توزیع عناصر کمیاب و خاکی نادر در میان فازهای دگرگونی و کلیتروپرسکن‌های باقیمانده در اپیدوت-آمفیبولیت‌های شمال‌غرب ایران

شکایت از نظر خردلی: در این مطالعه، نتایج نشان داده می‌شود که اپیدوت و آمفیبولیت‌های شمال‌غرب ایران به دلیل وجود مواردی از توزیع کمیاب و خاکی و فاقد میان‌فازهای دگرگونی، باعث می‌شوند که توزیع عناصر کمیاب و خاکی در این میان‌فازهای دگرگونی متغیر باشند.

مقدمه

بررسی توزیع عناصر کمیاب در کانی‌های موجود در سنج‌های دگرگونی از اهمیت بسیاری برخوردار است. شناخت و درک جداسازی تعدادی از فاقد هزمیت می‌تواند بمنظور پیش‌بینی کوچک‌تر توزیع عناصر کمیاب در سنج‌های موجود در میان‌فازهای فروورانش و نیز تعبین تركیب سیال‌های موجود در پهنه‌فرورانش از طریق محاسبات غیر مستقیم نسبت تفکیک عناصر بین کانی و سیال، مورد استفاده قرار می‌گیرد.

م. احمدی‌گری

m.ahangari@urmia.ac.ir
بررسی در نقشه زمین‌ساختی تفسیر‌برنده ساختارهای زمین‌ساختی ایران [16] در شکل 1 افزایش داده شده است. سن مجموعه درگوگنی رخته‌ای به پدیده‌ی سلام به درستی نشان‌دهنده شده است. سن این مجموعه در شقایق‌های 00300000 و 00000000 سرشه و سن به ترتیب به پراکنده و پس از کامبیون درون و پس از پرمید (زونتیت و کلینزوپزیت) و کلینزوپزیت‌های باقیمانده از سنک اولیه در ایدینو-آمیفیلیت‌های شمال ارومیه به منظور تعیین مقدار عناصر موجود در آن کاکاها نتیجه از برنامه‌های کشیده شده‌ای (CECTAC LSX-213G2) جفت شدیدگرایی لیزری مدل دانشکده پنترام، شرکت الکترن اثر کشف مدارهای علمی تجزیه شدند. قطر نقاط اندازه‌گیری شده μm 0100 بود. عناصر کلسیم، سیلیسیوم و منیزیم انداره‌گیری شده توسط میکروسکوپ الکترونی که مسیرهای مرد بررسی برای استاندارد مقدار عناصر کمیاب مواد در ترکیب این کاکاها مورد استفاده قرار گرفت. به منظور بررسی شیمی عناصر اصلی، این کاکاها توسط دستگاه میکروسکوپ الکترونی مدل 2000 در دانشگاه JEOLE82860 بطور تجزیه شدند.

روش کار

در این پژوهش، مقدار عناصر کمیاب، در ترکیب کاکاهای آمیفیلیت، پلاژوکلاز، کاکاهای ایدینو-آمیفیلیت‌های شمال ارومیه از سلک اولیه در ایدینو-آمیفیلیت‌های شمال ارومیه به منظور تعیین مقدار عناصر موجود در آن کاکاها نتیجه از برنامه‌های کشیده شده‌ای (CECTAC LSX-213G2) جفت شدیدگرایی لیزری مدل دانشکده پنترام، شرکت الکترن اثر کشف مدارهای علمی تجزیه شدند. قطر نقاط اندازه‌گیری شده μm 0100 بود. عناصر کلسیم، سیلیسیوم و منیزیم انداره‌گیری شده توسط میکروسکوپ الکترونی که مسیرهای مرد بررسی برای استاندارد مقدار عناصر کمیاب مواد در ترکیب این کاکاها مورد استفاده قرار گرفت. به منظور بررسی شیمی عناصر اصلی، این کاکاها توسط دستگاه میکروسکوپ الکترونی مدل 2000 در دانشگاه JEOLE82860 بطور تجزیه شدند.

