۹۳۳.۲</td>
<td>۹۱.۴</td>
<td>۶۱.۳</td>
<td>۴۲۲.۴</td>
<td>۳۴۴.۶</td>
<td></td>
</tr>
<tr>
<td>Fankou</td>
<td>۱۴۲۰</td>
<td>۹۰۰</td>
<td>۱۳۹۹</td>
<td>۴۸۳۳</td>
<td>۵۸۵</td>
<td>[۴۱]</td>
</tr>
<tr>
<td>Illinois-Kentucky</td>
<td>۲۴۰</td>
<td>۷۰۵</td>
<td>۵۰۵</td>
<td>۱۷۱۶</td>
<td>۳۴۸</td>
<td>[۴۱]</td>
</tr>
<tr>
<td>Missouri SE</td>
<td>۸۵</td>
<td>۲۵۰</td>
<td>۴۰۰</td>
<td>۱۷۱۶</td>
<td>۳۴۸</td>
<td>[۴۱]</td>
</tr>
<tr>
<td>Wisconsin- Illinois</td>
<td>۱۵۷</td>
<td>-</td>
<td>-</td>
<td>۸۳۲</td>
<td>۲۸۳</td>
<td>[۴۱]</td>
</tr>
<tr>
<td>Tri- State</td>
<td>۱۱۲</td>
<td>-</td>
<td>-</td>
<td>۹۹</td>
<td>۹.۹</td>
<td>[۴۲]</td>
</tr>
<tr>
<td>Silesia</td>
<td>۱۲۱</td>
<td>-</td>
<td>-</td>
<td>۲۱۳۲</td>
<td>۲۱۳۲</td>
<td>[۴۲]</td>
</tr>
<tr>
<td>Berg Aukas</td>
<td>۳۲۲</td>
<td>-</td>
<td>-</td>
<td>۱۸۱۶</td>
<td>۱۸۱۶</td>
<td>[۴۴]</td>
</tr>
<tr>
<td>Abenab</td>
<td>۵۵۱</td>
<td>-</td>
<td>-</td>
<td>۸۰۰</td>
<td>۸۰۰</td>
<td>[۴۵]</td>
</tr>
<tr>
<td>Silver mines</td>
<td>۶۴۵</td>
<td>-</td>
<td>-</td>
<td>۴۴۴۵۵</td>
<td>۴۴۴۵۵</td>
<td>[۴۶]</td>
</tr>
<tr>
<td>Darwin</td>
<td>۱۸۸۵۵</td>
<td>-</td>
<td>-</td>
<td>۴۴۴۵۵</td>
<td>۴۴۴۵۵</td>
<td>[۴۶]</td>
</tr>
<tr>
<td>British Island</td>
<td>۱۰</td>
<td>-</td>
<td>-</td>
<td>۸۰۰۰۱</td>
<td>۸۰۰۰۱</td>
<td>[۴۷]</td>
</tr>
<tr>
<td>Broken Hill</td>
<td>۶۱۸</td>
<td>-</td>
<td>-</td>
<td>۱۵۰۱۰</td>
<td>۱۵۰۱۰</td>
<td>[۴۷]</td>
</tr>
<tr>
<td>Shuikoushan, China</td>
<td>۱۰۴۷</td>
<td>۳۷۲</td>
<td>۸۴۰</td>
<td>۱۵۰۰۰</td>
<td>۱۵۰۰۰</td>
<td>[۴۸]</td>
</tr>
<tr>
<td>Qaleh Zari</td>
<td>۲۳۹۲۵</td>
<td>-</td>
<td>-</td>
<td>۳۱۲۵۰</td>
<td>۳۱۲۵۰</td>
<td>[۴۸]</td>
</tr>
</tbody>
</table>
نقطه‌ی در گالن زمینه احتمالاً به دلیل پایین‌تر بودن فرآیند این عنصر از حد تشخیص روش آنالیزی بوده است. گالن نخلک از نظر اندازه به دو صورت درشت بلو و ریز بلو قابل مشاهده است. نمودار مقایسه ترکیب زوئیمی‌ها میان‌گذاره این دو نوع گالن در شکل (۱) آورده شده است. بطور کلی هماهنگ خوبی بین عناصر فرعی دو نوع گالن وجود داشته با این حال در گالن‌های درشت بلو عناصر کمیابی از فرآیند بالاتری برخوردار است. علت این تفاوت در زوئیمی‌گان درشت و ریز بلو را می‌توان در کانی نگاشت‌های آنها جستجو کرد که بطور کلی گالن‌های درشت بلو نسبت به ریز بلو، فرآیند بیشتر ادخال و اندازه ادخال را نشان می‌دهد.

