Volume 26, Issue 2 (7-2018)                   www.ijcm.ir 2018, 26(2): 301-314 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tectonomagmatic characteristics of ophiolitic gabbroids from south Orzuieh (south of Baft, Kerman) ophiolite complex: insights from clinopyroxene chemistry.. www.ijcm.ir. 2018; 26 (2) :301-314
URL: http://ijcm.ir/article-1-1099-en.html
Abstract:   (606 Views)
Mafic and ultramafic layered rocks located in south of Orzuieh (Baft, Kerman province), consist of plagioclase bearing ultramafic rocks (including olivine, orthopyroxene , clinopyroxene and plagioclase), olivine gabbros (including plagioclase, olivine, orthopyroxene and clinopyroxene) and gabbronorites (including plagioclase, orthopyroxene and clinopyroxene and amphibole) and constitute the mafic parts of the Orzuieh colored mélange complex. Mineral chemistry of clinopyroxene show diopside end-member which have Mg# ranging from 0.75 to 0.88. According to geothermobarometric calculations, temperatures change from 783 to 975ºC and pressure conditions vary from 1.4 to 3.6 kbar. Tectono-magmatic considerations show that these clinopyroxenes have been crystallized from tholeiitic to bonintic magmas which have already formed in an arc environment. Therefore, it could be considered that Orzuieh layered ultramafic and mafic rock series are some parts of ophiolitic complexes which occurred in a subduction setting.
Full-Text [PDF 121 kb]   (215 Downloads)    
Type of Study: Research | Subject: Special
Received: 2018/07/7 | Accepted: 2018/07/7 | Published: 2018/07/7

1. [1] Nimis P., "A clinopyroxene geobarometer for basaltic systems based on crystal-structure modeling", Contribution to Mineralogy and Petrology 121 (1995) 115±125 [DOI:10.1007/s004100050093]
2. [2] Dal Negro A., Carbonin S., Domenghetti C., Molin G.M., Cundari A., Piccirillo, E.M., "Crystal chemistry and evolution of the clinopyroxene in a suite of high pressure ultramafic nodules from the Newer Volcanics of Victoria, Australia", Contribution to Mineralogy Petrology 86 (1984) 221-229. [DOI:10.1007/BF00373667]
3. [3] Cundari A., Dal Negro A., Piccirillo E.M., Della Giusta A., Secco L., "Intracrystalline relationships in olivine, orthopyroxene, clinopyroxene and spinel from a suite of spinel lherzolite xenoliths from Mt. Noorat, Victoria, Australia", Contribution Mineralogy Petrology 94 (1986) 523-532. [DOI:10.1007/BF00376343]
4. [4] Le Bas M. J., "The role of aluminium in igneous clinopyroxenes with relation to their parentage", American Journal of Science 260 (1962) 267-288. [DOI:10.2475/ajs.260.4.267]
5. [5] Letterrier J., Maury R. C., Thonon P., Girard D., Marchal M., "Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series", Earth and Planetary Science Letters 59 (1982) 139–54. [DOI:10.1016/0012-821X(82)90122-4]
6. [6] Beccaluva L., Macciotta G., Piccardo G. B., Zeda O., "Clinopyroxene composition of ophiolite basalts as petrogenetic indicator", Chemical Geology 77 (1989) 165-182. [DOI:10.1016/0009-2541(89)90073-9]
7. [7] Nisbet E. G., Pearce J. A., "Clinopyroxene composition of mafic lavas from different tectonic settings", Contributions to Mineralogy and Petrology 63 (1977) 161-173. [DOI:10.1007/BF00398776]
8. [8] Sakhaii Z., Davoodian Dehkordi A. R., Shabniyan N., Paydari M., "Approach on the characteristics of basic magma rocks sarkoobeh (north Khomein) by clinopyroxene mineral chemistry", Iranian Journal of Crystallography and Mineralogy 23 (2015) 533-544.
9. [9] Shabniyan N., Davoodian Dehkordi A. R., Soheilian F., "Tectono-magmatic characteristics of Bagham pluton in southeastern Ardestan: Base on mineral chemistry of clinopyroxene and amphibole" Iranian Journal of Crystallography and Mineralogy 21 (2013) 471-486.