سنجش‌سنج

بررسی‌های سنجشگری انجام گرفته باید ایدینو-آمیفیلیت‌ها بیانگر ترکیب کاکاهای منطقه‌ای در این سنگ‌های منطقه مورد بررسی در استان آذربایجان غربی و در شمال شهروستان ارومیه واقع است. زمین‌ساختی این منطقه بیشتر بوده و روابط زمین‌ساختی و در مواردی سنی واحدهای مختلف نسبت به هم جانبه روش نیست. به طوری که موقعیت این منطقه در زمین‌ساختی ایران در دسترس شناخته نشده و توسط محققان مختلف به پیده‌ی الگوهای مختلف می‌درده‌اند. یکی از دو روش بررسی در نقشه‌های الگوهای مختلف می‌تواند ایدینو-آمیفیلیت‌های شمال ارومیه دانسته شده است [11-13]. موقعیت منطقه مورد
ب) توزیع عناصر کمیاب و خاکی نادر در هورن، سیستان و خوی، خوزستان و ... (الف)

شکل 1 (الف) موقعیت منطقه مورد بررسی در نقشه زمین‌ساختی ایران. برگرفته از مرجع [14]. (ب) نقشه زمین‌ساختی ساده شده منطقه مورد بررسی برگرفته از مرجع [15].

شکل 2 (الف) دورنمایی از آمیفیوبیت‌های رختنوم یافته در شمال اروپه. جنس سیگما‌ها بکار رفته در دیوارها در روستاهای این منطقه نیز از سیگما‌های آمیفیوبیت‌های است. (ب) آمیفیوبیت‌های رختنوم یافته در شمال اروپه. (ب) آمیفیوبیت‌های رختنوم یافته در شمال اروپه.

و کلینوژنیت کاتی‌های گروه ابیودوت در این سگ‌ها بوده و به صورت همزیست با هم قابل مشاهده هستند. این کاتی‌ها به صورت مشترک شکل در این سگ‌ها ظاهر شده‌اند و فاقد هر گونه منطقه‌بندی ترکیبی و شیمیایی بوده و به عنوان جزئی از کاتی‌های اوج دارکوانی هستند (شکل 3 الیف). گاهی، میان‌باره‌های از آمیفیوبیت (هورنلند) درون کاتی‌های گروه ابیدوت با توجه به روابط بافتی بین کلینویرکس و آمیفیوبیت و کاتی‌های دیگر (در برگرفته شدن کلینویرکس) توسط آمیفیوبیت و عدم وجود مرز مشترک این کاتی با کاتی‌های دارکوانی دیگر این کاتی درای خاستگاه دارکوانی نیوده و بقاها از سبک اولیه است. روابط بافتی کلینویرکس‌های باقیمانده به خوبی توسط مودن [18] بیان شده است. زونژیت ...
شیمی کانالعصاری اصلی مورد بررسی آناتوکن توسط مختلف اثرات شده است. این زمینه آمپیلولی و پلاژیوکلاز [19] کلیوپیرکس های باقیمانده از سنگ اولیه را به تغییر بررسی کردند. این رو از جراحی جدیدی از این پژوهش به منظور آشنا‌بودن با شیمی عصاری اصلی کانالعصاری مورد بررسی اثرات شده است.

آمپیلولی موجود در سنگ‌های مورد بررسی از نوع Si (Si = 688-724 apfu) منیزیوم‌بندین (Zr, Sr, La, Th, θ) عصاری ضیف به عصاری همگنی خود انخگشتی و متناهی شده‌بود (شکل 21). با این حال، تنها زیرخاکی تی و گروه‌ای که در اندازه‌بندی HREE نشان داده شده، با HREE بوده است. مقدار در ترکیب این کانال عصاری موجود توسط پلاژیوکلاز به تغییر شدید ترکیب پلاژیوکلازیمیک مورد بررسی نسبتاً بایپایین است. بطوریکه در نمونه‌های تجزیه شده مقدار بسیاری از عصاری خاکی ترار در ترکیب این کانال عصاری مورد بررسی ترسن می‌باشد. مجموع عصاری خاکی نادر موجود توسط پلاژیوکلازیمیک مورد بررسی بر اساس REE، La، Sm، Tb، и Eu از این عصاری خاکی نادر به‌همراه REE در ترکیب پلاژیوکلازیمیک مورد بررسی به‌همراه REE، La، Sm، Tb، и Eu از این عصاری خاکی نادر به‌همراه REE، La، Sm، Tb، и Eu از این عصاری خاکی نادر به‌همراه REE، La، Sm، Tb، и Eu از این عصاری خاکی نادر به‌همراه REE، La، Sm، Tb، и Eu از این عصاری خاکی نادر به‌همراه REE، La، Sm، Tb، и Eu از این عصاری خاکی نادر به‌همراه REE، La، Sm، Tb، и Eu از این عصاری خاکی نادر به‌همراه REE، La، Sm، Tb، и Eu از این عصاری خاکی نادر به‌همراه REE، La، Sm، Tb، и Eu از این عصاری خاکی نادر به‌همراه REE، La، Sm، Tb، и Eu از این عصاری خاکی نادر به‌همراه REE، La، Sm، Tb، и Eu از این عصاری خاکی نادر به‌همراه REE، La، Sm، Tb، и Eu از این عصاری خاکی نادر به‌همراه REE، La، Sm، Tb، и Eu از این عصاری خاکی نادر به‌همراه REE، La، Sm، Tb، и Eu از این عصاری خاکی نادر به‌همراه REE، La، Sm، Tb، и Eu از این عصاری خاکی نادر به‌همراه REE، La، Sm، Tb، и Eu از این عصاری خاکی نادر به‌همراه REE، La، Sm، Tb، и Eu از این عصاری خاکی نادر به‌همراه REE، La، Sm، Tb، и Eu از این عصاری خاکی نادر به‌همراه REE، La，Sm، Tb، и Eu از این عصاری خاکی نادر به‌همراه REE، La，Sm، Tb، и Eu از این عصاری خاکی N(Nb، Y، LILE) هستند. اغلب کمتر از 10 ppm هستند. در مقیاسی از کاهش در نمونه‌های تجزیه REE در ایندوب-آمپیلولی‌های شمال اروپی دیده می‌شود (شکل 3 ب) بررسی‌های سلول‌سازی انجام گرفته بر این سنگ‌ها و استفاده از این‌دما- فش‌سازی بر این‌بار تکیپ آمپیلول و پلاژیوکلاز نشان داده است که ایپیدا-آمپیلولی‌ها در شرایط دمایی ± 500 درجه سانتی‌گراد و فشار کمتر از 5 کیلوبار به‌طور گسترده شده‌اند [19].
جدول 1: نتایج حاصل از نژاد آنالیزگر کمیاب در آمپولیت‌های موجود در اپیدوت- آمپولیت‌های شمال ارومیه با استفاده از روش LA-ICP-MS (بر حسب ppm)

<table>
<thead>
<tr>
<th></th>
<th>Sc</th>
<th>Ti</th>
<th>V</th>
<th>Cr</th>
<th>Ni</th>
<th>Nb</th>
<th>Ba</th>
<th>La</th>
<th>Ce</th>
<th>Pr</th>
<th>Nd</th>
<th>Sm</th>
<th>Eu</th>
<th>Gd</th>
<th>Tb</th>
<th>Dy</th>
<th>Ho</th>
<th>Er</th>
<th>Tm</th>
<th>Yb</th>
<th>Lu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22</td>
<td>15</td>
<td>8</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>19</td>
<td>21</td>
<td>9</td>
<td>14</td>
<td>12</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>11</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>19</td>
<td>17</td>
<td>9</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>18</td>
<td>10</td>
<td>2</td>
<td>9</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>21</td>
<td>19</td>
<td>11</td>
<td>3</td>
<td>10</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

شکل 3: تصاویر الکترونی فیس پراکندگی (BSE) منشورهای زولیتیت و کلیتونیزیت همراه به همراه تدوین‌های در ناحیه A و B اپیدوت- آمپولیت‌های شمال ارومیه. (الف) منشورهای کلیتونیزیت و کلیتونیزیتیت اپیدوت- آمپولیت‌های شمال ارومیه. (ب) تدوین‌های در ناحیه A و B اپیدوت- آمپولیت‌های شمال ارومیه.
زنویزیت و کلینوژنیت
تمزک عناصر نادر و کسب‌های موجود در ترکیب اپیدوت‌های مورد بررسی در جدول 2 به تفکیک برای زنویزیت و کلینوژنیت ارائه شده است. تمرک عناصر خاکی نادر موجود در ترکیب اپیدوت‌ها متغیر بوده و مجموع این عناصر در نمونه‌های تجزیه شده برای کلینوژنیت از 48.5% تا 11.4% و برای زنویزیت از 6.8% تا 18.3% قسمت در میلیون در تغییر است. اگر این عناصر خاکی نادر به‌نگار شده به کندیت (داده‌ها از مرجع HREE در مقایسه با LREE (۲۱۱) پایه‌شناختی و LREE/La = 1.95 تا 1.11 در LREE/La برای زنویزیت) وجود رابطه تقریباً همواره از La برای کلینوژنیت و LREE/La = 3.233 (Nd) برای زنویزیت و LREE/La = 1.635 (Nd) کلینوژنیت هستند (برای مثال، فراوانی این عناصر در کلینوژنیت به صورت:

\[
\begin{align*}
\text{Dy}_N / \text{Yb}_N & = 0.39, \\
\text{Pb}/\text{Sr} & = 1.13 \\
\text{Sr}/\text{Pb} & = 1.13 \\
\text{La}_N / \text{Sm}_N & = 0.35 \quad \text{La}_N / \text{Sm}_N = 0.11 \\
\text{Eu}^{3+}/\text{Eu}^{2+} & = 1.32 \\
\text{Eu}^{3+}/\text{Eu}^{2+} & = 1.42
\end{align*}
\]

1- PM: Primitive Mantle

 شکل 4- اگلی عناصر خاکی نادر و نمودارهای چندعنصری برای کاتایاهای آسمیاول، پلاژیولاز، کاتایاهای گروه اپیدوت و کلینوژنیت‌ها

پایه‌نگاره از سنج اولیه.
جدول 2 نتایج حاصل از تجزیه عناصر کمپیا موجود در تکریک کلیتروپکس های باقیمانده از سنگ اولیه در دو ترکیب ۲ اینه، از این نمونه ساخته است. کلیتروپکس های باقیمانده دارای مقادیر متوسط

<table>
<thead>
<tr>
<th>اسید</th>
<th>بند</th>
<th>کلیتروپس</th>
<th>زورنیت</th>
<th>پلاتیت کلاژن</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sc</td>
<td>1</td>
<td>11</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>Ti</td>
<td>2.6</td>
<td>2.7</td>
<td>2.8</td>
<td>2.7</td>
</tr>
<tr>
<td>V</td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>Cr</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>Ni</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>Rb</td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>Sr</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>Y</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
</tr>
<tr>
<td>Zr</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Nb</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>Ba</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>La</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
</tr>
<tr>
<td>Ce</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>Pr</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>Nd</td>
<td>3.9</td>
<td>3.9</td>
<td>3.9</td>
<td>3.9</td>
</tr>
<tr>
<td>Sm</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>Eu</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>Gd</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Tb</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>Dy</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>Ho</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>Er</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>Tm</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>Yb</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>Lu</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>Hf</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>Pb</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>Th</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>U</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
</tr>
</tbody>
</table>

۱۰۰ ppm
<table>
<thead>
<tr>
<th>Element</th>
<th>Nd</th>
<th>Pr</th>
<th>Tb</th>
<th>Tb 1.1</th>
<th>Dy</th>
<th>Ho</th>
<th>Eu</th>
<th>Dy</th>
<th>Ho</th>
<th>Eu</th>
</tr>
</thead>
</table>

Growth of SEAC and MREE, which is attributed to the deposition of minerals that have a strong affinity for these elements. This is supported by field measurements and laboratory analyses.
شکل ۵. بررسی توزیع عنصری خاکی نادر و کمیاب در زوج کانی‌های (الف) و (ب) امفیبول و نیلزیت‌پلاژیکلز، (ب) و (ت) امفیبول و کانی‌های گروه ایپیدوت، (ت) و (ج) نیلزیت‌پلاژیکلز و کانی‌های گروه ایپیدوت، (ج) و (د) کلینوپیروکسنج و کانی‌های گروه ایپیدوت و (خ) کلینوپیروکسنج و کانی‌های گروه ایپیدوت و (ه) امفیبول و کانی‌های گروه ایپیدوت.
مسومه آهنگری

مجله بوروندیاس و کانی شناسی ایران

296

بررسی توزیع عنصر خاکی نادر و کمیاب در روز کانی امپیبول و کانی های گروه ایپیدوت (روئنیتیت و کلینوزیتیت). بانگان LREE تمرکز بالایی (به جز MREE) در گروه Gd و Eu در کانی های ایپیدوت است (شکل های ۵ و ۶). در ت. طرح کلی نسبت بربزیئیت/کانی گروه ایپیدوت برای عنصر خاکی نادر و کمیاب برای هر کانی روئنیتیت و کلینوزیتیت بسیار است. با این وجود، کلینوزیتیت می‌تواند مقایسه با روئنیتیت بالاتری از عنصر خاکی نادر و کمیاب است. عنصر خاکی نادر و کمیاب در سیرالوکالا در KREEP در حالت که امپیبول تمرکز بالایی از Hf و Zr و Nb عنصر مقایسه کانی های گروه ایپیدوت با پلاژیوکلازر در