با توجه به فرآیند عناصر در گالن کل، نقره با آرسنیک همبستگی مثبت و بالا (۲۲۵) و با سیس همبستگی مثبت متوسط (۲۵۷) دارد (شکل ۹). آرسنیک و مس به همراه آنتیومون عناصر سازندهٔ کانی‌های سری تترادریت-تانتنیت است. با توجه به اینکه نقره با آرسنیک همبستگی بیشتر نسبت به آنتیومون (۵۵۳) نشان می‌دهد، احتمالاً نقره بیشتر در تنانیت (Cul3As5S13) تمرکز یافته است. آنتیومون گالن نخلک از جنگ نظر جالب توجه است: ۱) حضور در آلیز کل گالن (۳۴۴ppm) (۲) عدم حضور در ادخال‌ها و ۳) همبستگی پایین بین آنتیومون و نقره این شواهد می‌توانند بدن سبب باشد که آنتیومون به صورت محول جامد و با تمرکز پایین در گالن زمینه پراکنده شده است. عدم پیشیابی آنتیومون با آنتیز...
قدربانی

این مقاله مربوط به طرح پژوهشی به شماره ۲/۲۷۷۴۴ در دانشگاه فردوسی مشهد است.

مراجع

برداشت

گالن مهم‌ترین کانه‌کنی کانسنگ نخلک بوده و به‌نتیجه‌ی حدود ۹۹ درصد از ماده‌ی معذیب سولفیدی را تشکیل می‌دهد. این کانی از نظر خصوصیات پلورشیمیایی مورد بررسی قرار گرفته است. پلورشیمیایی‌گالن نخلک کانسی می‌دهد که این کانی بیشتر به شکل گویو-خالدار و یا رخ یا جداسازی کوبک بوده که نشان‌دهنده‌ی تشکیل در دمای پایین است. مهم‌ترین خصوصیات کانسی‌گالن نخلک علیرغم سادگی‌پرآورتری، حضور اسفلات‌های اسفلاریتی، پیبری، کالکوپیریت و فاهور (سری تتراندرتلناتینت) درون گالن هستند. فراوانی و تنوع ادخال‌ها در تیم‌های نمونه‌ها یکسان به‌نوع و تغییر نسبی کانسی می‌دهد. گالن نخلک در محالله‌ی پرکنده‌ی فعالی خالی و نشان‌دهنده‌ی نشست شده که فراوانی ادخال‌ها در گالن‌های پایانی بیشتر است. کانسی‌گالن قادر است علاوه بر ساندنی‌ها اصلی خود (الحاقی، Pb, S), بیشتر نمونه‌های سوسنی‌ها، آریوریک، روز، کادمیوم، نیلوس و را به‌صورت جزئی در خود جای گرفت. نتایج آنالیزهای زئونشیمیایی (گالن گل به روش XPMA) نشان می‌دهد که عناصر Al, Zr, Nb, Hf نمایانگر تاریک‌وزنکه‌های برنجی در Cu و As, Sb, Ag می‌باشد. این عناصر قربانی عمداً به‌صورت ادخال کانسی مستقل و کمتر به‌صورت محلول جامد درون گالن حضور دارند. جرایح حضور این عناصر در آنالیز نطنزه‌ای به‌اندازه‌ی نسبتاً و نیز بین فراوانی و نوع ادخال و زئونشیمی کانسی گالن رابطه‌ی مستقیمی مشاهده می‌شود. عناصر بیشترین حضور در گالن مقدار ۱۰۰۰ تا ۱۰۰ پپموم (ppm) بوده و در کانسی‌گالن حضور این عنصر پایین‌تر شده که این عدم حضور می‌تواند خود دلیلی بر عدم ارتباط با گونه‌پذیری باشید. مقدار بیشترین و Bi نسبت بالای Sn/Sb و Pb و نقش نسبت بالای Sn/Sb در تشکیل گالن نخلک دما و فشار باین است. همبستگی بالای بین نقشه‌ای آریوریک و نیز نقشه بس پس نخلک از حضور این عنصر در یک گالن به‌صورت به‌نوع اسفلات‌های فاهور غنی از نظر این است. خصوصیات کانسی‌گالن نخلک در دما و فشار باین تشکیل و در نهایت گالسیاره‌ای نوع درجه‌ی می‌سی‌سی پر قرار می‌گیرد.

[44] عیمتیان ج، علیوی م، "بررسی شیمیایی و کریستالین طبیعی و لطیعی معدن مخلوط اثرک " مجله علوم دانشگاه تهران، شماره ۲-۴ (۱۳۵۹) ص۴۲-۴۹.