10. [10] Esmael Zadeh Moghddam H., Shafahii Moghaddam H., Ghorbani, Gh., "Geochemistry and petrogenesis of gabbroids in the Soleimanieh ophiolites, Sabzevar" Iranian Journal of Crystallography and Mineralogy 22 (2015) 647-658.
11. [11] Shafaii Moghadam H., Stern R.J., Rahgoshay M., "The Dehshir ophiolite (central Iran): geochemical constraints on the origin and evolution of the inner Zagros ophiolite belt", Geological Socoiety, America Bulletin 122 (2010) 1516–1547. [DOI:10.1130/B30066.1]
12. [12] Ghasemi H., Juteau T., Bellon H., Sabzehei M., Witechurch H., Ricou L.M., "The mafic–ultramafic complex of Sikhoran (central Iran): a polygenetic ophiolitic complex", Geoscience 334 (2002) 431–438. [DOI:10.1016/S1631-0713(02)01770-4]
13. [13] Mohammadi M., Ahmadipour H., Moradian A., "The use of mineral chemistry in the study of origin and evolution of dunitic rocks from Ab-Bid ultramafic complex (East Haji Abad, Hormozgan Province)", Iranian Journal of Crystallography and Mineralogy 24 (2017) 621-634.
14. [14] Peighambari S., Ahmadipour, H., "Application of chromite composition as a petrological indicator for determination of the Dehsheikh ultramafic complex origin (south of Kerman Province, Iran)", Iranian Journal of Crystallography and Mineralogy 24 (2012) 415-428.
15. [15] Sabzehei M., Berberian M., Alavi-Tehrani N., Houshman Zadeh A., Nougole-Sadat M.A.A., Madjidi B., Geological quadrangle map of Iran, Geological Survey of Iran, No. 112 (1994).
16. [16] Morimoto N., Fabries J., Ferguson A. K., Ginzburg I. V., RossM., Seifert F.A., Zussman J., Akoi K., Gottardi G., "Nomenclature of pyroxenes", Mineralogical Magazine 52 (1988) 535-550. [DOI:10.1180/minmag.1988.052.367.15]
17. [17] Berger J., Féménias O., Mercier J. C. C., Demaiffe D., "Ocean-floor hydrothermal metamorphism in the Limousin ophiolites (western French Massif Central): evidence of a rare preserved Variscan oceanic marker", Journal of Metamorphic Geology. 23b (2005) 795-812. [DOI:10.1111/j.1525-1314.2005.00610.x]
18. [18] Hodges F.N., Papike J.J., "DSDP site 334 :magmatic cumulates from ocean layer 3", Journal of Geophysical Research 81 (1976) 4135–4151 [DOI:10.1029/JB081i023p04135]
19. [19] Hébert R., Laurent R., "Mineral chemistry of the plutonic section of the Troodos ophiolite: new constraints for genesis of arc-related ophiolites". In: Malpas J, Moores E, Panayiotou A, Xenophontos C (eds) "Ophiolites–oceanic crustal analogues", Proc Troodos Ophiolite Symposium 1987 (1990) 149–163
20. [20] Elthon D., Casey J.F., Komor S., "Mineral chemistry of ultramafic cumulates from the North Arm Mountain massif of the Bay of Islands ophiolite: evidence for high-pressure crystal fractionation of oceanic basalts", Journal of Geophysical Research 87(1982) 8717– 8734 [DOI:10.1029/JB087iB10p08717]
21. [21] Pearce J.A., Norry M.J., "Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks", Contribution to Mineralalogy and Petrology 69 (1979) 33–47 [DOI:10.1007/BF00375192]
22. [22] Coish R.A., Taylor L.A., "The effects of cooling rate on texture and pyroxene chemistry in DSDP leg 34 basalt: a microprobe study", Earth and Planetary Science Letters 42 (1979) 389–398 [DOI:10.1016/0012-821X(79)90048-7]
23. [23] Gamble R.P., Taylor L.A., "Crystal/liquid partitioning in augite: effects of cooling rate", Earth and Planetary Science Letters 47 (1980) 21–33 [DOI:10.1016/0012-821X(80)90100-4]
24. [24] Elthon D., "Petrology of gabbroic rocks from the Mid-Cayman rise spreading center", Journal of Geophysical Research 92 (1987) 658–682 [DOI:10.1029/JB092iB01p00658]
25. [25] Burns L.E., "The Border Ranges ultramafic and mafic complex, south-central Alaska: cumulate fractionates of island-arc volcanics", Canadian Journal of Earth Science 22 (1985) 1020–1038 [DOI:10.1139/e85-106]
26. [26] Medaris L. G., "High-pressure peridotites in south-western Oregon", Geological Society of America Bulletin 83 (1972) 41– 58. [DOI:10.1130/0016-7606(1972)83[41:HPISO]2.0.CO;2]
27. [27] DeBari S. M., Coleman R. G., "Examination of the deep levels of an island arc: evidence from the Tonsina ultramafic– mafic assemblage, Tonsina, Alaska", Journal of Geophysical Research: Solid Earth 94 (1989) 4373–4391. [DOI:10.1029/JB094iB04p04373]
28. [28] Le Bas M. J., "The role of aluminium in igneous clinopyroxenes with relation to their parentage", American Journal of Science 260 (1962) 267-288. [DOI:10.2475/ajs.260.4.267]
29. [29] Kushiro I., "Si-Al relation in clinopyroxenes from igneous rocks", American Journal of Science 258 (1960) 548-554. [DOI:10.2475/ajs.258.8.548]
30. [30] Bence, A. E., Papike J. J., Ayuso R. A., "Petrology of Atlantic island arcs", Bulletin of Volcanology 32 (1975) 189-206.