LREE و غیره در پلاژیوکلازر (شکل های ۵ و ۶) Eu و Zr.LILE در دارای فراوانی بالایی در KREEP و Gd و Pb در پلاژیوکلازر و کانی های گروه ایپیدوت تقریباً یکسان بوده و نسبت این دور عنصر در پلاژیوکلازر بالایی در کانی های گروه ایپیدوت هستند. در مقایسه کانی های کانی ایپیدوت شده است.

c) الگوی ایپیدوت شده است.

در بررسی های مختلف پیمان توزیع عنصر کمیاب مختلف در کانی های موجود در سیرالوکالا دگرگویی ژئولوژی در کانی های گروه ایپیدوت (روئنیتیت و کلینوزیتیت) و بیشتری در پلاژیوکلازر است. همچنین توزیع عنصر در کانی های روئنیتیت و کلینوزیتیت تقریباً یکسان بوده و نسبت این عنصر در کلینوزیتیت به روئنیتیت تقریباً برابر با یک

با توجه به اینکه کلینوزیتیت به عنوان یکی از اولیه‌ترین کانی‌های موجود در AREE می‌شود، از این‌رو توزیع عنصر کمیاب و خاکی نادر در این
کانی فقط با امپیولیت مقایسه شده. بررسی عناصر سازگار (Sc, S) در این دو کانی نیز بیانگر با بودن افرود با این عنصر در ترکیب امپیولیت است. مقایسه اکثر عناصر خاکی نادر در نمونهدانی های جنگلی بین نشان دهنده کنترل برای کلیپیپروکسنهای بالاکماده از سنگ اولیه و امپیولیت
وجود در سنگهای مورد بررسی بیانگر شباهت بسیار زیاد الگوهای مشابهی در این دو کانی است (شكل ۶). این امر ادیوت و بیانگر این باشد که یوزیگن زمین‌شناسی امپیولیت‌های موجود در سنگهای مورد بررسی از کلیپیپروکسنهای اولیه به این سیده است. در بررسی‌های
صورت گرفته بر ترکیب عناصر کمیاب در امپیولیت‌های موجود در سنگ‌های درگونی مختلف بیانگر این است که یوزیگن زمین‌شناسی اکثر عناصر کمیاب و خاکی نادر این کانی می‌تواند تا حد زیادی واپسی به ترکیب کمیاب کانی اولیه باشد (۶). در این زمینه، پورسانتو و همکاران و (۶۷) بقایاری تمام مجدد و کنترل توزیع عناصر کمیاب و خاکی نادر توسط یوزیگن‌های بانی را عمل اصلی تشکیل الگوی توزیع
عناصر کمیاب و خاکی نادر کانی درگونی با کانی اولیه در نظر گرفته‌اند. این امر به ویژه در سنگ‌های درگونی درجه یا برای نیز کانی‌های برآمده از فراوندهای درگسانی بیشتر دیده می‌شود (۶۷). نفوذیشنو زمان‌نشده شده بین عنصر خاکی نادر و کمیاب برای این دو کانی شال غنی نسبی REE و کاهش در امپیولیت (شکل ۵) و (۵) بررسی ترتیب توزیع SR و Ca در فازهای امپیولیت، کلیپیپروکس و

شکل ۶ مقایسه الگوی عنصر خاکی نادر و کمیاب در امپیولیت و کلیپیپروکس‌های بالاکماده از سنگ اولیه.

[34] Poli S., Schmidt M.W., "The high-pressure stability of zoisite and phase relationships of zoisite-bearing assemblage". Contributions to Mineralogy and Petrology 130 (1998), 162-175.

[36] Cortesogno L., Gaggero L., Zanetti A., "Rare earth and trace elements in igneous and high-temperature metamorphic minerals of

oceanic gabbros (MARK area, Mid-Atlantic Ridge)" Contributions to Mineralogy and Petrology, 139 (2000), 373-393.

[37] Najorka J., Gottschalk M., Franz G., Heinrich W., "Ca-Sr distribution among