31. [31] Schweitzer E. L., Papike J. J., Bence A. E., "Statistical analysis of clinopyroxenes from deep sea basalts", American Mineralogist 64 (1979) 501-513.
32. [32] Bagci U., "The geochemistry and petrology of the ophiolitic rocks from the Kahramanmaras region, Sothern Turkey", Turkish Journal of Earth Science 22 (2013) 1–27.
33. [33] Arvin M., Babaei A., Ghadmi G., Dargahi S., Ardekani A.S., "The origin of the Kahnuj ophiolitic complex, SE of Iran: constrains from the whole rock and mineral chemistry of the Bande-Zeyarat gabbroic complex", Ofioliti 30 (10) (2005) 1–14.
34. [34] Mahood G. A., Baker D. R., "Experimental constraints on depths of fractionation of mildly alkalic basalts and associated felsic rocks: Pantelleria, Strait of Sicily", Contributions to Mineralogy and Petrology 93 (1986) 251–264. [DOI:10.1007/BF00371327]
35. [35] Aoki K., Shiba I, "Pyroxene from lherzolite inclusions of Itinomegata, Japan", Lithos 6 (1973) 41–51. [DOI:10.1016/0024-4937(73)90078-9]
36. [36] Letterrier J., Maury R. C., Thonon P., Girard D., Marchal M., "Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series", Earth and Planetary Science Letters 59 (1982) 139–54. [DOI:10.1016/0012-821X(82)90122-4]
37. [37] Helz R.T., "Phase relationships of basalts in their melting range at pH2O = 5 kb as a function of oxygen fugacity", Journal of Petrology 14 (1973) 249-302. [DOI:10.1093/petrology/14.2.249]
38. [38] Asthana D., "Relict clinopyroxenes from within-plate metadolerites of the Petroi metabasalt, the New England fold belt, Australia", Mineralogical Magazine 55 (1991) 549–561. [DOI:10.1180/minmag.1991.055.381.08]
39. [39] Beccaluva L., Macciotta G., Piccardo G.B., Zeda O., "Clinopyroxene composition of ophiolitic basalts as petrogenetic indicator", Chemical Geology 77 (1989) 165–182. [DOI:10.1016/0009-2541(89)90073-9]
40. [40] Soesoo A., "A multivariate statistical analysis of clinopyroxene composition: empirical coordinates for the crystallization PT-estimations", Geological Society of Sweden (Geologiska Föreningen) 119 (1997) 55-60. [DOI:10.1080/11035899709546454]
41. [41] Brey G.P., Kِhler T. "Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers", Journal of Petrology 31 (1990) 1353–1378. [DOI:10.1093/petrology/31.6.1353]
42. [42] Putrika K.D., "Thermometers and Barometers for Volcanic Systems", Reviews in Mineralogy and Geochemistry 69 (2008) 61-120. [DOI:10.2138/rmg.2008.69.3]
43. [43] Lindsley I., "Pyroxene thermometry", American Mineralogist 68 (1983) 477-493.

Add your comments about this article : Your username or Email:

© 2019 All Rights Reserved | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb